/
TurkJPhys25(2001),455{466.ITAKProductionandStructureofRapidlySolidied TurkJPhys25(2001),455{466.ITAKProductionandStructureofRapidlySolidied

TurkJPhys25(2001),455{466.ITAKProductionandStructureofRapidlySolidi ed - PDF document

briana-ranney
briana-ranney . @briana-ranney
Follow
368 views
Uploaded On 2015-10-27

TurkJPhys25(2001),455{466.ITAKProductionandStructureofRapidlySolidi ed - PPT Presentation

UZUNKARAASLANKESKThedensityofsiliconSiis23grcmandofaluminiumAlis27grcmsothatSiisoneofthefewelementswhichmaybeaddedtoAlwithoutlossofweightadvantageAdditionallytherelativelylowcoecientofthe ID: 173939

UZUN KARAASLAN KESKThedensityofsilicon(Si)is2.3gr/cmandofaluminium(Al)is2.7gr/cmsothatSiisoneofthefewelementswhichmaybeaddedtoAlwithoutlossofweightadvantage.Additionally therelativelylowcoecientofthe

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "TurkJPhys25(2001),455{466.ITAKProduction..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

TurkJPhys25(2001),455{466.ITAKProductionandStructureofRapidlySolidi edAl-SiAlloysOrhanUZUNDepartmentofPhysics,GaziosmanpasaUniversity,60110Tokat-TURKEYTuncayKARAASLANDepartmentofPhysics,ErciyesUniversity,38039Kayseri-TURKEYMustafaKESKDepartmentofPhysics,ErciyesUniversity,38039Kayseri-TURKEYReceived10.10.AbstractAl-Sialloyswithcompositions8,12,16wt%Siweremanufacturedbychillcastingandmelt-spinning(MS)methods.Theresultingribbonsampleshavebeencharac-terizedbyopticalandscanningelectronmicroscopy(SEM)andX-raydi ractometryandcomparedwiththeiringotcounterparts.Microstructuralexaminationsrevealedthatmicrostructuresofthemelt-spunribbonswerequite necomparedtotheirin-gotcounterparts.BothXRDanalysesandmicrostructuralexaminationsindicatedthatthesolubilityofSiin-Alphasewasnearlycomplete.1.IntroductionIn1960,Duwezandhisco-workersdevelopedanoveltechniquetoextendsolidsolu-bility[1]andtoproducemetastablecrystalline[2]oramorphous[3]solidphaseinsomesimplebinaryeutecticalloysystems.Infact,RussianresearcherSalliwasthe rsttoapplyamethodsimilartooneabovein1958[4].Bothresearchersemployeda\guntech-nique"inwhichasmalldropletofmoltenmetalimpactedonachillsurfacewithhighvelocity,resultinginanon-uniform\splat"ofsolidi edmaterial.Thecoolingratesforthisprocesswereestimatedwithintherangeof10to10,muchfasterthantheconventionalsolidi cationrateswhichare10orless[5,6].SincetheintroductionofrapidquenchingofmetallicmeltsbyDuwez,agreatvarietyoftechniqueshavebeendevelopedtoobtainalloysproducedbyrapidsolidi cation.Although,thee ectofrapidsolidi cationvarywidelyfromsystemtosystem,themajore ectsare:(i)decreasedingrainsize,(ii)increasedinchemicalhomogeneity,(iii)extensionofsolidsolubilitylimits,(iv)creationofmetastablecrystallinephases,and(v)formationofmetallicglasses[7, UZUN,KARAASLAN,KESKThedensityofsilicon(Si)is2.3gr/cmandofaluminium(Al)is2.7gr/cmsothatSiisoneofthefewelementswhichmaybeaddedtoAlwithoutlossofweightadvantage.Additionally,therelativelylowcoecientofthermalexpansion,highwearresistanceand uiditythatarecharacteristicofAl-Sialloyshavereceivedconsiderableinterestinthisalloyfamilyascandidatematerialsforautomotiveandaerospaceapplications[9,10].Therefore,Al-Sialloysaresoughtinalargenumberofapplicationsintheautomobileindustries,e.g.forpistons,cylinderblocksandliners[6,11].However,underthecon-ventionalsolidi cationconditions,theSiphaseincastAl-Sialloysoftenexhibitacoarsemicrostructurethatleadstopoormechanicalproperties[6,10].Recentresultshavedemonstratedthatrapidsolidi cationprocessesmaysubstantiallymodifythemorphologyoftheSiphaseascomparedtothosefoundinconventionallyprocessedmaterials[6,12-14].Therefore,variousrapidsolidi cationtechniqueshavebeenappliedtowiderangeofcompositionofAl-Sialloys.Amongthemsplatquenching[15,16],atomization[17-19],andmeltspinning[11,19-23]resultedinanincreaseinthesolidsolubilityofSiin-Alwithoutforminganyintermetalliccompounds.Whilesomeoftheseattempts[15-18]focusedonmicrostructuralcharacterizationofrapidlysolidi edAl-Sialloys,others[19-23]concentratedon ndingoptimalvaluefordeterminingtheretained-Siamountin-AlbyX-raydi ractionmethods,dependingonlatticeparameterchangeofAlsolidsolution.However,thesestudieshavesuggestedmanydi erentvalues,rangingfrom3.7x10nmto1.23x10nm,foreachincreasing1at%retained-Siamount-Al.Inthiswork,theAl-Sisystemhasbeenchosenessentiallyduetoitstechnologicalim-portance.Therefore,thepresentstudyfocusedonstructuralcharacterizationofrapidlysolidi edAl-Sialloyscomparativelywiththeirconventionallyproduced(ingot)counter-parts.Althoughrapidsolidi cationmayincreasetheequilibriumsolidsolubilityofSiin-Al,howtheamountofretained-SiinAlsolidsolutioncanbedeterminedisstillcon-troversial.Hence,themainpurposeofthepresentstudywastodeterminetheretainedSiamountinthe-Alphaseindetail.2.Melt-SpinningProcessingAlargenumberofdevicesdesignedforproducingrapidsolidi cationmaterialhavebeenreportedoverthelastthreedecadesandthesecanbeclassi edinmanydi erentways.Jones[24]classi esthemintothreecategories:(i)spraymethods,(ii)surfacemethods,and(iii)chillmethods.Spraymethodsinvolvewiththeproductionofaliquidmetalspray,whichislatertoberapidlysolidi ed.Thevariousdevicesinspraymethodsdi erintwoaspectsas:Thoseonesusedforproductionoftheliquidsprayandthoseforquenching.Thespraymethodsincludesprayatomizationanddeposition,andtheguntechnique.Themostsigni cantcharacteristicoftheweldmethodisthatbothmeltingandso-lidi cationoccurinsituatthechillsurface,whichmayitselfbepartiallymeltedintheprocesses[24].Theprincipleinvolvedwithchillmethodsistheproductionofathinsectionofliquid UZUN,KARAASLAN,KESKmetalthatiscooledbyalargerchillblock.Amongthesetypesofmethodsthemeltspinningisthemostwidelyusedonebecauseofitsrelativelyhighcoolingratesupto,enablingproductionofthemetastablecrystallineoramorphouscontinuousstrips.Inadditiontothat,thehighpracticalityofthetechniquefavourshighvolumeindustrialmanufacturing[25,26].Infact,thedevelopmentofthistechniquehasbeenprimarilyresponsiblefortheacceleratedprogressofrapidsolidi cationtechnologysincetheseventies.Thenameofthemelt-spinningprocessderivesfromitsinvolvementwiththeextrusionofmoltenmetalinawaywhichisakintothatusedtomanufacturesynthetictextile bres.Themelt-spinningcanbecarriedouteitherbyextrudingaliquidstreamintoacoolingmedium,calledthefree ightmelt-spinning(FFMS),orbyallowingamoltenjettoimpingeonarotatingchillblock,calledchillblockmeltspinning(CBMS).Theformermethodiswellknowntopolymertechnologistswhilethelaterdatesbackto1908andoftenusedtoproviderapidlysolidi edmaterials.Inthepresentwork,wealsousedtheCBMStechniquetoproducemelt-spunribbonsofAl-Sialloys.3.Experimental3.1.SpecimenPreparationThechillblockmelt-spinningdeviceisschematicallyshowninFig.1.Itbasicallyconsistsoftwoparts:(i)themeltingsystemand(ii)therotatingdisc.Themeltingsystemconsistsofafusedsilicatube65mmindiameterwithcompleteopeningsatbothends.Aclose- ttinggraphitecrucible,withoneendopentheotherrestrictedwithanozzle2mmindiameter,wasplacedintoafusedsilicatube.Thegraphitecrucibleisusedtobothheatthealuminumalloyandtoholdtheresultingmelt.Thefusedsilicatubewascappedwithagastightcaphavinganinletinthecentertoletargongasin.Therotatingdisc,22cmindiameter,wasmachinedfromabrassblock.Temperaturewasmeasuredbyplacingacromel-alumelthermocoupleatthecentralregionofcruciblewall.Firstly,Al-Sialloyswithnominalcompositionsof8,12,16wt%Siweremanufacturediningotmannerbymelting99.9%pureAland99.995%Simetalsinagraphitecru-cibleundervacuum.Afterthat,theseingotmaterialswerecutintopiecesfromwhichmelt-spunribbonswillbeproducedbytheMeltSpinning(MS)system.Secondly,thesesectionedingotmaterialswerere-meltedinagraphitecrucibleandspunintoribbonsintheMSsystem.Themoltenalloywithan850Cwasejectedfromthecrucibleunderanargonpressureofapproximately9,807.10Paontothebrasswheelrotatingatasurfacevelocityof40ms.Thus,therapidlysolidi edribbonswereproducedrangingfrom15mto150minthickness,from1mmto4mminwidthandfrom5cmto300cminlength.Asmentionedabove,wecannotgivecertainvaluesfortheaveragethickness,widthandlength.Butthesampleswiththeclosestvaluesforwidth,lengthandthicknesswerechosentoobtainthegreatestpossibleuniformity. UZUN,KARAASLAN,KESK compressed argonFigure1.Schematicofmelt-spinningprocess.3.2.MetallographyMicrostructuralexaminationsofbothingotandribbonsampleswerecarriedoutwithanOlympusBH2opticalmicroscope(OM)andtheJEOLJSM5400scanningelectronmicroscope(SEM).WheelandairsidesofribbonsandingotsampleswereexaminedaftermechanicalpolishingandetchinginaKeller-Wilcoxreagent.Afterthespecimenswerecoatedwithagoldlayertoenhancecontrast,SEMmicrographswereusuallytakenatanacceleratingvoltageof20kV.3.3.X-raydi ractionForX-raydi ractionanalyses,eachingotandribbonwereproducedthenexaminedwithoutapplicationofanytreatment.X-raydi ractionstudiesforphaseanalysesandthelatticeparametermeasurementswereperformedusingaRigakuD/max-IIICDi ractome-ter.X-raydi ractionpatternswereobtainedutilizingCuKradiationwithawavelengthof1.5406A.Forphaseidenti cation,measurementswerescannedforawiderangeofdi ractionangles(2)rangingfrom20to100degreeswithascanningrateof5deg/min.Thelatticeparametersweredeterminedfromtheindexplanesre ectionsofthealuminium-basedsolidsolution.ToenhancetheaccuracyofX-raymeasurementsforthelatticeparameterof-Al,bothscanningintervalandscanningrateweredecreasedto0.004degreeand0.2deg/min,respectively.4.ResultsandDiscussionMicrostructuralanalyseswereconductedbyopticalandscanningelectronmicroscopy.Themicrostructuresofingotsamples,knownasconventionallycastalloys,aregivenin UZUN,KARAASLAN,KESKFigs.2and3.OpticalmicrographsofingotAl-8wt%SialloyaregiveninFig.2a-b.Bothmicrographs,showedsimilarmicrostructureswithanonuniformdistributionofneedle-likeSiparticlesinthematrixof-Al.ThemicrographsofAl-12wt%Sialloy,giveninFig.2c-d,alsoshowedsimilarmicrostructureasAl-8wt%Si,exceptwithincreasingSiconcentration.Similarresultshavebeenreportedelsewhere[27-29].Al-16wt%Sialloyexhibitsnotonlyneedle-likeeutecticSiphasebutalsolargefacetedmassiveprimarySicrystalsthatsignifyahypereutecticmicrostructure(Fig.2e-f).WhenweconsidertheequilibriumphasediagramofAl-Sialloy,theaboveresultswouldbeexpected. a) Cross-sectionb) Longitudinal-sectionc) Cross-sectiond) Longitudinal-sectionf) Longitudinal-section Figure2.Opticmicrographsofingot(a,b)Al-8wt%Si(c,d)Al-12wt%Si(e,f)Al-16wt%Sialloys. UZUN,KARAASLAN,KESK b) Longitudinal-sectionc) Cross-sectiond) Longitudinal-sectionf) Longitudinal-sectionFigure3.SEMmicrographsofingot(a,b)Al-8wt%Si(c,d)Al-12wt%Si(e,f)Al-16wt%Sialloys.SEMmicrographsofthesameAl-8,12and16wt%SiingotalloysareshowninFig.3a-e.Similarly,thosemicrographs,giveninFig.3a-d,alsoshowednonuniformdistributionofneedle-likeSiphaseinthe-Almatrixforboth8and12wt%Sicomposition,whiletheAl-16wt%Simicrographs,giveninFig.3e-f,exhibitahypereutecticmicrostructure. a) Air sideb) Wheel sidec) Air Side d) Wheel sidee) Air sidef) Wheel sideFigure4.SEMmicrographsofmelt-spun(a,b)Al-8wt%Si(c,d)Al-12wt%Si(e,f)Al-16wt%Sialloys. UZUN,KARAASLAN,KESKTheSEManalysesoftheas-quenchedribbonswerecarriedoutonbothsurfacestodeterminethecoolinge ectofthesubstrate.Whenweexaminetheairandwheelsidesofribbons,inFig.4,wenoticethattheairsidesgenerallyshowa nebrancheddendriticmicrostructure,whilewheelsidescommonlyappeartopossessacellularmicrostructureforallmelt-spunAl-8,12,16wt%Sialloys.Thecellularstructureofribboncontaining16wt%Sishowedaslightdi erencefromthoseofothersamples,indicatingthepresenceofahighSiratio.Microstructuralexaminationsrevealedthatthestructureofthespecimenspreparedbythemelt-spinningmethodwerequitedi erentfromthoseofingotspecimens.NoneoftheprimarySicrystalwasobservedintheSEManalysisofmelt-spunribbonsincontrasttothatofingotcounterparts.Thisresulthasrevealedthat,undertheequilibriumcon-ditions,ahypereutecticAl-16wt%Sialloycanhaveahypoeutecticstructureduetotheexposureofundercoolingthroughrapidquenching.Thise ecthasbeenpreviouslyiden-ti edineutecticmetalsystems[19].Dependingonthefastestgrowingphaseatagivenundercoolingcondition,astructurewhichconsistsofbothprimaryandeutecticphasesoronlythelaterdevelops.Inthealuminium-siliconsystem,theprimaryaluminiumrichphasegrowsdendritically,whereasthesiliconrichphasegrowsinafacettedmanner.Comparingwithdendriticalphase,thefacetedgrowssloweratundercooling.Previously,JacobsonandMcKittrick[30]reportedthatrelativelylowundercoolingapplicationonanalloyofagivencompositioncausesdendriticalgrowthinwhichoneofthephasesgrowsrapidlyandtheotherphasesolidi esbetweendendriteswhilehigherundercoolingleadstocellulargrowth.Basedontheabovestatements,weconcludethatthedi erencebetweenmicrostructuresofbothsidesresultedfromdi erentcoolingrates.Thatwasexpectedduetothefactthatsolidi cationstartsatthewheelside.Additionally,thelackofanyobservationofSicrystalisaresultofsuppressionofsiliconnucleation.XRDpatternsforallingotsandribbons,illustratedinFigs.5-7,showsimilarityinwhichallthepossible-AlandSiphasere ectionsareexpectedlypresent.Thosepatternsforquenchedribbons,showninthesame gureswiththoseofingotspecimens,alsoexhibitedallthepossiblere ectionsofAl-solidsolution,however,onlyveryweakandbroadre ectionsofSiwererecognized.Incontrasttotheingotcase,thelackofSire ectionsforquenchedribbonsintheXRDanalysisrevealedthatasubstantialamountofSihasbeenretainedinthesolidsolution.Todeterminetheamountofretained-Siuponrapidquenching,thelatticeparameterof-AlphasewasdeterminedusingBragg'sformulaforbothingotandas-quenchedribbons.ThelatticeparametersforallSicontentsaregiveninTable1.Intheory,thelatticeparameterof-AlphasedecreaseswithincreasingSicontentinthesolidsolution[11].Thequantityofdecreasehasbeendetectedviatheclosestdistanceofapproachoftheconstitutionalatoms[11].Theamountofdecreaseinthelatticeparametersforthe8,12,16wt%Sicontentsweredeterminedasa=6.4x10nm,a=8.3x10nm,anda=9.3x10nm,respectively,ascalculatedinearlierstudies[19-21].Thevariabilityinthe-AllatticeparametersresultedfromextensionofSisolidsolubilityinAl-Sialloyshasearlierbeenreportedbyseveralresearchers[19-23]. UZUN,KARAASLAN,KESKTable.Latticeparametersandlatticeparameterchangesof-Alforeachmelt-spunandingotalloys Methodof Lattice LatticeParameter Sample Alloy Parameter Change Production (a;nm (a;nm0.0005) Al-8wt%Si Ingot 4 Melt-Spun Al-12wt%Si Ingot 4 Melt-Spun Al-16wt%Si Ingot 4 Melt-Spun Figure5.TheXRDpatternsofAl-8wt%Si,a)Ribbons,b)Ingotalloys. UZUN,KARAASLAN,KESK Figure6.TheXRDpatternsofAl-12wt%Si,a)Ribbons,b)Ingotalloys.Thesevalues,forchangeinlatticeparameters(),rangingfrom3.7x10nmto1.23x10nm,werereported,andde ningeachincreasing1at%retained-Siin-Alsolidsolution.Theamountsofretained-Siin-Alcalculatedfrombothofthelowestandhighestvalueswouldbequitedi erent.Forinstance,whilethehighestvaluetakenasthechangeinlatticeparameter,theretained-Siamountwouldbe1%,thatresponds33%retained-Sibasedontheassumptioninwhichthelowestvalueacceptedasthechangeinlatticeparameter.Contrarytoingotcounterparts,XRDanalysesofmelt-spunAl-8,12,16wt%SialloysdidnotexhibitanystrongandsharpSire ection(Figs.5-7).Thereisonlyaveryweakandbroad(111)re ection.Therefore,wemaysaythatthealladdedSiamountwerenearlysolvedin-Alforeachmelt-spunAl-Sialloys.However,becauseoftheveryweakandbroadSire ectionsinthemelt-spunribbons,acertainSiamountcouldbelostinthe UZUN,KARAASLAN,KESKbackgroundwithoutbeingobserved.InourXRDanalysesofallmelt-spunalloys,noneofthepossiblere ectionsfromthe(220)indexplaneswith55%relativeintensitywereobserved.Similarly,thepossiblere ectionswiththelowerrelativeintensitiesfromtheotherindexplanes[(311),(400),(331),(422)]werenotobserved.Hence,wecanconcludethatatleast55%oftheaddedSiamountshavebeensolvedin-Alforallmelt-spunalloys.Thesevaluesare4.4wt%for8wt%Si;6.6wt%Sifor12wt%Si;8.8wt%Sifor16wt%Sicontents.Thus,wecansaythattheapplicationofmelt-spinningmethodinproducingmelt-spunalloyssigni cantlyenhancestheequilibriumsolidsolubilitylimitofSiin-Al,whichwasreportedas0.02wt%Siatroomtemperature[10,31]. Figure7.TheXRDpatternsofAl-16wt%Si,a)Ribbons,b)Ingotalloys.Ontheotherhand,XRDanalysesshowthateachmelt-spunribbonhadonesharpandhighAlre ectioncontrarytoingotcounterpartspossessingnone.However,noneofotherpossibleAlre ectionswasdetected.Thisremarkableobservationresulted UZUN,KARAASLAN,KESKfromtheparallelorientationofoxide lmtotheribbonsurfacewithoutpresenceofanyintermetallicphase.Thelackofanyintermetallicphaseinmicrostructuralexaminationssupportsthesuggestionstatedabove.Theoxide lmontheribbonsurfaceresultedbecausevacuumwasnotusedduringtheMS.5.Conclusions1.Di erentcoolingratesresultindi erentmicrostructuresonbothairandwheelsidesofribbons.2.ThesuppressionofsiliconnucleationpreventstheformationofSicrystalontheAl-basedmatrix.3.BothXRDandmicrostructuralanalysesshowthattheMSextendsthesolidsolu-bilityofSiin-Alofingotalloys.4.Theuseofrelativeintensitiesofthedi ractionlinesgivesmoreaccuratevaluesforretained-Siamountin-Alcomparedwiththeuseofthelatticeparameterschange.AcknowledgementsWewouldliketoexpressourgratitudetoTITAKfortheir nancialsupport(GrantNo:TBAG-AY/75).The nancialsupportsfromResearchFoundationofGOU(GrantNo:95-31,96-20and00-08)andErciyesUniversity(GrantNo:96-051-1)arealsograte-fullyacknowledged.References[1]P.Duwez,R.H.WillensandW.Klement,J.Appl.Phys.(1960)1136.[2]P.Duwez,R.H.WillensandW.Klement,J.Appl.Phys.(1960)1500.[3]W.Klement,R.H.WillensandP.Duwez,Nature(1960)869.[4]I.V.Salli,LiteinoeProizvodstvo(1958)22.[5]T.R.AnantharamanandC.Suryanarayana,Rapidlysolidi edmetals,(TransTechPub.,Switzerland1987)p.5.[6]S.Das,A.H.YegnesvaranandP.K.Rohatgi,J.Mat.Sci.(1987)3173.[7]H.Jones,Mat.Sci.Eng.A133(1991)33.[8]B.Cantor,W.T.Kim,B.P.BewleyandA.G.Gillen,J.Mat.Sci.(1991)1266.[9]B.K.Prasad,J.Mat.Sci.(1991)867.[10]O.Uzun,Ph.D.Thesis,DepartmentofPhysics,GaziUniversityInstituteofScienceandTechnology,Turkey,1998. UZUN,KARAASLAN,KESK[11]S.Su,X.Liang,A.MoranandE.J.Lavernia,Int.J.Rap.Sol.(1994)161.[12]N.Fat-Halla,J.Mat.Sci.(1987)1013.[13]M.Rooyen,N.M.VanDerPers,Th.H.KeijserandE.J.Mittemeijer,Mat.Sci.Eng.,(1987)17.[14]B.K.Yen,J.Mat.Sci.,(1997)821.[15]M.Itagaki,B.C.GiessenandN.J.Grant,Trans.Quart.ASM.,(1968)330.[16]H.Matja,K.C.Russel,B.C.GiessenandN.J.Grant,Metall.Trans.A,6(1975)2249.[17]I.Yamauchi,I.Ohnaka,S.KawamotoandT.Fukusako,Trans.Jap.Ins.Met.,27,3(1986)[18]S.J.Hong,T.S.Kim,W.T.KimandB.S.Chun,Mat.Sci.Eng.A226(1997)878.[19]P.Todeshini,G.ChampierandF.H.Samuel,J.Mat.Sci.,(1992)3551.[20]S.K.BoseandR.Kumar,J.Mat.Sci(1973)1795.[21]A.Bendijk,R.Delhez,L.Katgerman,Th.H.DeKeijsher,E.J.MittemeijerandN.M.VanDerPers,J.Mat.Sci.,(1986)2803.[22]M.Rooyen,N.M.VanDerPers,Th.H.KeijserandE.J.Mittemeijer,Mat.Sci.Eng.,(1987)17.[23]A.M.BastawrosandM.Z.Said,J.Mat.Sci.,(1993)1143.[24]H.Jones,Mat.Sci.Eng.,(1984)145[25]R.W.Cahn,K.D.Laridjani,M.GreenholtzandR.Hill,Mat.Sci.Eng.,(1976)83.[26]R.B.Pond,R.E.MaringerandC.E.Mobley,ASMseminarseries,(1976)20.[27]F.YlmazandR.Elliott,J.Mat.Sci.,(1989)2065.[28]N.Fat-Halla,J.Mat.Sci.,(1989)2488.[29]D.R.Allen,M.GremaudandJ.H.Perepezko,Mat.Sci.Eng.,A226(1997)173.[30]L.A.JacobsonandJ.McKittrick,Mat.Sci.Eng.,(1994)355.[31]T.B.Massalski,Binaryalloysphasediagrams,(AmericanSoc.forMet.,Ohio1986)p.165.