/
Long Signaling Cascades Tend to Attenuate Retroactivit Long Signaling Cascades Tend to Attenuate Retroactivit

Long Signaling Cascades Tend to Attenuate Retroactivit - PDF document

briana-ranney
briana-ranney . @briana-ranney
Follow
394 views
Uploaded On 2015-05-02

Long Signaling Cascades Tend to Attenuate Retroactivit - PPT Presentation

Ossareh Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI Alejandra C Ventura Department of Biology University of Buenos Aires Buenos Aires Argentina Department of Internal Medicine University of Michigan ID: 58871

Ossareh Department Electrical

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Long Signaling Cascades Tend to Attenuat..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

LongSignalingCascadesTendtoAttenuateRetroactivityHamidR.OssarehDepartmentofElectricalEngineeringandComputerScienceUniversityofMichigan,AnnArbor,MIAlejandraC.VenturaDepartmentofBiologyUniversityofBuenosAires,BuenosAires,ArgentinaDepartmentofInternalMedicineUniversityofMichigan,AnnArbor,MISoaD.MerajverDepartmentofInternalMedicineUniversityofMichigan,AnnArbor,MIDomitillaDelVecchioDepartmentofMechanicalEngineeringMIT,Cambridge,MA11Address:DepartmentofMechanicalEngineering,MIT,Cambridge,MA02139,ddv@mit.edu AbstractSignalingpathwaysconsistingofphosphorylation/dephosphorylation(PD)cycleswithnoexplicitfeedbackallowsignalstopropagatenotonlyfromupstreamtodownstreambutalsofromdownstreamtoupstreamduetoretroactivityattheinter-connectionbetweenPDcycles.However,theextenttowhichadownstreampertur-bationcanpropagateupstreaminasignalingcascadeandtheparametersthata ectthispropagationarepresentlyunknown.Here,wedeterminethedownstream-to-upstreamsteadystategainateachstageofthesignalingcascadeasafunctionofthecascadeparameters.Thisgaincanbemadesmallerthan1(attenuation)bysucientlyfastkinaseratescomparedtothephosphataseratesand/orbysuf-cientlylargeMichaelis-Mentenconstantsandsucientlylowamountsoftotalstageprotein.Numericalstudiesperformedonsetsofbiologicallyrelevantparam-etersindicatedthatabout50%oftheseparameterscouldgiverisetoamplicationofthedownstreamperturbationatsomestageina3-stagecascade.Inann-stagecascade,thepercentageofparametersthatleadtoanoverallattenuationfromthelaststagetotherststagemonotonicallyincreaseswiththecascadelengthnandreaches100%forcascadesoflengthatleast6.Keywords:Signaling,mathematicalmodel,numericalsimulation,analyticalderivations CascadesAttenuateRetroactivity2IntroductionSignalingpathwaysareubiquitousinlivingsystemsandcoveracentralroleinacell'sabilitytosenseandrespondtobothexternalandinternalinputstimuli(1,2).Numeroussignalingpathwaysconsistofcyclesofreversibleproteinmodication,suchasphosphorylation/dephosphorylation(PD)cycles,whereinaproteinisre-versiblyconvertedbetweentwoforms(3).MultiplePDcyclesoftenappearcon-nectedinacascadefashion,suchasintheMAPKcascades(4,5),andthelengthofthecascadehasbeenshowntohaveimportante ects,forexample,onsignalamplication,signalduration,andsignalingtime(6–8).Inparticular,awealthofworkhasbeenemployingmetaboliccontrolanalysis(MCA)approachestoanalyt-icallydeterminetheamplicationgainsacrossthecascadeasasmallperturbationappliedatthetopofthecascadepropagatestowardthebottomstages(8–10).Nostudyhasbeenperformedonhowperturbationsatthebottomofacascadepropa-gatetowardthetopofthecascade.Sincecascadesoftenintersecteachotherbysharingcommoncomponents,suchasproteinsubstratesorkinases(11,12),perturbationsatbottomorintermediatestagesinacascadecanoftenoccur.Theseintersectionsarealreadyknowntocauseunwantedcrosstalkbetweenthesignalingstagesdownstreamoftheintersectionpoint(13–16).However,noattentionwasgiventocrosstalkbetweenthestagesupstreamoftheintersectionpoint.Severaloftheseworks,infact,viewedasignal-ingcascadeasthemodularcompositionofPDcycles,resultinginasystemwherethesignaltravelsonlyfromupstreamtodownstream.Theoreticalwork,however,hasshownthatPDcycles(asseveralotherbiomolecularsystems)cannotbemodu-larlyconnectedwitheachotherbecauseofretroactivitye ectsatinterconnections(17–22).Initialexperimentalvalidationofthesee ectsonthesteadystateresponseofaPDcyclehavealsoappeared(23–25).Thesee ectschangethebehaviorofanupstreamsystemwhenitisconnectedtoitsdownstreamclientsandarerelevantespeciallyinsignalingcascades,inwhicheachPDcyclehasseveraldownstreamtargets.Asaresultofretroactivity,signalingcascadesallowsignalstoalsotravelfromdownstreamtoupstream,thatis,theyallowbidirectionalsignalpropagation(22,26).Asaconsequence,aperturbationatthebottomofthecascadecanpropa-gatetotheupstreamstagesandhaverepercussionsontheoverallsignaling.Aperturbationatthebottomofacascadecanbeduetoanumberoffactors.Forexample,whenadownstreamtargetorasubstrateissharedwithothersignal-ingpathways,itsfreeconcentrationisperturbedbytheseotherpathways.Hence,theamountoftarget/substrateavailabletothecascadeunderstudycansuddenlychange.Similarly,theintroductionofaninhibitorofanactiveenzyme,asper-formedintargeteddrugdesign,createsaperturbationatthetargetedstageofthecascade.Howlargeisthee ectofsuchperturbationsontheupstreamstages?How CascadesAttenuateRetroactivity3doesthelengthofacascadeimpactbackwardsignaltransfer?Ontheonehand,answeringthesequestionswillrevealtheextentbywhichaberrantsignalingintheupstreamstagesofacascadecanbecausedbyretroactivityfromsharingdown-streamtargets/substrates.Ontheotherhand,itwillprovidetoolsfortargeteddrugdesignbyquantifyingtheo -targete ectsofinhibitorsontheupstreamstages.Inthispaper,weaddressthesequestionsincascadeswithasinglephospho-rylationcycleperstagebyexplicitlyincorporatingretroactivityinthePDcyclemodel.Specically,weconsidersmallperturbationsatthebottomofthecascadeandexplicitlyquantifyforthersttimehowsuchperturbationspropagatefromdownstreamtoupstream.Ourmainresultsareasfollows.Weprovideanalyticalexpressionsforthedownstream-to-upstreamtransmissiongains.Theseestablishtheextenttowhichaperturbationatthebottomofthecascadecanpropagateup-streamandprovidesucientconditionsforattenuation.Throughextensivenu-mericalsimulation,wediscoveredthat,surprisingly,naturalcascadescanamplifyaperturbationasitpropagatesupstream,buttheprobabilityofattenuationissub-stantiallyhigherthanthatofamplication.Also,theprobabilityofattenuationincreaseswiththenumberofstagesinthecascade.MethodsWeconsiderasignalingcascadecomposedofnphosphorylation/dephosphorylation(PD)cyclesasdepictedinFigure1.Thesensitivityofresponsetoperturbationsoccurringatthetopofthecascade,forexampleinW0,hasbeenextensivelystudiedemployingMCAapproaches(8–10).Bycontrast,hereweinvestigatethesensitiv-ityofresponseofeachcycletoaperturbationatthebottomofthecascade.Thisperturbationcanbedue,forexample,toaninhibitoroftheactiveenzymeWn,asitisemployedintargeteddrugdesign(27)ortothesignalingfromanotherpathwaysharingasubstratewithWn.Ourmethodisbasedonassumingasmallperturbation,onlinearizingthesystemdynamicsaboutthesteadystate,andonde-terminingthecorrespondingchangeofeachcyclephosphorylatedprotein.Sinceourapproachisbasedonlinearization,itissimilarinspirittoMCAapproaches,whichalsoassumesmallperturbationsandlinearizethesystemdynamics.Here,weareinterestedindetermininghowe ectivelytheperturbationpropagatesup-stream.Wethusexplicitlycomputethesensitivitygainfromonestagetothenextupstreamasafunctionofthecascadeparameters. CascadesAttenuateRetroactivity4CascadeModelAteachstagei,fori2f1;:::;ng,wedenotebyWi1thekinase,byEithephos-phatase,byWitheproteinsubstrate,andbyWithephosphorylatedformofWi.ThekinaseWi1bindstoWitoformthesubstrate-kinasecomplexXi.Thiscom-plexthenturnsintoWi.ThephosphorylatedproteinWiisinturnakinaseforthenextcycleandbindstodownstreamsubstrates,formingthecomplexXi+1.ThephosphataseEiactivatesthedephosphorylationoftheproteinWibybindingtoWiandformingthecomplexYi.ThiscomplexisinturnconvertedtoWi.Weemploythefollowingtwo-stepreactionmodelforeachphosphorylationanddephosphory-lationreaction(28,29)atstagei2f1;:::;ngofthecascade:Wi+Wi1ai*) aiXiki!Wi+Wi1Wi+Eibi*) biYi ki!Wi+Ei:WeassumethatproteinWiandphosphataseEiareconservedateverystage,andareintotalamountsWiTandEiT,respectively.Therefore,wehavetheconservationrelationsWi+Wi+Xi+Yi+Xi+1=WiTEi+Yi=EiT;(1)inwhichforaspeciesXwehavedenotedbyX(italics)itsconcentration.Weassumethattheinputkinasetotherststage,W0,isproducedatratek(t)anddecaysatrate,thatis,W0*)k(t);:Finally,weassumethattheoutputproteinofthelaststage,Wn,reactswithspeciesDdownstreamofthecascade.ThesespeciesDcanmodel,forexample,asignalingmoleculeoraninhibitoroftheactiveenzymeWn(adrug)suchasconsideredintargeteddrugdesign(27),inwhichthetotalconcentrationofDcanbeperturbed,forexample,byaddingmoredrug.SpeciesDcanalsomodelasubstratethatissharedwithothersignalingpathways.Inthiscase,Disasubstrateforanotheractiveenzyme,sayS,whoseconcentrationiscontrolledbyanothersignalingcas-cade.Hence,theamountoffreeDplustheamountofDboundtoWn,whichwecallDT,canbeperturbed(itcanincreaseordecrease)byachangeintheconcen-trationoftheactiveenzymeS.DenotingbyXn+1thecomplexformedbyWnandD,wehavethatWn+Dan+1*) an+1Xn+1withDT,D+Xn+1: CascadesAttenuateRetroactivity5Inthisstudy,weconsiderDTastheparametertobeperturbedandcalculatethesensitivityofthesteadystateresponseofeachcycleactiveproteintosmallpertur-bationsinDT.Thedi erentialequationsthatdescribethedynamicsofthecascadearegiven,fori2f1;:::;ng,byW0=W0+k(t) (a1W0W1( a1+k1)X1) Xi=aiWi1Wi( ai+ki)Xi;Wi=kiXibiWiEi+ biYi (ai+1WiWi+1( ai+1+ki+1)Xi+1) Yi=biWiEi( bi+ ki)YiWn=knXnbnWnEn+ bnYn (an+1DWn an+1Xn+1) Xn+1=an+1DWn an+1Xn+1:RecognizingthatthetermsintheboxescorrespondtoX1,Xi+1,andXn+1,respec-tively,andemployingtheconservationlaw(1),weobtainfori2f1;:::;ngthatW0=W0+k(t)X1Xi=aiWi1(WiTWiXiYiXi+1)( ai+ki)XiWi=kiXibiWi(EiTYi)+ biYiXi+1(2)Yi=biWi(EiTYi)( bi+ ki)YiXn+1=an+1(DTXn+1)Wn an+1Xn+1:PerturbationAnalysisInthissection,weconsiderthecascadetobeatthesteadystateandinvestigatehowasmallperturbationintheconcentrationDTperturbsthesteadystateconcentra-tionsateverystageofthecascade.Wedenotethesteadystatevalueoftheupstreaminputk(t)by kandthatofDTby DT.ThecorrespondingequilibriumvaluesoftheproteinconcentrationsW0,Wi,Xi,Yi,Wi,fori2f1;:::;ng,andXn+1aredenotedby W0, Wi, Xi, Yi, Wi,fori2f1;:::;ng,and Xn+1,respectively.WerepresenttheperturbationofDTwithrespecttoitssteadystatevaluebydT:=DT DT.NotethatifdT�0,thedownstreamperturbationispositive,thatis,theconcentrationDTincreases.IfinsteaddT0,thedownstreamperturbationisnegative,thatis,theconcentrationDTdecreases.Hence,bothpositiveandnegativeperturbationsareconsidered.Thecorrespondingperturbationsofthestatesofthecascadeabouttheequilibriumvalues W0, Wi, Xi, Yi,fori2f1;:::;ng,and Xn+1aredenotedbyw0,wi,xi,yi,fori2f1;:::;ng,andxn+1,respectively.Similarly,denotebyZifor CascadesAttenuateRetroactivity6i2f1;:::;ngtheconcentrationofthetotalphosphorylatedproteinatstagei,thatis,Zi:=Wi+Yi+Xi+1.Denotethecorrespondingperturbationaboutthesteadystate Zi= Wi+ Yi+ Xi+1byzi,whichcanbewrittenaszi=wi+yi+xi+1foralli2f1;:::;ng.Thelinearizationofsystem(2)abouttheequilibrium W0, Wi, Xi, Yi,and Xn+1,fori2f1;:::;ngisgivenbyw0=w0x1xi=ai Wiwi1+ai Wi1(wixiyixi+1)( ai+ki)xiwi=kixi+bi Wiyibi Eiwi+ biyixi+1(3)yi=bi Wiyi+bi Eiwi( bi+ ki)yixn+1=an+1 Dwnan+1 Wnxn+1 an+1xn+1+an+1 WndT;inwhichwehavefori2f1;:::;ngthat(fromsettingthetimederivativesinequations(2)equaltozero) W0= k (4) Wi=Ki ki ki Ei Wi+ Ki0BBBBB@1+ Wi Ki1CCCCCA Wi Wi1(5) Yi=EiT 1+ Ki= Wi(6) Xi= ki ki Yi;(7)inwhich Ki:=¯bi+ ki biistheMichaelis-Mentenconstantofthedephosphorylationreaction,whileKi:=¯ai+ki aiistheMichaelis-Mentenconstantofthephosphorylationreaction.Sinceweareinterestedinthesteadystatevaluesofwi,wesetthetimederiva-tivestozeroinsystem(3)toobtainxi= ki kieEiwi(8)wi=Ti( Wiwi1 Wi1xi+1);(9) CascadesAttenuateRetroactivity7fori2f1;:::;ng,inwhicheEi, KiEiT (¯Wi+ Ki)2(10)Ti,1 Wi1+eEi( Wi1+ ki ki( Wi1+Ki)):(11)Figure2representsrelations(8)and(9)inablockdiagramform,whichhighlightsthedirectionalityofsignalpropagationthroughthestagesinthecascade.Basically,theperturbationdTpropagatesupstreaminthecascadethroughperturbationsinthecomplexesXi.Hence,inthissteadystateresponsemodel,retroactivityisduetothecomplexXioftheactiveproteinwithitsdownstreamsubstrate.ResultsAnalyticalResultsReferringtoFigure2,theperturbationdTpropagatesupstreamthroughperturba-tionsxiandcausesperturbationsziandwiinthetotalandfreephosphorylatedproteinconcentrations,respectively,ateverystage.Howdotheseperturbationstransferfromonestageofthecascadetothenextoneupstream?Inordertoanswerthisquestion,wecalculatethegainsi:=jzij jzi+1jand i:=jwij jwi+1jateverystagei.Againgreaterthanonemeansthatsmallperturbationsareampli-edastheytransferfromdownstreamtoupstream,whileagainsmallerthanonemeansthatsmallperturbationsareattenuatedastheytransferfromdownstreamtoupstream.Sincejzij=ijzi+1j,wehavethatjz1j=0BBBBBB@n1Yi=1i1CCCCCCAjznjwhere“Q”denotesmulti-plication.Wethusdenethetotalgaintotfromstagentostage1astot:=n1Yi=1i:Similarly,thetotalgain totfromstagentostage1isdenedas tot:=n1Yi=1 i: CascadesAttenuateRetroactivity8Havingatotalgainsmallerthanonemeansthatoverallthecascadeattenuatesdownstreamperturbations,evenifsomestagesmayamplifytheperturbation.Werstfocusonthegainsioftotalactiveproteinconcentration.Thetotalactiveproteinconcentrationcanbeexperimentallydeterminedbymeasuringpro-teinactivitythroughphospho-specicantibodies(30).Bycontrast,thefreeactiveproteinmaybemorediculttomeasure.Whenitisanactivetranscriptionfactor,itcanbemeasuredindirectly,forexample,byplacingareportergeneunderthecontrolofthepromoterthatitregulates.TheexpressionofthegainiateachstageicanbeexplicitlycalculatedasafunctionofthecascadeparametersfromtherelationsintheblockdiagramofFigure2(seeSI).Thisexpressionisgivenbyi=0BBBBBBBB@eEi ki ki+Fi 1+eEi+eEi ki ki+Fi1CCCCCCCCA0BBBBBBBB@ ki+1 ki+1eEi+1 ki+1 ki+1eEi+1+Fi+11CCCCCCCCAforalli2f1;:::;n1g;inwhichFiandFi+1arepositivequantities.SinceeEi ki ki+Fi 1+eEi+eEi ki ki+Fi1and ki+1 ki+1eEi+1 eEi+1 ki+1 ki+1+Fi+11,wehavethati1;foralli2f1;:::;n1g;Furthermore,wehavethat(seeSI)sign(zi)=sign(zi+1)foralli2f1;:::;n1g;thatis,anincreaseofZi+1impliesadecreaseofZi.Therefore,thereisasignrever-saloftheperturbationonthetotalphosphorylatedproteinconcentrationacrossthestagesandthemagnitudeoftheperturbationateverystageisalwaysattenuatedasitpropagatesupstreaminthecascade.Thatis,jz1jjz2j:::jzn1jjznjforallparametervalues.Furthermore,thisimpliesalsothatwehaveoverallattenuationfromdownstreamtoupstreaminthecascade,thatis,tot1.Sincethesefactsdonotdependonthespecicparametervaluesorthelengthofthecascade,theyhighlightanewstructuralpropertyofsignalingcascades.Fortheperturbationonthefreeactiveproteinconcentration,wealsohavethat(seeSI)sign(wi)=sign(wi+1)foralli2f1;:::;n1g;thatis,whentheperturbationwi+1ispositivethenextupstreamstagehasaper-turbationwiwithnegativesign.Hence,ifthedownstreamperturbationcausesadecreaseoftheactiveproteinconcentrationatonestage,itcausesanincreaseoftheactiveproteinconcentrationinthenextupstreamstage.Anexpressionofthestagegain icanbecalculatedasafunctionofthecascadeparametersstartingfromthe CascadesAttenuateRetroactivity9relationsoftheblockdiagramofFigure2.TheexactexpressioniscalculatedintheSIanditissuchthat i ki+1 ki+1E(i+1)T Ki+1 1+EiT  Ki+WiT1+WiT Ki1+ ki ki1+Ki W(i1)T:(12)Therefore,onecancontroltheamountofattenuation/amplicationthroughthecas-cadeparametersasfollows.ThesmallertheW(i1)T,themoretheattenuationfromstagei+1toi(i.e.,thesmallertheupperboundon iinequation(12)).Moreover,sucientlylargevaluesofKiand Kiforallileadtoanincreasedattenuationateverystage.Inturn,largeKiand KiandsmallWiTareresponsibleforadecreasedsensitivityoftheresponseofstageitoupstreamstimuli(29).Asaconsequence,amoregradedupstreamtodownstreamresponseatallstagesisassociatedwithanincreasedattenuationofdownstreamperturbations.Fromexpression(12),italsofollowsthatasucientconditionforhavingat-tenuationatstageiofthedownstreamperturbationisthat¯ki+1 ki+1E(i+1)T Ki+11:ThisconditionisvalidforgeneralPDcascades.However,ithasaparticularlysimplemeaninginthecaseinwhichthesignalingpathwayisweaklyactivatedasexplainedinwhatfollows.In(6),itwasfoundthatarequirementforupstreamtodownstreamsignalamplicationisthatthephosphorylationrateconstantshouldbelargerthanthedephosphorylationrateconstant.ForaweaklyactivatedpathwaywithKiW(i1)T,thephosphorylationrateconstantiswellapproximatedby i:=kiWiT=Ki(seeSI).Inthecaseinwhich KiWiT,thedephosphorylationrateconstantiswellapproximatedby i:= kiEiT= Ki(seeSI).Asaconsequence,tohaveupstream-to-downstreamsignalamplication,itisrequiredthat i� i,which,whenKiWiT,impliesthat¯ki kiEiT Ki1.This,inturn,impliesthat i11andhencethatthedownstreamperturbationisattenuatedasittransfersfromstageitostagei1.Hence,inweaklyactivatedpathwaysinwhichKiWiT, KiWiT,andKiW(i1)T,upstreamtodownstreamsignalamplicationisassociatedwithattenuationofdownstreamperturbationsastheytransferupstream.This,inturn,impliesunidirectionalsignalpropagationfromupstreamtodownstream.Fromexpression(12),italsofollowsthatanecessaryconditionforhaving i�1,thatis,foramplifyingadownstreamperturbationasittransfersfromstagei+1tostagei,isthat¯ki+1 ki+1E(i+1)T Ki+1�1:Thiscondition,inturn,inthecaseinwhich Ki+1W(i+1)T,W(i+1)TKi+1,andKi+1WiTimpliesthatthephosphorylation CascadesAttenuateRetroactivity10rateconstant i+1issmallerthanthedephosphorylationrateconstant i+1.Asaconsequence,thereisnoamplicationatstagei+1ofthesignaltravelingfromupstreamtodownstreamastherequiredconditionforamplicationasdeterminedby(6)isviolated.Hence,inweaklyactivatedpathwaysinwhichKi+1W(i+1)T, Ki+1W(i+1)T,andKi+1WiTifadownstreamperturbationisampliedasitpropagatesfromstagei+1tostagei,thenthereisnoamplicationfromstageitostagei+1forthesignaltravelingfromupstreamtodownstreaminresponsetoastimulusatthetopofthecascade.Fromtheexpressionsof i,wecanalsoderiveanecessaryconditionforatten-uation(seeSI).Specically,tohave i1atstageiitisnecessarythat ki+1 ki+1 Ki+1E(i+1)T (¯Wi+1+ Ki+1)2 1+ KiEiT (¯Wi+ Ki)21+ ki ki1+Ki Wi11+1+ Wi Ki Wi Wi11:(13)Ifthenecessaryconditionisviolatedatstagei,theneitherstagei1orstageiamplifythedownstreamperturbation.Thisexpressioncanbeemployedtodeter-mineparametervaluesforwhichamplicationofthedownstreamperturbationcanresultatanygivenstageandcanbeusefultodeterminetheecacyoftheo -targete ectsofaninhibitor.Toconcludetheanalyticalstudy,weinvestigatehowdTa ectswnandzn.Itcanbeshown(seeSI)thatjwnjjdTjandthatjznjjdTj.Thatis,theperturbationdTinduceschangeswnandznabout Wnand Zn,respectively,thatarelessthandTinmagnitude,regardlessoftheparameters.Also,wehavethatsign(dT)=sign(wn)andsign(dT)=sign(zn).NumericalResultsInthissection,werstillustratetheresultsonathree-stagecascadeexample.Wethenemploytheanalyticallycomputedexpressions itodeterminetheprobabilitythatnaturalcascadesattenuateadownstreamperturbationasittransfersupstreaminthecascade.Wenallystudythee ectofthelengthofthecascadeontheoverallgain tot.Allsimulationsareperformedonthefullnonlinearmodelofequations(2)inMATLABusingthebuilt-inODE23ssolver.Figure3showshowtheperturbationpropagatesupstreaminathree-stagecas-cadefortheparametervaluesof(28).ThisFigureillustratesthat,surprisingly,therelationshipbetweenwianddTisapproximatelylinearevenforlargeperturba-tionsdT(upto400nM).Hence,thetheoreticalresultsmusthold.Inparticular,thevaluesofw1andw3arenegativewhilethevalueofw2ispositive.Thatis,theper-turbationonWiswitchessignfromonestagetothenextupstream.Thegains i CascadesAttenuateRetroactivity11calculatedfromtheexpressionintheSIfortheparametervaluesof(28)aregivenby 1=2:45105and 2=2:14102.Since 1and 2arebothsmallerthan1,thecascadeshouldattenuatethedownstreamperturbationateverystage.ThisisconrmedbyFigure3inwhichforthesamevalueofdT,wehavethatjwijbecomessmallerandsmallerasthestageidecreases(i.e.,astheperturbationpropagatesupstream).Sincethevaluesof iaremuchsmallerthan1,thisthree-stagecascadepracticallyenforcesunidirectionalsignalpropagationfromupstreamtodownstream.NotethataslongastheappliedperturbationdTissmallenough,therelationshipbetweendTandwiislinearandhenceallourresultsholdindepen-dentlyoftheparametervalues.Additionalexamplesfordi erentparametervaluesareprovidedintheSI.Tovalidatethenecessaryconditionforattenuationatstagei,weconstructedaparametersetthatviolatesthenecessaryconditionforattenuation(13).Inthiscase,weshouldexpectthatatthestageiforwhich i�1,thedownstreamperturbationisamplied,thatis,jwij�jwi+1j.Thenecessarycondition(13)canbeviolatedbychoosingphosphataseamountsthatincreasewiththestagenumber,thatis,E1TE2TE3Tandsubstrateamountsthatdecreasewiththestagenumber,thatis,W1TW2TW3T.Weutilizedtheseconditionsandconstructedacascadethatampliesdownstreamperturbations.TheresultisshowninFigure4.Theresultingparametervaluesarestillbiologicallymeaningfulastheyarecontainedintheparameterintervalsestimatedin(28).Therefore,thesecascadesarecapableofalsotransmittingaperturbationfromdownstreamtoupstreambyamplifyingitsamplitude.Donaturalsignalingcascadesattenuatedownstreamperturbations?Inordertodeterminetheprobabilitythatanaturalsignalingcascadeattenuatesorampliesdownstreamperturbations,weevaluatedtheexpressionofthegains ionparametersextractedwithuniformprobabilitydistributionfromintervalstakenfromtheliterature(28,31–33).Wepresenttheresultsrstforathree-stagecascadestartingfromconservativeintervalsandweprogressivelyreducethesizeoftheintervals.Inallcases,eachparameterhasarangeandauniformprobabilitydistributionisusedtosampleparametersforeachrange.Also,eventhoughtherangeofparametersforeachcycleisthesame,inthesimulationseachcyclehasdi erentparameters(randomlypickedfromthegivenrange).Conservativeintervals.Inthiscase,werandomlychoseparametersthroughauniformprobabilitydistributionfromtheintervalsgiveninTable1.Themaximumandminimumvaluesoftheintervalswerechosentobethemaximumandminimumoftheunionoftheintervalsdenedin(28)and(31).Thisisaconservativewayofchoosingtheintervalsastheparametersof(28)and(31)aretakenfromdi erent CascadesAttenuateRetroactivity12organisms.InselectingtherangeforDT,weassumedthatDisadownstreamproteinsubstrateandthusitsintervalofvariationwaschosentobethesameasthatforWiT.Wesimulatedthethree-stagecascade10000timesandtheresultsarereportedinTable2.Thistableshowsthepercentageofsimulationsthatresultedin i1foreveryi2f1;2g,thatis,thatresultedinattenuationatstagei.Theprobabilityofstage1attenuatingthedownstreamperturbationis71:34%andtheprobabilityofstage2attenuatingitis55%.Moreover,sincetheprobabilitythat tot1is79:4%theprobabilityofsuchcascadesprovidinganoverallattenuationofadownstreamperturbationisquitehigh.Toexplorewhether10000simulationswereenoughtoobtainmeaningfulprobabilitygures,wecalculatedateachnewsimulationthepercentageofallperformedsimulationsthatresultedinattenuation.TheprobabilitiesconvergeforeverystagetothevaluesgiveninTable2,henceperformingmoresimulationswillnotsignicantlychangetheresults(seeSI).IntervalsbasedonBhallaetal.(31).Weconsideredthenominalparame-tervaluesgivenin(31)andthenconstructedintervalsbyvaryingthesevaluesby20%,50%,and80%.Specically,foreveryparameterwithnominalvaluep,weconsideredacondenceintervaloftheform[(10:x)p;(1+0:x)p]forthethreedi erentcasesinwhichx=2,x=5,andx=8.Theresultsforthesethreedif-ferentcasesareshowninTable3.Evenwhentheparametersareallowedtovaryby80%fromthenominalvalues,theprobabilitythatanygivenstageattenuatestheperturbationisveryhighandtheprobabilitythatthecascadeprovidesoverallattenuation(i.e., tot1)is1.Asperformedinthepreviouscase,theresultsofTable3areobtainedperforming10000numericalsimulations.IntheSI,weshowthatthisnumberislargeenoughtoattainconvergenceoftheprobabilities.IntervalsbasedonLevchenkoetal.(32).Wenextconsideredthenominalparametervaluesgivenin(32)andconstructedintervalsbyvaryingthesevaluesby20%,50%,and80%.Specically,foreveryparameterwithnominalvaluep,weconsideredacondenceintervaloftheform[(10:x)p;(1+0:x)p]forthethreedi erentcasesinwhichx=2,x=5,andx=8.Theresultsforthesethreedi erentcasesareshowninTable4.Whentheparametersareallowedtochangeby50%withrespecttothenominalvalues,theprobabilityofattenuationateachstageislowerthanthevaluesobtainedfortheparametersof(31)(Table3).With80%parametervariation,thereisasignicantpercentageofthepossibleparameters(10%)thatallowstooverallamplifythedownstreamperturbationfromstage3tostage1.Moreover,50%oftheparametersledtohaving 1&#x-200;1or 2&#x-200;1andonly2:2%oftheparametersledtohavingboth 1&#x-200;1and 2&#x-200;1.Therefore,50%ofthepossibleparametervaluesleadtoamplicationinatleastonestageinthecascade.TheresultsofTable4areobtainedperforming10000numericalsimulations.TheSIshowsthatbythetimethe10000thsimulationisperformedtheprobabilityhasconvergedtoitsnalvalue. CascadesAttenuateRetroactivity13Wethenanalyzedhowthelengthnofthecascadea ectstheoverallattenua-tionfromstagentostage1,thatis,howita ectsthegain tot.Toperformthisstudy,werstsimulatedaten-stagecascade10000timeswiththesameparameterrangesasgiveninTable1.TheresultisshowninTable5.Theprobabilityofthelasttwostages(i=8;9)attenuatingtheperturbationhassignicantlyincreasedcomparedtothethree-stagecase(Table2).Furthermore,theprobabilityofoverallattenuation,thatis,that tot1,is100%.Hence,evenwhensomestagesam-plifythedownstreamperturbation,therestofthestagesprovideattenuationsothattheoverallattenuationinthecascadeismuchmorethantheoverallamplication.Toconrmthat10000simulationswereenoughtoprovidemeaningfulprobabilitygures,weanalyzedtheconvergenceoftheprobabilityaftereachsimulationrunintheSI.Finally,tostudyhowthenumberofstagesinacascadeimpactstheprobabilityofoverallattenuation,thatis,theprobabilitythat tot1,weperformedanum-berofnumericalsimulationsextractingparametersfromtheintervalsofTable1forcascadeswithincreasingnumberofstages.Theprobabilityofoverallatten-uationmonotonicallyincreasesasthenumberofstagesinthecascadeincreasesanditreaches100%forcascadesoflengthatleast6(Figure5).Foreachnumberofstages,n,weperformedasucientlylargenumberofsimulationsfordi erentvaluesoftheparameterssampledintheintervalsofTable1(seeSI).Thisresultimpliesthatforaxedrangeofparameters,addingmorestagescontributessigni-cantlytotheprobabilityofoverallattenuationfromstagentostage1.Forexample,theprobabilityofathree-stagecascadeprovidingoverallattenuationwasfoundtobe79:4%while,forthesamerangeofparameters,theprobabilityofaten-stagecascadeprovidingoverallattenuationwasfoundtobe100%.DiscussionUpstreamtodownstreamsignaltransferinsignalingcascadesdetermineshowex-ternalstimuliatthetopofthecascade,suchasgrowthfactors,hormones,andneu-rotransmitters,a ectdownstreamtargets,suchasgeneexpression.Severalworksfocusedondeterminingthesensitivityofeachstageofacascadetosmallpertur-bationsatthetopofthecascade.Inthesestudies,itwasfoundthatmultiplestagesinthecascadecanboosttheoverallcascadesensitivitytoupstreaminputstimuli(8–10).Downstreamtoupstreamsignaltransferdetermineshowaperturbationatthebottomofthecascadedue,forexample,toadrugortosharingasubstratewithanothersignalingpathway,a ectstheupstreamstagesofthecascade.Thishasnotbeenstudiedbefore.Here,wehavestudiedforthersttimetheresponseofeachstageofacascadetosmallperturbationsinasubstrateorinhibitoratthebottomof CascadesAttenuateRetroactivity14thecascade.Oneofourresultsisthatlargernumbersofstagesinthecascadeleadtohigheroverallattenuationofthesignaltransferfromdownstreamtoupstream.Thisprovidesanotherreasonwhynaturalsignalingcascadesareusuallycomposedofmultiplestages:morestagesenforceunidirectionalsignalpropagation,whichiscertainlydesirableinanynaturalorhuman-madesignaltransmissionsystem.Wehavecomputedanalyticalexpressionsofthedownstream-to-upstreamgainsateachstageofthecascadeasafunctionofthecascadeparameters.Theseex-pressionsuncovertwomainstructuralpropertiesofsignalingcascades,whichareindependentofthespecicparametervalues.First,theperturbationonthetotalorfreeactiveproteinconcentrationswitchessignateachstageofthecascadeasitpropagatesupstream.Thatis,ifatonestagetheamountofactiveproteinincreasesbecauseoftheperturbation,itmustdecreaseatthenextupstreamstage.Second,theperturbationonthetotalamountofactiveproteinisattenuatedasitpropagatesfromonestagetothenextoneupstream.Bycontrast,thewaytheperturbationpropagatesonthefreeamountofactiveproteindependsonthespecicparametervalues.Wehaveprovidedasucientconditionforattenuation,whichappliestogeneralPDcascadesandhasaparticularlysimplemeaninginthespecialcaseofweaklyactivatedpathways.Thatis,forweaklyactivatedpathwaysinwhicheachcycleoperatesinthehyperbolicregime,amplicationofaperturbationatthetopofthecascadeasitpropagatesdownstreamimpliesattenuationofaperturbationatthebottomofthecascadeasitpropagatesupstream.Whilesimulationstudiesperformedin(22)suggestedthataperturbationisat-tenuatedasitpropagatesupstreaminthecascade,theanalyticalexpressionsofthegainsfoundinthispaperclearlyshowthatamplicationoftheperturbationonthefreeproteinconcentrationisalsopossible.Inordertounderstandwhethernaturalsignalingcascadesaremorelikelytoattenuateortoamplifyadownstreampertur-bationonthefreeactiveproteinconcentration,weperformedanumericalstudy.Inthisstudy,thegain iateachstagewascomputedwithparametervaluesrandomlyextractedfrombiologicallymeaningfulsetsobtainedfromtheliterature(28,31–33).Thisnumericalstudyrevealsthatsignalingcascadesaresubstantiallymorelikelytoattenuateadownstreamperturbationthantoamplifyitandthatlongersignalingcascadeshaveahigherprobabilityofoverallattenuation.However,insignalingcascadesoflength3,whichisthemostcommonlengthfoundinprac-tice,about50%ofthebiologicallymeaningfulparameterstakenfrom(32)leadtoamplicationatleastatonestageandabout10%ofthemresultedinoverallamplication(fromstage3tostage1).Insummary,ourndingssuggestthatthee ectsofcrosstalkbetweensignalingpathwayssharingcommoncomponentscanbefeltevenupstreamofthecommoncomponentasopposedtoonlydownstreamofitaspreviouslybelieved.Thispro-videsanewmechanismbywhichapathwaycanbecomeover-activatedasfound CascadesAttenuateRetroactivity15inseveralpathologicalconditionssuchascancer(13–16).Atthesametime,ourstudyprovidestoolstounderstandhowthee ectsofatargeteddrug(26,27)maypropagatetoobtaino -targete ectsandhowthesee ectsdependonthecascadeparameters.Thispaperaddressescascadesinwhichateachstagethereisasinglephos-phorylationcycle.However,severalnaturalcascades,suchastheMAPKcascade,displaydoublephosphorylationandexperimentalworkperformedinDrosophilaembryoshasdemonstratedthataperturbationinoneofthesubstratesatthebottomofthecascadea ectsthephosphorylationlevelatthelastcycleofthecascade(24).Whethersuchaperturbationcanpropagateonthehigherlevelsofthecascadewasnotaddressed.Infuturework,wethusplantoextendourgaincalculationstocas-cadeswithdoublephosphorylationinordertoestablishtheextenttowhichsuchperturbationspropagateonthehigherlevelsoftheMAPKcascade.Itwasshowninpreviousworkthatthepresenceofdoublephosphorylationcanleadtosustainedos-cillationsevenintheabsenceofexplicitnegativefeedback(34).Insuchinstances,ouranalysiswillhavetoextendtodynamicperturbationsasopposedtostaticper-turbationsinordertounderstandhowtheseoscillationspropagateupstreaminthecascade.Recentlypublishedexperimentalpapersclearlyshowthatperturbationsinthedownstreamtargetsofasignalingcascadecauseaperturbationintheimmediateupstreamsignalingstage.Specically,(24)showed,throughinvivoexperimentsintheDrosophilaEmbryo,thatchangingthelevelofoneofthesubstratesoftheMAPKcascadeinuencesthelevelofMAPKphosphorylation.Additionally,(23)showed,throughexperimentsonareconstitutedcovalentmodicationcycle,thattheadditionofadownstreamtargetchangesthesteadystatevalueofthemodiedproteinoftheupstreamcycle.Theseresultsarepromising;however,additionalexperimentsarerequiredtovalidatetheattenuation/amplicationpredictionsofthispaperonthehigherlevelsofacascade.Specically,validatingthepredictionthattheperturbationonthetotalproteinconcentrationisattenuatedasitpropagatesupstreamisparticularlyappealingasitdoesnotdependonthespecicparametervalues.Furthermore,itrequirestomeasurethetotalphosphorylatedprotein,whichisamucheasiertasktoaccomplishthanmeasuringthefreephosphorylatedprotein.Weplantoexperimentallyvalidatethispredictioninourfuturework.AcknowledgmentsDomitillaDelVecchioandHamidR.OssarehwereinpartsupportedbyAFOSRGrantnumberFA9550-09-1-0211.AlejandraC.VenturaandSoaD.MerajverweresupportedbygrantsfromtheDepartmentofDefenseBreastCancerResearch CascadesAttenuateRetroactivity16ProgramandtheCenterforComputationalMedicineandBioinformatics.References1.Alberts,B.,D.Bray,J.Lewis,M.Ra ,K.Roberts,andJ.D.Watson,2002.TheMolecularBiologyoftheCell.Garland.2.Lau enburger,D.A.,2000.Cellsignalingpathwaysascontrolmodules:com-plexityforsimplicity?Proc.Natl.Acad.Sci.USA97:5031–5033.3.Fell,D.,1997.Understandingthecontrolofmetabolism.PortlandPress.4.Seger,R.,andE.G.Krebs,1995.TheMAPKsignalingcascade.TheFASEBJournal9:726–735.5.Rubinfeld,H.,andR.Seger,2005.TheERKcascade:aprototypeofMAPKsignaling.MolBiotechnol31:151–174.6.Heinrich,R.,B.G.Neel,andT.A.Rapoport,2002.Mathematicalmodelsofproteinkinasesignaltransduction.MolecularCell9:957–970.7.Chaves,M.,E.D.Sontag,andR.J.Dinerstein,2004.Optimallengthandsignalamplicationinweaklyactivatedsignaltransductioncascades.J.Phys.Chem.108:15311–15320.8.Kholodenko,B.N.,J.B.Hoek,H.V.Westerho ,andG.C.Brown,1997.QuanticationofInformationTransferViaCellularSignalTransductionPath-ways.FEBSLetters414:430–434.9.Kahn,D.,andH.Westerho ,1991.ControlTheoryofRegulatoryCascades.J.Theor.Biol.153:255–285.10.Bruggeman,F.J.,H.V.Westerho ,andJ.B.Hoek,2002.ModularResponseAnalysisofCellularRegulatoryNetworks.J.Theor.Biol.218:507–520.11.Roux,P.,andJ.Blenis,2004.ERKandp38MAPK-ActivatedProteinKinases:aFamilyofProteinKinaseswithDiverseBiologicalFunctions.MicrobiologyandMolecularBiologyReviews68:320–344.12.Schwartz,M.A.,andH.D.Madhani,2004.PrinciplesofMAPkinasesignal-ingspecicityinSaccharomycescerevisiae.AnnuRevGenet38:725–48.13.M¨uller,R.,2004.Crosstalkofoncogenicandprostanoidsignalingpathways.JournalofCancerResearchandClinicalOncology130:429–444. CascadesAttenuateRetroactivity1714.Shi,W.,andA.L.Harris,2006.NotchSignalinginBreastCancerandTumorAngiogenesis:Cross-TalkandTherapeutiPotentials.MammaryGlandBiolNeoplasia11:41–52.15.Blume-Jensen,P.,andT.Hunter,2001.OncogenicKinaseSignalling.Nature411:355–365.16.Hoshino,R.,Y.Chatani,T.Yamori,T.Tsuruo,H.Oka,O.Yoshida,Y.Shi-mada,S.Ari-i,H.Wada,J.Fujimoto,andM.Kohno,1999.Constitutiveacti-vationofthe41-/43-kDamitogen-activatedproteinkinasesignalingpathwayinhumantumors.Oncogene18:813–822.17.DelVecchio,D.,A.J.Ninfa,andE.D.Sontag,2008.ModularCellBiology:RetroactivityandInsulation.Mol.Sys.Biol.4:161.18.DelVecchio,D.,A.J.Ninfa,andE.D.Sontag,2008.ASystemsTheorywithRetroactivity:ApplicationtoTranscriptionalModules.Proc.ofAmericanControlConference1368–1373.19.DelVecchio,D.,andS.Jayanthi,2008.RetroactivityAttenuationinTran-scriptionalNetworks:DesignandAnalysisofanInsulationDevice.Proc.ConferenceonDecisionandControl774–780.20.DelVecchio,D.,andE.D.Sontag,2009.EngineeringPrinciplesinBio-molecularSystems:FromRetroactivitytoModularity.EuropeanJournalofControl(SpecialIssue)15:389–397.21.DelVecchio,D.,andS.Jayanthi,2010.RetroactivityAttenuationinBio-molecularSystemsBasedonTimescaleSeparation.IEEETrans.AutomaticControl.22.Ventura,A.C.,J.-A.Sepulchre,andS.D.Merajver,2008.Ahiddenfeedbackinsignalingcascadesisrevealed.PLoSComputBiol4.23.Ventura,A.C.,P.Jiang,L.VanWassenhove,D.DelVecchio,S.D.Merajver,andA.J.Ninfa,2010.Thesignalingpropertiesofacovalentmodicationcy-clearealteredbyadownstreamtarget.Proc.Natl.Acad.Sci.USA107:10032–10037.24.Kim,Y.,M.Coppey,R.Grossman,L.Ajuria,G.Jim´enez,Z.Paroush,andS.Y.Shvartsman,2010.MAPKSubstrateCompetitionIntegratesPatterningSignalsintheDrosophilaEmbryo.Curr.Biol.20:446–451. CascadesAttenuateRetroactivity1825.Kim,Y.,Z.Paroush,K.Nairz,E.Hafen,G.Jim´enez,andS.Y.Shvartsman,2011.Substrate-dependentcontrolofMAPKphosphorylationinvivo.Mol.Sys.Biol.7:467.26.Ventura,A.C.,T.L.Jackson,andS.D.Merajver,2009.OntheRoleofCellSignalingModelsinCancerResearch.CancerRes69:400–402.27.Cascante,M.,L.G.Boros,B.Comin-Anduix,P.deAtauri,J.J.Centelles,andP.W.-N.Lee,2002.MetabolicControlAnalysisinDrugDiscoveryandDesease.NatureBiotechnology20:243–249.28.Huang,C.F.,andJ.E.Ferrell,1996.Ultrasensitivityinthemitogen-activatedproteinkinasecascade.Proc.Natl.Acad.Sci.USA93:10078–10083.29.Goldbeter,A.,andD.E.Koshland,1981.Anampliedsensitivityarisingfromcovalentmodicationinbiologicalsystems.Proc.Natl.Acad.Sci.USA6840–6844.30.Kim,S.Y.,andJ.E.Ferrell,2007.SubstrateCompetitionasaSourceofUltrasensitivityintheInactivationofWee1.Cell128:1133–1145.31.Bhalla,U.S.,andR.Iyengar,1999.Emergentpropertiesofnetworksofbio-logicalsignalingpathways.Science283:381387.32.Levchenko,A.,J.Bruck,andP.W.Sternberg,2000.Sca oldproteinsmaybiphasicallya ectthelevelsofmitogen-activatedproteinkinasesignalingandreduceitsthresholdproperties.ProcNatlAcadSciUSA97:58185823.33.Bl¨uthgen,N.,andH.Herzel,2003.Howrobustareswitchesinintracellularsignalingcascades.J.Theor.Biology225:293–300.34.Qiao,L.,B.Nachbar,I.G.Kevrekidis,andS.Y.Shvartsman,2007.Bistabil-ityandOscillationsintheHuang-FerrellModelofMAPKSignaling.PLoS3:1819–1826. CascadesAttenuateRetroactivity19Tables Parameter Intervalforsimulation Intervalfrom(28) Intervalfrom(31) k, k [6.3,600] [150,150] [6.3,600] a,b [18.018,4545.45] [2500,2500] [18.018,4545.45] a, b [25.2,2400] [600,600] [25.2,2400] EiT [0.3,224] [0.3,120] [3.2,224] WiT [3,1200] [3,1200] [180,360] W0 [0.3,100] [0.3,0.3] [100,100] DT [0,1200] - - Table1:ConservativeIntervals.Foreachoftheparametersofthecascade,weindicatetheintervalconsideredforsimulationandtheintervalsgivenin(28)and(31).Forsimu-lation,auniformprobabilitydistributionovereachintervalischosentosampleparametervalues.Also,eachstagehasdi erentparameterseventhoughallextractedfromauniformprobabilitydistribution. 1 2 tot %of i1 71.34 55 79.4 Table2:Three-stagecascadeattenuationpercentage.TheparametersaretakenrandomlyfromTable1. 1 2 tot %of i1with20%variation 100 100 100 %of i1with50%variation 99.98 100 100 %of i1with80%variation 96.895 99.91 100 Table3:Three-stagecascadeattenuationpercentagefordi erentintervalsaboutthenom-inalparametervaluesofBhallaetal.(31). 1 2 tot %of i1with20%variation 77.49 100 100 %of i1with50%variation 65.85 93.32 97.07 %of i1with80%variation 64.69 82.68 90.91 Table4:Three-stagecascadeattenuationpercentagefordi erentintervalsaboutthenom-inalparametervaluesofLevchenkoetal.(32). CascadesAttenuateRetroactivity20 i 1 2 3 4 5 6 7 8 9 tot %of i1 67.3 71.8 72.9 73.3 73.7 74.5 72.9 76.2 59.8 100 Table5:Ten-stagecascadeattenuationpercentagefortheparametervaluesinTable1.FigureLegendsFigure1.AsignalingcascadewithnstagesofPDcycles.ThephosphorylatedproteinWi1ofstagei1functionsasakinaseforproteinWiofthenextstagedownstream.DephosphorylationisbroughtaboutbythephosphataseEi.Adownstreampertur-bationintheconcentrationofD,inwhichDcanbeasubstratesharedwithothersignalingpathwaysoraninhibitoroftheactiveenzymeWn,resultsinaperturba-tionofproteinconcentrationinallupstreamstages.Figure2.AblockdiagramrepresentationofthesteadystateresponseofstageitoasmalldownstreamperturbationinDT.Thedownstreamperturbationpropagatesup-streamthroughperturbationsxiinthecomplexesofactiveproteinswiththeirdown-streamsubstrates.Figure3.Attenuationandsign-reversalinathree-stagecascade.Thex-axisshowsthevalueoftheperturbationdTandthey-axisshowsthesteadystatevalueofthere-sultingperturbationsw1,w2,andw3.SimulationisperformedonthefullnonlinearODEmodelgivenbyequation(2).Theparametersofeachstageiaretakenfrom(28)andaregivenbyki=150(min)1, ki=150(min)1,ai=2:5(nMmin)1, ai=600(min)1,bi=2:5(nMmin)1, bi=600(min)1,E3T=120nM,E2T=0:3nM,E1T=0:3nM,W3T=1200nM,W2T=1200nM,W1T=3nM, W0=0:3nM,and DT=0nM.Asaresult,Ki=300nMand Ki=300nM.Figure4.Amplicationinathree-stagecascade.Numericalsimulationofsystem(2):valueofjwijfori2f1;2;3ginresponsetoaunitperturbationdT=1.Thisplotshowsthatviolationofthenecessaryconditionleadstoamplicationofthedownstreamperturbationasittransfersupstreaminthecascade.Parametersofstageiaregivenby:ki=150(min)1, ki=150(min)1,ai=2500(nMmin)1, CascadesAttenuateRetroactivity21 ai=600(min)1,bi=2500(nMmin)1, bi=600(min)1,E3T=120nM,E2T=30nM,E1T=0:3nM,W3T=3nM,W2T=30nM,W1T=1200nM, W0=0:3nM,and DT=0:9nM.Figure5.Percentageofoverallattenuation( tot1)asafunctionofthenumberofstagesinacascadewithparametersrandomlyselectedfromtheintervalsofTable1. CascadesAttenuateRetroactivity22 Figure1 CascadesAttenuateRetroactivity23 Figure2 CascadesAttenuateRetroactivity24 0 200 400 -2 -1.5 -1 -0.5 0x 10-4 (nM)(nM) 0 200 400 0 2 4 6 8 (nM)(nM) 0 200 400 -300 -250 -200 -150 -100 -50 0 (nM)(nM) Figure3 CascadesAttenuateRetroactivity25 1 2 3 -115 -110 -105 -100 -95 -90 -85 -80 -75 -70 -65 stage20log10 Figure4 CascadesAttenuateRetroactivity26 2 3 4 5 6 7 8 9 10 40 50 60 70 80 90 100 number of stages in cascade% Ytot Figure5