/
Julie Keister University of Washington Julie Keister University of Washington

Julie Keister University of Washington - PowerPoint Presentation

briana-ranney
briana-ranney . @briana-ranney
Follow
342 views
Uploaded On 2019-06-20

Julie Keister University of Washington - PPT Presentation

School of Oceanography What the zooplankton taught me about climate change my education in the GLOBEC Program US GLOBEC Northeast Pacific Program To provide climatology background and variability ID: 759261

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Julie Keister University of Washington" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Julie Keister

University of WashingtonSchool of Oceanography

What the zooplankton taught me about climate change…my education in the GLOBEC Program

Slide2

U.S. GLOBECNortheast Pacific Program

To

provide

climatology background and variability

Long-Term

Observation Program

Mesoscale Process

Studies

Core NEP Hypothesis:

Spatial and temporal variability in mesoscale circulation is the dominant forcing on zooplankton distribution, biomass, production, retention and loss from coastal areas.

Ocean color

Large scale climate variability

Mesoscale physical variability

Zooplankton variability

Ecosystem change

Slide3

U.S. GLOBEC

Northeast Pacific Program

Newport

Cape Blanco

Crescent City

Eureka

Pt. Arena

Mesoscale Process Study Region

Surface Temperature

Slide4

Cruises: June and August 2000 / 2002 3 vessels per cruise (Survey, Process, Fish)

NEP Mesoscale Process Studies

Survey vessel:

SeaSoar Bio-acoustics ADCP Optical Plankton Counter AC-9 (optics)

Process vessel:

Zooplankton nets

CTD casts

Rate measurements Mammal and seabird observations

Fishing vessel:

Nekton

Salmon prey fields

CTD casts

Slide5

°C

1 August 2000

GLOBEC August 2000 CCS Mesoscale cruise

Satellite SST :

RV New Horizon

Slide6

6

Sea surface temperature from the AVHRR

ADCP figure from

Barth et al. 2005

August 2000 Mesoscale cruise:

ADCP profile:

East component

(cm/s)

(blue = west)

17m

200m

17m

200m

North component

(cm/s)

(pink=north)

-20 cm/s

20-30 cm/s

Slide7

August 2000Strong physical control of biological patterns

42N

43N

44N

Copepod

Biomass

Ocean

color

125W

127W

127W

Sea Surface

Temperature

125W

125W

127W

Calanus marshallae

(cold-water, boreal species)

Calanus pacificus

(

warm-water species

)

125W

127W

125W

127W

Keister, Peterson, and Pierce, 2009

Slide8

Sea surface temperature from the AVHRR

Population and biomass loss from coastal regions:

0-100 m velocities from ADCP

>1200

tons C / day

>900

tons C / day

Loss of

~2% / day

of total coastal biomass

Keister, Peterson, and Pierce, 2009

Slide9

48

464442403836

Sea level anomaly (cm)

Latitude (°N)

25

20

151050-5-10-15-20-25

1993199519971999200120032005

48

464442403836

Energy (cm2)in 4-12 week periods

25

20 15 10 5 0

1993

1995

1997

1999200120032005

Spatial and temporal variability in mesoscale circulationJ Keister and PT Strub, J Geophys. Res., 2008

Slide10

Index of Mesoscale (4-12 week period) Energy

Keister and Strub, 2008

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

4-12 week variability in SSH

averaged over 36° to 43°N, 1° to 3° offshore

Normalized

power

0

1

Mechanisms remained unclear……

Slide11

Large scale climate variability

Mesoscale physical variability and transport dynamics

Zooplankton variability

Ecosystem change

Dominance of the mesoscale?

Slide12

126

124

122

36

38

40

42

44

46

48

Long-Term Observation Program

Newport Hydrographic (NH) Line

U.S. GLOBEC

Northeast Pacific Program

Newport

Cape Blanco

Crescent City

Eureka

Pt. Arena

NH5 zooplankton time series

NH10 mooring

Slide13

El Niño distributional shifts:

Nyctiphanes

simplex

Coastal, cold-water

taxon

Sagitta

pseudoserratodentata

Sagitta

hexaptera

Centropages

bradyi

Offshore taxa

Keister et al. 2005

Slide14

El Niño distributional shifts:

Keister et al. 2005

0

0.5

1

Nyctiphanes

simplex

abundance at NH-5

Jan 97

Jan 98

Jan 99

Jan 00

Jan 01

Jan 96

12 Dec ‘97

12 Nov ‘98

Kosro

2002:

Anomalous poleward velocities at NH10=

13.7 cm/s (350 km/month)

Estimated 3.3 months to arrive off Oregon

Actual arrival – 3 weeks later

Slide15

1

2

Jul-96

Jan-97

Jul-97

Jan-98

Jul-98

Jan-99

Jul-99

Jan-00

Jul-00

Jan-01

Jul-01

Jan-02

Jul-02

Jan-03

Jul-03

Jan-04

Jul-04

Jan-05

Jul-05

Jan-06

Jul-06

Jan-07

Quantifying zooplankton community variability

Community cluster time series

Axis 1 (71%)

Axis 2 (13%)

Non-Metric Multidimensional ordination

Warm-water/oceanic

community

Cold-water/coastal

community

-

2

-

1.5

-

1

-

0.5

0

0.5

1

1.5

2

2

1

Slide16

-2

-1

0

1

2

CCI score

1998

2000

2002

2004

2006

2008

1996

PC1 of copepods

CCI Timeseries

-2

-1

0

1

2

CCI score

Warm

Cold

Warm

Cold

Monthly anomalies

1998

2000

2002

2004

2006

2008

1996

“Copepod Community Index” = CCI

Ordination Axis 1 scores

PDO:CCI correlation R

= 0.5, p<0.01

Slide17

Calanus

marshallae

Pseudocalanus

mimus

Acartia

longiremis

Paracalanus parvus

Oithonasimilis

3mm

Not all copepods are created equal!

Boreal species =

larger and lipid filled

Calanus

Warm years

Cold years

Copepod Community relates to salmon survival:

Slide18

170

160

150

140

130

120

110

2

5

3

0

3

5

4

0

4

5

5

0

5

5

6

0

6

5

170

160

150

140

130

120

110

2

5

3

0

3

5

4

0

4

5

5

0

5

5

6

0

6

5

PDO - Cold Phase

PDO - Warm Phase

Climate-Forcing

Hypothesis

:

Basin-scale circulation links the PDO to local ecosystem change.

Strub, modification of

Chelton

and Davis

,

1982

Slide19

Basin-scale control of ecosystems?

E. Di Lorenzo

J. KeisterA. ThomasPT StrubWT PetersonS. BogradP. FranksF. SchwingK. ChaakA. Bracco

International collaborators: Japanese: (Chiba, Sasai, Sagaki, Tagushi, Ishidi, Nonaha), Chilean: (Escribano, Hormazabal, Pizarro, Rutllait, Montecino); Canadian (Mackas, Foreman, Pena, Crawford) collaborators on physics and biological variability

Slide20

Transport pathways explain an important

part of copepod community structure:

Slide21

The test?Compare modeled transport to zoop. observations

Nested ROMS model http://www.myroms.org/)10 km resolution30 vertical layersboundary conditions from World Ocean Atlas climatologynudged at open boundariesforced by NCEP winds and SST1950-2008Passive tracers released continuously along the 4 regional domain boundaries (NORTH, SOUTH, EAST, WEST) with 12-month decay scales.Time series integrated over 1x2 degree region centered on zooplankton observations.

Slide22

FromEAST

FromSOUTH

FromNORTH

FromWEST

1955

1965

1975

1985

1995

2005

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

-1

0

1

2

3

4

-1

0

1

2

3

Model hindcast CCI =

NORTH tracer

+

SOUTH tracer

+

EAST tracer

+

WEST tracer

+

ε

Passive Tracer Time Series

Keister et al. 2011

Slide23

1998

2000

2002

2004

2006

2008

R = 0.36

Model hindcast CCI

Observed

CCI

(5 year

l

owpass

)

R = 0.95

Model hindcast CCI

Observed CCI

1998

2000

2002

2004

2006

2008

(5 year

l

owpass

)

1960

1970

1980

1990

2000

R = 0.9

Model hindcast CCI

Model PDO

Keister et al. 2011

Advective control of zooplankton communities?

Slide24

How do large-scale climate modes drive coherent ecosystem changes around ocean basins?

Slide25

1960-1975

1981-1999

Low-Frequency Zooplankton and Transport Dynamics in the KOE

S.

Chiba

(JAMSTEC, Japan) A. Davis (GaTech, USA)J. Keister (UW, USA) H. Song (UCSD)B. Taguchi (JAMSTEC)E. Di Lorenzo (GaTech)

OFES Model

10 km resolution 1950-2009

Change in distributions of warm and cold-water copepods pre- and post- regime shift

Chiba et al. 2010

Abundance

Slide26

Slide27

What I we learned

A LOT !!

Large scale climate modes

Mesoscale transport dynamics

Basin-scale transport dynamics

Zooplankton variability

Ecosystem change

Slide28

Looking ahead:

Interdisciplinary science is necessary to understand complex systems and problems

Time series observations are gold

“You can learn a lot by looking”

Need big thinkers, synthesis ideas

Trend toward larger collaborative, or smaller, individual, projects?

Looking forward to future collaborations !

Slide29

Emanuel Di Lorenzo

GA Tech U

ROMS Modeler

Rodger

Harvey,

Se-Jong

Ju

University of MarylandEuphausiid aging

Steve Bograd, Frank SchwingNOAA SWFSC

Jane Huyer, Bob Smith, Pat Wheeler, Ev and Barry Sherr, Mike Kosro NEP GLOBEC LTOP

Patrick

Ressler

NOAA AFSC

Bioacoustics

Tim Cowles, Hal

Batchelder, Ted Strub, Bill PetersonPh D Committee

Ric

Brodeur, Kym Jacobson, Bob Emmett, Bill Peterson, Tom Wainwright, Peter Lawson, Ed CasillasNOAA NWFSC, Salmon biology

Collaborations developed, friends made

Cynthia

Suchman

NPRB

Dave

Mackas

Fish and Oceans Canada

Zooplankton ecology

The Peterson Lab!

Zooplankton ecology

Jaime Gomez

CICIMAR, MexicoEuphausiid ecology

Sanae

Chiba,

Hiro SugisakiJAMSTEC, Japan

Andy Thomas, Jack

Barth,

Steve

Pierce,

Ricardo

Letelier

, Yvette

Spitz, Mike

Kosro

,

Meng

Zhou

GLOBEC Mesoscale Studies