/
Marwan,Rohr,HeinerPetrinetsinSnoopy Marwan,Rohr,HeinerPetrinetsinSnoopy

Marwan,Rohr,HeinerPetrinetsinSnoopy - PDF document

briana-ranney
briana-ranney . @briana-ranney
Follow
375 views
Uploaded On 2016-08-04

Marwan,Rohr,HeinerPetrinetsinSnoopy - PPT Presentation

waysExperimentaliststhinkinmoleculesandmolecularmechanismswhichtheyillustratewithpicturesqualitativeschemesandbiochemicalreactionpathwaysTheoreticianscommunicatebyusingequationsandmathematicalsym ID: 432280

ways.Experimentaliststhinkinmoleculesandmolecularmechanisms whichtheyillustratewithpictures qualitativeschemes andbiochemicalreactionpathways.Theoreticianscommunicatebyusingequationsandmathematicalsym

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Marwan,Rohr,HeinerPetrinetsinSnoopy" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Marwan,Rohr,HeinerPetrinetsinSnoopy ways.Experimentaliststhinkinmoleculesandmolecularmechanisms,whichtheyillustratewithpictures,qualitativeschemes,andbiochemicalreactionpathways.Theoreticianscommunicatebyusingequationsandmathematicalsymbols,whicharediculttoreadforthemajorityofexperimentalists,whofrequentlydonothaveanysigni cantmathematicalbackground.Atrueun-derstandingofeachotherwouldbegreatlyfacilitatedbyestablishingacommu-nicationplatform(andlanguage)whichisequallyeasytouseforbothexperi-mentalistsandtheoreticians.Suchcommonlanguageshouldbeofunequivocalexpressivenessanddirectlyrefertothetraditionallanguagesofboth.WithSnoopy,weprovideatoolthatsupportstheuseofPetrinetsasacommoncommunicationplatform(modellinglanguage)forexperimen-talistsandtheoreticians,togetherwithaunifyingframeworkforthegraphicaldisplay,computationalmodelling,simulation,andbioinformaticannotationofbiochemicalnetworks,suchasbacterialregulatorynetworks.Petrinetsasexecutablemodels.APetrinetisamathematicalgraphwithastrictlyde nedsyntax.APetrinetisdirectlyexecutable,ifitisrep-resentedwiththehelpofanappropriatetoollikeSnoopy.Snoopytranslatesautomaticallyandthusreproduciblythegraphicalschemeintoasetofequationsusedbytheprogramtorunsimulations.Inotherwords,agraphicalrepresen-tationofaPetrinetdrawninSnoopycanbeexecuted,i.e.simulationscanberunwithamouseclick;nospecialadditionalencodingisrequired.Petrinetsrepresentmolecularandothermechanismswithastrictlyde nedsyntax.ThesyntaxofthePetrinetlanguageissimpleandthereforeveryeasytolearn(seebelow).Becausethesyntaxisstrictlyde ned,thereisnoambiguityinwhatagraphicalrepresentationofthePetrinetmodelmeansintermsofreactionmechanism.ThePetrinetformalismisidealtonaturallyrepresentchemicalreactionsandtheirmechanisms,andanytypeofbiochem-icalinteractions.Asde nedbytheuser,Petrinetcomponentsmayrepresentmoleculesandreactions,orevenmorecomplexentitiesandprocesses.Thisallowstodescribeandrepresentbiologicalprocessesatarbitrarylevelofab-straction(i.e.witharbitraryresolutionindetail),butalwaysmechanisticallyunambiguous,andtojointhoseprocessesintoacoherent,executablemodel.Thisoptionisextremelyusefulforsignaltransductionnetworksorgeneregula-torynetworksasusuallynotallprocessesinvolvedinaphenomenonofinterestareandwillbeknownwiththesameresolutionindetail.Petrinetsprovideaunifyingframeworkformodellingandsim-ulationinsystemsbiology.Petrinetscanbeusedtoperformallmajormodellingandsimulationapproachescentraltosystemsbiology.Brie y,thereareseveralreasonssuggestingthedeploymentofPetrinetstoinvestigatebio-chemicalnetworks.1.Petrinets[1]enjoyanintuitivebipartitegraphicalrepresentation,whichmakesthemeasilycomprehensibleandfacilitatesthecommunicationbe-tweenwet-labexperimentalistsandcomputationaltheoreticians.HumanaPress,MethodsinMolecularBiology,Chapter21-preprint2 Marwan,Rohr,HeinerPetrinetsinSnoopy Figure2:Sometypicalbasicstructuresofbiochemicalnetworks.(a)formationanddecayofamacro-molecularcomplex;(b)reversiblereactions;(c)sequentialreactions;(d)alternativereactions;(e)concurrent,i.e.independentreactions.asiteAtoasiteB.Reversiblechemicalreactionsaremodelledbytwooppositetransitions(seeFigure2-b).Duetotheirstrongcorrespondence,weoftenusethetwoterms'transition'and'reaction'interchangeably.2.Thedirectedarcs(edges)connectalwaysnodesofdi erenttype.Theygofromprecursorstoreactions,andfromreactionstoproducts.Inotherwords,thepre-placesofatransitioncorrespondtothereactionsprecur-sors,anditspost-placestothereactionsproducts.3.Arcsareweightedbynaturalnumbers.Thearcweightmaybereadasthemultiplicityofthearc,re ectingknownstoichiometriesorothersemi-quantitativeassumptions.Thearcweight1isthedefaultvalueandisusuallynotgivenexplicitly.4.Aplacecarriesanarbitraryamountoftokens,representedasblackdotsoranaturalnumber.Thenumberzeroisthedefaultvalueandusuallynotgivenexplicitly.Tokenscanbeinterpretedastheavailableamountofagivenspeciesinnumberofmoleculesoranyabstract,i.e.discretecon-centrationlevel.Thetokensonallplacesestablishtogetherthemarkingofthenet,whichrepresentsthecurrentstateofthesystem.HumanaPress,MethodsinMolecularBiology,Chapter21-preprint6 Marwan,Rohr,HeinerPetrinetsinSnoopy 1.sequentialreactionsre ectingcausality(e.g.,reactionr5cannothappenbeforer4happened);2.alternativereactionscompetingfortokensonsharedpre-placesandthere-forebranchingintoalternativebehaviour;inPetrinetterminology,thetransitionsaresaidtobeincon ict(e.g.,reactionsr6andr7sharethepre-placeL;atokenonLcaneitherbeconsumedbyr6orbyr7);3.concurrentreactions,whichareneitherincausalnorcon ictrelation;thus,theyareindependentandcan reinanyorderorevenconcurrently(e.g.,reactionsr8andr9).InadditiontoabasictoolkitfordrawingPetrinets,SnoopysupportstwodistinguishedfeaturesforthedesignandsystematicconstructionoflargerPetrinets(seeFigures1and5).1.Placesandtransitionscanbespeci edaslogicalnodes(alsocalledfusionnodes).Theyareautomaticallycolouredingrey.Logicalnodeswiththesamenameareidentical,i.e.,graphicalcopiesofasinglenode(placeortransition).Theyareoftenusedforcompoundsinvolvedinseveralreactionsorreactionsinvolvingdistributedcompounds.2.Therearetwotypesofmacronodes.Macrotransitions(drawnastwocentricsquares)helptohidetransition-borderedsubnets(i.e.subnetshavingonlytransitionsasinterfacetothesuper-net).Likewise,macroplaces(drawnastwocentriccircles)canbeusedtohideplace-boundedsubnets(i.e.subnetshavingonlyplacesasinterfacetothesuper-net).BothtypesofmacronodesallowahierarchicalstructuringofPetrinets.Logicalnodesandmacronodeshelptodealwithlargernetworks.Theymaycontributetoanet'sreadabilityand,therefore,arecrucialfornon-trivialnetexamples.However,theydonotextendtheexpressivenessofthemodellinglanguage.Contrary,thefeaturesintroducedinthenextsectiondoextendtheexpressiveness.HowtodrawanhierarchicalPetrinetwithSnoopy.TohierarchicallystructureaPetrinet,repeatthefollowingsteps.1.Drawyour atnet(orportionofit)asyouwishtohaveit.2.Selectthesub-graphwhichyouwanttobeabstractedbyamacronode,andselectHierarchy!Coarse.ChosetheappropriatecoarseelementandhittheOKbutton.3.Adoubleclickonthemacronodeopensitsattributewindowandallowstoassignasuitablename,aclickontheentrywiththisnameinthehierarchypanelontheleft-handsideopensthesub-graphinaseparatewindow.Thebluenetpartshavebeenautomaticallygeneratedandrepresenttheconnectionofthesub-graph(macronode)withtheneighbouringnodesonthenexthigherhierarchylevel.HumanaPress,MethodsinMolecularBiology,Chapter21-preprint9 Marwan,Rohr,HeinerPetrinetsinSnoopy 4.Finally,donotforgettosaveyourworkunderanewname(File!Saveas). Figure5:Theuseofmacrotransitionsandlogicalnodes.Di erentgraphicalrepresentationsofoneandthesamemodelrepresentingtheenzymaticreactionA+E$AjE!B+E,whereAjEistheenzyme-substratecomplex.(a)Macrotransitionsyieldhierarchicallystructuredmodels;(b)reaction-centricrepresentationbytheuseoflogicalplaces;(c)species-centricrepresentationbytheuseoflogicaltransitions.3.2ExtendedPetrinets(xPN)ExtendedPetrinetsbuildonPetrinetsandadditionallyprovidespecialarctypes,whichgoalwaysfromaplacetoatransition,seeFigure1and6.Theycanalsocarrymultiplicities.Thetwomostpopularspecialarcsare:1.Readarcs(alsocalledtestarcs),graphicallyrepresentedbyablackdotasarchead,queryfortokensinaplacerepresentingpositiveside-conditions,e.g.,theconformationofaproteincomplexthatmaydeterminewhetherareactioncanoccur,oraspeci cphysiologicalstateofacellthatmaydeterminewhetheracellisresponsivetoacertainstimulus.Thetestedplaceneedsatleastasmanytokensasgivenbythereadarc'smultiplicitytoenableatransition.The ringofthetransitiondoesnotchangethenumberoftokensonthetestedplace.Areadarcmaybesimulatedbytwooppositearcs.Althoughareadarcandtwooppositearcshavethesametotale ect,thereisasubtleseman-ticdi erence,whichissometimesusefultopreciselyrepresentmolecu-larmechanismswithinabiochemicalnetwork.AssumethatanenzymeHumanaPress,MethodsinMolecularBiology,Chapter21-preprint10 Marwan,Rohr,HeinerPetrinetsinSnoopy EcatalysesthereactionofsubstrateXtoproductY.ThenEistran-sientlyconsumedbyformingtheenzyme-substratecomplexandreformedastheenzyme-productcomplexdecaystoformY.Suchanenzymaticre-actionisrepresentedinamechanism-orientedstylebytwooppositearcsifformationanddecayoftheenzyme-substratecomplexarenotexplicitlymodelled.Ontheotherhand,usingthereadarcisappropriateif,forexample,anunphosphorylatedreceptor(Y)autophosphorylates(Y-P)astheconsequenceofaconformationalchangetoR(thetokeninRrepre-sentstheactiveconformationofthereceptor).Uponautophosphorylation,theactiveconformationofthereceptorisnottransientlyconsumedandaccordingly,thetokenstaysinR(comparethetwopanelsofFigure7;seealsoNote2).2.Inhibitoryarcs,graphicallyrepresentedbyanhollowdotasarchead,indicatenegativeside-conditionsinanabstractway,e.g.,ifthepresenceofagivenprotein(inhibitorysubunitofaproteincomplex)orconditioninhibitsaspeci creaction.Theinhibitingplacemusthavelesstokensthangivenbytheinhibitoryarc'smultiplicitytoenableatransition.The ringofthetransitiondoesnotchangethenumberoftokensontheinhibitingplace.InhibitoryarcscanonlybesimulatedbystandardPetrinets,iftheinhibitingplaceisbounded(thenumberoftokensneverexceedsagiven nitenumber).Sotheystrictlyincreasetheexpressiveness.Therearetwootherspecialarctypes,notusedinthischapter:equalarcsandresetarcs(formoredetails,see[11]). Figure7:Semanticdi erencesbetweentwooppositearcsandareadarc.Ecatalysesthereactionr1andr2.Thus,r1andr2competeforthetokensonEandcanonlyusethemalternatively.Pstandsforanactivecon rmation,allowingr3andr4tohappenconcurrently,thussharingthetokensonP.Thetwoarctypesarenotdistinguishableininterleavingsemantics,butinpartialordersemantics(seealsoNote2).3.3AnimationofqualitativePetrinets(PN,xPN)HavingobtainedanewPetrinet,thenextstepoftenaimsatabetterunder-standingofthenetbehaviour.Aswehavealreadyseen,wecanexecutetheHumanaPress,MethodsinMolecularBiology,Chapter21-preprint12 Marwan,Rohr,HeinerPetrinetsinSnoopy Petrinetbyplayingthetokengametoexperiencethenetbehaviour.Eachexe-cutionexempli essomepossiblenetbehaviour.Theanimationcanbetriggeredmanuallybyclickingonanenabledtransition.Itcanalsobedoneinautomaticmodebyclickingonthecontrolpanel.Ineachstepoftheautomaticmodethesetofallenabledtransitionsisdetermined.Therearethreestrategiestochoosethetransition(s)tobe redinthenextexecutionstepamongallenabledtransitions.1.Singlestep{onesingletransitionisrandomlychosen.2.Intermediatestep{anarbitrarysubsetofconcurrenttransitionsisrandomlychosen.3.Maximalstep{amaximalsetofconcurrenttransitionsisrandomlychosen.Stepsjustdonecanbeplayedbackwardsuptoadepthof10;thisdefaultvaluecanbechangedintheGlobalPreferencesdialogue.Byplayingthetokengame,wecanproduceandobserveanyreachablestate.Allstates,whichcanbereachedfromagivenstatebyany ringsequenceofarbitrarylength,constitutethesetofreachablestates.EachexecutionrunofanxPNcorrespondstoawalkthroughthestatespacede nedbythisxPN.Thesetofstatesreachablefromtheinitialstateissaidtobethestatespaceofagivensystem.Often,thisqualitativestatespaceisin nite,causedbyconsideringallpossiblebehaviourofastructurallyunboundedPetrinetunderanytimingconstraints.WecallaPetrinetbounded,ifthenumberoftokensonallplacesisboundedbyaconstantindependentlyofwhathappens.Thenwegeta nitestatespace,whichhowevercanstillbetoohugetobeexploredexhaustively.ExecutingaPetrinetgenerallyneedstomakedecisionsbetweenalternativebehaviour.Encounteredalternatives(con icts)aretakennon-deterministically(automaticmode)oruser-guided(manualmode).Togetanexhaustivepicture,wehavetoconsiderallpossibleexecutionsequences.Obviously,that'snotpossibleforsystemswithin nitebehaviour,whichcanbecausedbycyclicbehaviourand/orin nitestatespace.Thuswehavetocon neourselvestoasubsetofexecutionsequences,whichareconsideredtoberepresentative.Inthenextsectionwewillintroducetimeandwewillseehowspeci cki-neticassumptionswilltypicallyrestrictthequalitativelyin nitestatespacetoaquantitatively nitestatespace,ifweareonlyinterestedinstateswithaprobabilityaboveacertainthreshold.HowtochangethenetclassinSnoopy.A(qualitative)PetrinetcanbeconvertedintoastochasticPetrinet,whichallowstore-usethestructure.Onlytheadditionalattributeshavetobeset.1.OpenthequalitativePetrinet,andgototheexportWindow(File!Export),chosetheappropriatetarget(s)andhittheOKbutton.2.OpenthestochasticPetrinet,justgenerated.Itlooksexactlythesameasthequalitativenet.HumanaPress,MethodsinMolecularBiology,Chapter21-preprint13 Marwan,Rohr,HeinerPetrinetsinSnoopy 3.5ExtendedStochasticPetrinets(xSPN)ExtendedstochasticPetrinetscombinestochasticPetrinetswiththespecialarctypesofextendedPetrinets.Additionally,therearedeterministicallytimedtransitions,whichcomeinthree avours.1.Deterministictransitionshavecontrarytostochastictransitions{adeterministic ringdelaywhichisspeci edbyanintegerconstant.Thedelayisalwaysrelativetothetimepointwherethetransitiongetsenabled.Thetransitionmayloseitsenablednesswhilewaitingforthedelaytoexpire.Then,thetransitionwillnot re.Thisbehaviourisalsoknownastheso-calledpre-emptive ringrule.Asforstochastictransitions,the ringitselfofadeterministictransitiondoesnotconsumetimeandfollowsthestandard ringruleofqualitativePetrinets.Deterministictransitionsmaybeusefultoreducenetworks,andthusspeed-upsimulations,e.g.byreplacingalinearsequenceofstochastictransitionsbyonedeterministictransitionwiththedelaysettotheexpectationvalueofthesumofthesequence.2.Immediatetransitionsareapopularspecialcaseofdeterministictran-sitions.Theyhaveazerodelayandalwayshighestpriority.Thelattercreatesasubtledi erencebetweenanimmediatetransitionandadeter-ministictransitionwithzero ringdelay:ifthereisacon ictbetweenthetwo,.i.e.asituation,wheretwotransitionscompetefortokens,theimmediatetransitiongetspriority.Immediatetransitionsmayhelptoavoidsti systemsbyusingthemfortransitionswithextremelyhighrates(non-signi cantdelay),comparedtotheothertransitionsinthesystem.3.Scheduledtransitionsareanotherspecialcaseofdeterministictransi-tions.Thedeterministic ringoccursaccordingtoaschedulespecifyingabsolutepointsofthesimulationtime.Aschedulecanspecifyjustasingletimepoint,orequidistanttimepointswithinagiveninterval,trig-geringthe ringonceorperiodically.However,transitionsonly reattheirscheduledtimepointsiftheyareenabledatthistime.Scheduledtransitionscandramaticallyrestrictthe(qualitative)netbehaviour.Thecrucialpointisthattheyallowtodisturbthecoremodelatwell-de nedtimepointsasitisdoneexperimentallywiththeactualbiologicalsystemunderinvestigationinthewet-lab.AnunrestricteduseofdeterministictransitionsdestroytheMarkovprop-erty,whichprecludesananalyticalevaluationbyconstructingandanalysingtheCTMC.IfweconsiderstochasticPetrinetswithoutdeterministictransitions,theprobabilityoftwotransitionsto reatthesametimeispracticallyzero.Contrary,instochasticPetrinetswithdeterministictransitions,itispossiblethattwotransitionswantto resimultaneously.Toanalysesuchasystem,allpossiblechoiceshavetobeconsidered,whileinthesimulationarandomchoicetakesplace,seenextsection(formoredetailsandrelatedexamplessee[12]).HumanaPress,MethodsinMolecularBiology,Chapter21-preprint16 Marwan,Rohr,HeinerPetrinetsinSnoopy Inmostpracticalcases,extendedstochasticPetrinetsaretheobviouschoice.Therefore,SnoopydoesnotdistinguishbetweenstochasticPetrinets(SPN)andextendedstochasticPetrinets(xSPN).3.6SimulationofquantitativePetrinets(SPN,xSPN)ThesimulationofstochasticPetrinetscanbereadasatimedversionofthequal-itativetokengame,takingintoaccountthestochasticanddeterministicdelaysofenabledtransitions.SnoopybuildsupontheGillespiealgorithm[13].Thisexactmethoddoesastep-by-stepsimulationofpossiblestatesofthestochasticPetrinet.Consequently,theresultrepresentsalwaysavalidstateoftheun-derlyingstochasticprocessatanytimepointofthesimulation.Thestandardstochasticsimulationalgorithmworksinthefollowingway:1.InitialisetheSPNnetworkwiththechoseninitialmarking.2.Calculatethe ringratesofallenabledtransitionsusingtheirratefunc-tions.3.Calculatethecombinedratebysummingupalltransitionrates.4.Determinethetimeintervaluntilthenextstatechangetakesplace.Thisisdonebycomputinganexponentiallydistributedrandomnumberde-pendingonthecurrentcombinedtransitionrateofthenet.5.Increasethesimulationtimebythistimeinterval.6.Determinethenextsystemstatechange.Forthispurpose,aweightedrandomselectionofthetransitionismadewhichgetsthelicenseto re.7.Lettheselectedtransition reandupdatethemarkingoftheSPN.8.Gobacktostep2,ifthesimulationtimehasnotyetreacheditsendpoint.ThesimulationofxSPNrequiressomestraightforwardmodi cationsofthestandardsimulationalgorithm.Deterministictransitionsrequireahigherpri-oritythanstochastictransitionstoensuretheircorrecthandling.Immediatetransitionsneedtohavethehighestpriority(overdeterministicandscheduledtransitions)becausetheyhaveto reinstantaneouslywhentheygetenabled.Consequently,thesimulationalgorithmhastocheckforenabledimmediatetransitionsafteranychangeofthemarking.Inthecaseofmorethanoneenabledimmediatetransitions,theselectionisdonerandomly,butuniformlydistributed.Thesystemmayrunintoatimedeadlock,ifalwaysanimmediatetransitionisenabled.Then,timewillnotprogressanymore.Timedeadlocksareanindicationofinconsistenttimeassignments.Theuserhastotakecareofavoidingthem.Deterministicandscheduledtransitionsaretreateddi erently.Ifadeter-ministictransitiongetsenabled,itstimerstartsrunninguntilitexpires.IfHumanaPress,MethodsinMolecularBiology,Chapter21-preprint17 Marwan,Rohr,HeinerPetrinetsinSnoopy Di erenttablesandplotscanbecreatedtoswitchconvenientlybetweendi erentviewsonthesimulationresults.Eachtableischaracterisedbyasetofselectedplaces(transitions).Ifanodewascoloured,itscorrespondingcurvegetsthesamecolourintheplot.Simulationplotscanalsobesavedinepsformat.4Casestudy4.1Acasestudy:thephosphateregulationnetworkinentericbacteriaLetusnowconsiderthephosphateutilisationgeneregulatorynetworkinEs-cherichiacoli(seeFigure9discussedin[14]).Notethatthiscasestudyisneithermeantasascienti ccontributiontotheunderstandingofthegeneregulatorynetworkofphosphateutilisationnordoesitprovideanycomprehensiverepre-sentationoftheknowledgeonthissubject;forarecentsurveysee[15].Instead,thecasestudyisintendedtoshowhowatypicalbiochemicalmodel,agene Figure9:Biochemicalmodelofthephosphateregulatorynetworkinentericbacteria.TheschemeisadaptedfromNeidhardtetal.(1990).HumanaPress,MethodsinMolecularBiology,Chapter21-preprint19 Marwan,Rohr,HeinerPetrinetsinSnoopy regulatorynetwork,maybeformallytranslatedintoaPetrinet.Aswewillshow,thePetrinetcanserveasaqualitativeschemerepresentingthemolecularreactionmechanisms,butitcanalsobeusedfordynamicsimulations.Fordi erentreasons,inorganicphosphatemaybecomeagrowth-limitingfactorforabacterialcellpopulation.Undertheseconditionscellssynthesisealkalinephosphatase(PhoA),anenzymewhichissecretedintotheperiplasm(i.e.intothespacebetweencytoplasmicmembraneandoutermembraneofaGram-negativebacterium),whereitdegradesorganicphosphateestersintoinorganicphosphatetobetakenupandrecycledbythecell.Transportofin-organicphosphateismediatedbyanuptakesystemcomposedoffourproteins,PstS,PstC,PstAandPstBthatformatransmembraneproteincomplex.Ex-perimentalevidencesuggeststhatphosphatetransportissensedbythePhoUprotein.Ifthephosphatetransportsystemisactive,thePhoUproteinresidesinitsinactivestate.Phosphatelimitationrendersthetransportsysteminactive,whichactivatesPhoUandcausesphosphorylationofthePhoRproteinwhichinturnphosphorylatesPhoB.PhosphorylatedPhoB(PhoB-P)isapositivereg-ulatorwhichbindstothepromotorregionofcertainoperons.UponPhoB-Pbinding,amongothers,thephoAgeneisexpressedandalkalinephosphatase(PhoAprotein)issynthesisedandexportedintotheperiplasm.WhileactivePhoUcausesthephosphorylationofPhoR,inactivePhoUisthoughttoactasaPhoB-Pphosphatasewhichswitcheso theDNAbindingactivityofthePhoBprotein.AsummaryofthemolecularcomponentsinvolvedintheregulationofthephosphateutilisationnetworkisshowninTable1.Table1:Molecularcomponentsinvolvedinphosphateregulation. AbbreviationMolecularComponent PhoAAlkalinephosphataseenzymedegradingorganicphos-phatecompoundstoinorganicphosphatePiInorganicphosphatePoOrganicphosphatePstSCABTransmembraneproteincomplex,transporterofinor-ganicphosphatePhoUSignaltransducerrelayingthePstSCABcomplexactiv-ityPhoRPhosphorylatableregulatoryproteinPhoBPhosphorylatableregulatoryprotein 4.2ApplicationofxSPNtostudycase:thephosphatenetworkinentericbacteriaQualitativemodelling(xPN).TheregulatorymechanismillustratedinFig-ure9isimplementedinthePetrinetshowninFigure10.Themolecularcompo-HumanaPress,MethodsinMolecularBiology,Chapter21-preprint20 Marwan,Rohr,HeinerPetrinetsinSnoopy nentsintheirdi erentstates(e.g.active,inactive,phosphorylated,unphospho-rylated)arerepresentedasplaces(Table2)andtheirbiochemicalreactionsorfunctionalinteractionsarerepresentedasstochastictransitions(Table3).Addi-tionally,therearedeterministicallytimedtransitions(immediateandscheduledtransitions)tomodeltheexperimentaladditionofinorganic/organicphosphate.Therearedi erentarctypes.Standardarcsrepresentthemass ow.Readarcsandinhibitoryarcsareusedtomodelregulatoryinteractionsbetweenproteinsthroughphysicalprotein-proteininteraction.Doublearcs(asort-handnotationfortwooppositearcs)representcatalyticreactionswhichmaybecomplex.Thegraphicalrepresentationofthecytoplasmicmembraneandofsomepro-teinsofinterestisputunderneaththePetrinetinordertoexplainthemodularstructureofthenetandtohighlightwhichreactionsoccurinsideoroutsidethecell,respectively.NotethatthesegraphicsarenotafunctionalelementofthePetrinetasgeneratedinSnoopy.ThePstSCABtransmembraneproteincom-plexhasadualfunctionastransporterandasasensorofinorganicphosphate.Wheninorganicphosphateispresentintheperiplasm,thePstSCABcomplexisphosphorylatedthroughreactionr7.Thephosphorylatedform,PstSCAB-Pisactiveintransportinginorganicphosphatethroughthecytoplasmicmem-braneintothecytoplasm(r5)whereitisusedforbiosyntheticreactions(r6).ThePstSCABproteinallostericallycontrolstheactivityofthePhoUprotein,modelledbyreadarcsthatcontrolthetransitionsr9andr10representingtheTable2:Petrinetplacesrepresentmolecularcomponentsintheirdi erentstates. PlaceMolecularcomponent Pi PeriPlasmInorganicphosphateintheperiplasmPi CytoplasmInorganicphosphateinthecytoplasmPo PeriPlasmOrganicphosphateintheperiplasmPhoA PeriplasmPhoAproteinintheperiplasmPhoAPhoAproteininthecytoplasmPhoAmRNAPhoAgenemRNAPstSCABTransporterofinorganicphosphate,inactiveformPstSCAB-PTransporterofinorganicphosphate,phosphorylated,ac-tiveformPhoU inactiveSignaltransducer,inactiveformPhoU activeSignaltransducer,activeformPhoRPhoRprotein,dephosphorylatedformPhoR-PPhoRprotein,phosphorylatedformPhoBPhoBprotein,dephosphorylatedformPhoB-PPhoBprotein,phosphorylatedformswitch on,switch o Auxiliaryplacestomodeltheexperiments HumanaPress,MethodsinMolecularBiology,Chapter21-preprint21 Marwan,Rohr,HeinerPetrinetsinSnoopy degradesorganicphosphatetosupplythecellwithinorganicphosphatewhichinturnswitcheso thesignalingcascadeandsubsequentlythebiosynthesisofthePhoAprotein,aslongassucientinorganicphosphateentersthecell.WehavealreadyseenhowtodrawasimplePetrinet,soyouwillnothaveanytroubleindrawingthePetrinetforyour rstcasestudy.Coarsetransitionsandcoarseplacesmaybeusedtostructurelargenetworksintomodulesinordertoimprovethereadabilityofthenet.SincethePetrinetpresentedforthecasestudyisrathersmall,wedidnotusecoarsenodeshere.AnimationofthexPN.Toexplorethenetbehaviour,dothefollowingsteps:1.loadthenet(File!Open),2.starttheanimation(View!StartAnimationMode),3.runthenetinmanualorautomaticmode.Speci callyyoushouldcheckthefollowingscenarios:1.Whichreactionsarenecessaryinwhich(partial)orderto rethetransi-tionsBiosynthesis(r6),Decay(r15),orDenaturation&Decay(r18)?2.Whichnetbehaviourispossibleiftheinorganicsupplyisswitchedon(placeswitch onismarked),whichnetbehaviouristriggerediftheinor-ganicsupplyisswitchedo ?3.Tryto gureoutthemaximaltokennumbersyoucangetoneachplace!4.Isitpossibletoreachamarkingwherenoneofthetransitionsisenabled?5.Havingplayedwiththenetforawhile,isitalwayspossibletocomebacktothegiveninitialmarking?Quantitativemodelling(xSPN).Allstochasticreactionsfollowmass-actionkineticswithallparametersinitiallysetto0.1.Afterwards,theparame-terswereadjustedsothatthesteadystateconcentrationofinorganicphosphateintheperiplasmisapproximatelythesamenomatterwhethertheexternalsourceisinorganicororganicphosphate,respectively:theparameterofr4issetto0.2,andtheparameterofr15to0.075.Thetransitiont o isscheduledto reattimepoint100,andthetransitiont onisscheduledto reattimepoint1000.StochasticanimationofthexSPN.Followthestochastictoken owintheautomaticanimationmode.Whichreactionsequencesdoyouobservewhiletheinorganicsupplyisswitchedon?Whatisthedi erencetothereactionandstatesequences,whichyouhaveobservedintheanimationofthecorrespondingxPN?Theanswerliesintheimmediatetransitions(herer1),whichhavenowalwayshighestpriority.HumanaPress,MethodsinMolecularBiology,Chapter21-preprint23 Marwan,Rohr,HeinerPetrinetsinSnoopy Figure10:Petrinetmodelofthephosphateregulatorynetwork,alongwithaschematicrepresentationofthemembraneandofsomerelevantproteins.Biomolecularcomponentsandtheirfunctionalstatesarerepresentedasplaces,(bio-)chemicalreactionsarerepresentedastransitions.Stoichiometricreactionsarerepresentedasstandardarcs,allostericinteractionsofproteinsbyreadarcsandinhibitoryarcs.Organicandinorganicphosphateissuppliedbytheenvironmentofthecellatconstantconcentration.Inthesimulations,theconstantconcentrationofthesephosphatecompoundsisobtainedbyusingtransitionswithimme-diate ringbehaviour(r1,r3)deliveringtokenstothecorrespondingplaces(Pi PeriPlasm;Po PeriPlasm).The ringofr1andr3iscontrolledbyinhibitoryarcs.Theseinhibitoryarcsshutthetransitionso ifthepre-de nednumberoftokensisinthepre-placeoftherespectivetransition.Experimentaladditionandremovalofinorganicphosphatetothecellismodelledwiththehelpoftheswitch onplacewhichisconnectedbyareadarctor1.Thereforer1deliversinorganicphosphateaslongas(1)thereisatokenintheswitch onplaceand(2)thenumberoftokensinthePi PeriPlasmplaceislessthanten.Thesupplywithinorganicphosphatemaybeswitchedo andonatde nedtimepointsbyswitchingthetokenintheswitch onplacewiththedeterministicallytimed(scheduled)transitionst onandt o .Inthesimulations,organicphosphateintheperiplasmremainsconstantatalltimes.ThePetrinetrepresentstheprocessesinvolvedinphosphateregulationwithdi erentresolutionofde-tails.Onlypartofthenetrepresentsmolecularprocessesintermsofinteractionsofindividualmolecules.Complexreactionmechanisms,likebiosynthesesusinginorganicphosphate(r6),transcriptionofthephoAgene(r14)ortranslationofthephoAmRNA(r16)arerepresentedasindividualtransitionsthatcondensemultipleindividualstepsintoonesinglereaction,as-suming rstorderrateconstantsintheexampleprovided.Notehowever,thatthequantitativebehaviourofatransitioninthexSPNversionofSnoopycanbeprogrammedindividuallysothatevencomplexandnon-linearkineticmechanismscanbemodelled.HumanaPress,MethodsinMolecularBiology,Chapter21-preprint24 Marwan,Rohr,HeinerPetrinetsinSnoopy StochasticsimulationofthexSPN.Inthestochasticsimulation,there-actionofeachindividualmoleculeisconsideredintheformofindividualtokensthatmovethroughthenet.Whenthenumberofmoleculesofeachbiochem-icalcomponentpercellisknown,onecanobtainrealistictracesofhowthenumberofmoleculesdevelopsovertime.Theresultmaybeatime-dependentchangeintheconcentrationofthecompoundifthenumberofmoleculespercellissucientlyhighorthenumberofmoleculesmaybesubjectedtostochastic uctuationsovertimeifitislow.Whenastochasticsimulationisrunmanytimesandthesimulationresultsareaveraged,onecanapproachtheresultofadeterministicsimulationasobtained,forexample,bysolvingasetofordinarydi erentialequations.Eachwayofsimulation,stochasticasperformedhere,ordeterministic,e.g.bysolvingordinarydi erentialequations,maybeofpartic-ularadvantagedependentonthequestionunderconsideration.Forstudyingandsimulatingthebehaviourofindividualcells,stochasticsimulationsmaybeessential.Inordertoprovideanexampleofasimulation,wehaverunthemodel50,000timestoshowhowthephosphateregulationnetworkmaybehavedynamically.Theconcentrationofthesources,inorganicandorganic,wereassumedtobeconstantovertime.Thesystemwas rstallowedtoequilibrateinthepresenceofconstantexternalinorganicphosphate(Figure11).Afterthesteadystatewasreached,externalinorganicphosphatewasremoved(switchedo )byastep-downtozeroconcentrationandthesystemwasallowedtoapproachthenewsteadystate.Theoscillationsintheconcentrationofthecomponentsobtainedinthesimulationareduetothefeed-backloopsinthesystem.Notethattheprecisedynamicbehaviourofthesystemdependsontheratiooftherateconstantswhichwedonotknow.Finally,theexternalsourceofinorganicphosphateisswitchedonagainandthesystemequilibratesintoitspre-stimulusstate.TheresultsofthestochasticsimulationareshownasapanelobtainedbyimportingthesimulationresultsintotheplotprogramKaleidagraph(Figure11)andasscreenshotsofthesimulationresultswindowofSnoopy(Figure12-13).Youcancontinuebytryingthefollowingsimulationscenarios:1.Whichratesin uenceamplitudes,frequenciesanddampingoftheoscilla-tionscausedbyfeedbackregulation?2.Checkhowthedynamicsystembehaviourisin uencedbythedecayratesofmRNAandPhoAprotein.HumanaPress,MethodsinMolecularBiology,Chapter21-preprint25 Marwan,Rohr,HeinerPetrinetsinSnoopy Figure11:Responseofthephosphateregulatorynetworktostep-wisechangesinthesupplyofexternalinorganicphosphate.Traceswereobtainedbyaverag-ing50,000simulationruns.Therateconstantsofthestochastictransitionsare:r40.2,r150.075,else0.1.InitialmarkingasgiveninFigure9.SimulationresultswereexportedfromSnoopyascsv leandimportedintoKaleidagraph,seehttp://www.kaleidagraph.com/,fordisplay.HumanaPress,MethodsinMolecularBiology,Chapter21-preprint26 Marwan,Rohr,HeinerPetrinetsinSnoopy Figure12:ScreenshotofthesimulationdialoguewindowofSnoopydisplay-ingsimulationresultsshowninFigure10.Simulationrunparameters:Intervalstart:0;Intervalend:1500;Outputstepcount:500;Simulationruncount:50,000.Snoopyisamodellingandsimulationtool.Petrinetscanbegraphi-callyedited,parameterlistseditedandsimulationsrunandresultsgraphicallydisplayedwithoutleavingtheprogram. Figure13:Simulationdialogueshowingtransition ringtimes(amountof ringinthelastgridinterval).HumanaPress,MethodsinMolecularBiology,Chapter21-preprint27 Marwan,Rohr,HeinerPetrinetsinSnoopy ousinthegivencase:(switch on,switch o ),(PstSCAB,PstSCAB-P),(PhoU inactive,PhoU active),(PhoR,PhoR-P),and(PhoB,PhoB-P).Thefollowing veplacesarenotcoveredbyplaceinvariants:Pi PeriPlasm,Po PeriPlasm,Pi CytoPlasm,PhoA Periplasm,PhoA,phoAmRNA;theirmaximaltokennumbersaredeterminedbythetimingconstraints.4.Anestablishedanalysistechniqueforspecialbehaviouralpropertiesismodelchecking.ItchecksthePetrinetbehaviouragainstpropertiesformallyspeci edintemporallogics,see(chapterBattetal.,thisvol-ume).Charlieprovidessomestandardexplicitmodelcheckers,basicallyforteachingpurposes.SnoopyallowsalsotoexportthedesignedPetrinetstoquiteanumberofmodelcheckers,amongthemthesymbolicmodelcheckersBDD-CTL,IDD-CTL[20]andIDD-CSL[21].SimulationtracesgeneratedbySnoopy's(stochasticorcontinuous)simulationenginescanbecheckedagaintsPLTLcpropertieswiththeMonteCarloModelCheckerMC2[22].See[4,6]forcasestudiesdemonstratingasystematicandseam-lessmodelcheckingapproachinthequalitative,stochasticandcontinuousmodellingparadigms.5.AgivenPetrinetmayalsobereadasacontinuousPetrinet,ifitisamenabletocontinuizationandthepopulationsemanticsallowstocon-siderjusttheaveragedcase.ContinuousPetrinetsde neuniquelyasys-temofordinarydi erentialequations(ODEs)[4],butnotviceversa.Thepaper[23]demonstratesthestructureddesignofODEsbythestep-wisecompositionofhierarchicallystructuredcontinuousPetrinets.AfamilyofrelatedPetrinetmodelsbuildsthecoreofanintegrativeapproachcom-prisingqualitative,stochasticandcontinuousPetrinets,whichisdemon-stratedbyarunningexampleeachin[4,6].Italsoprovidesanadequateframeworktoreasonaboutthebehaviouralrelationofmodels,sharingstructure,buthavingdi erentkinetics;see,e.g.,[24].Forageneralout-lineofBioModelEngineeringsee[25].AcknowledgementsChristianRohrisfundedbytheInternationalMaxPlanckResearchSchoolforAnalysis,DesignandOptimizationinChemicalandBiochemicalProcessEngineeringMagdeburg.References1.Petri,C.A.,Reisig,W.(2008)Petrinet.Scholarpedia3(4):6477http://www.scholarpedia.org/article/Petri_net.2.Marwan,W.,Wagler,A.,andWeismantel,R.(2009)Petrinetsasaframe-workforthereconstructionandanalysisofsignaltransductionpathwaysandregulatorynetworks.J.Nat.Comput.,inpress[DOI10.1007/s11047-009-9152-x].HumanaPress,MethodsinMolecularBiology,Chapter21-preprint29 Marwan,Rohr,HeinerPetrinetsinSnoopy 3.Baldan,P.,Cocco,N.,Marin,A.andSimeoni,M.(2010)Petrinetsformodellingmetabolicpathways:asurvey.J.Nat.Comput.,inpress[DOI10.1007/s11047-010-9180-6].4.Heiner,M.,Gilbert,D.,andDonaldson,R.(2008)Petrinetsinsystemsandsyntheticbiology.Lect.NotesComput.Sci.5016:215-264.5.Rohr,C.,Marwan,W.,andHeiner,M.(2010)Snoopy-aunifyingPetrinetframeworktoinvestigatebiomolecularnetworks;Bioinformatics26,7:974-975.6.Heiner,M.,Donaldson,R.,andGilbert,D.(2010)PetriNetsforSystemsBiology.InMSIyengar(ed.):SymbolicSystemsBiology:TheoryandMethods,Chapter3,Jones&BartlettPublishers,LLC.7.PetriNetsWorld:OnlineServicesfortheInternationalPetriNetsCom-munity,http://www.informatik.uni-hamburg.de/TGI/PetriNets/.8.SBMLSoftwareSummary:http://sbml.org/SBML_Software_Guide/SBML_Software_Summary.9.BitesizeBioFreeOnlineBioinformaticstools,http://bitesizebio.com/2009/01/06/free-online-bioinformatics-tools/.10.SystemsBiologySoftware,http://systems-biology.org/software/.11.Tovchigrechko,A.(2008)EcientsymbolicanalysisofboundedPetrinetsusingIntervalDecisionDiagrams;Ph.D.Thesis,BTUCottbus,Germany.12.Heiner,M.,Lehrack,S.,Gilbert,D.,andMarwan,W.(2009)ExtendedStochasticPetriNetsforModel-BasedDesignofWet-labExperiments.Lect.NotesBioinformatics5750:138-163.13.Gillespie,D.T.(1977)Exactstochasticsimulationofcoupledchemicalreactions;J/Phys.Chem.81(25):2340-2361.14.Neidhardt,F.C.,Ingraham,J.L.etal.(1990).PhysiologyoftheBac-terialCell-AMolecularApproach.Sunderland,Massachusetts,SinauerAssociates.p.370.15.Yi-JuHsieh,Y.-J.andWanner,B.L.(2010)Globalregulationbytheseven-componentPisignalingsystem.Curr.Opin.Microbiol.13:198-203.16.Franzke,A.(2009)Charlie2.0-amulti-threadedPetrinetanalyser.DiplomaThesis,BTUCottbus,Germany.17.Heiner,M.,andKoch,I.(2004)PetriNetBasedSystemValidationinSystemsBiology.Lect.NotesComput.Sci.3099:216-237.HumanaPress,MethodsinMolecularBiology,Chapter21-preprint30