/
Factoring Polynomials Tanya Magana Factoring Polynomials Tanya Magana

Factoring Polynomials Tanya Magana - PowerPoint Presentation

brianna
brianna . @brianna
Follow
343 views
Uploaded On 2022-06-14

Factoring Polynomials Tanya Magana - PPT Presentation

FACTORING COMPLETELY A factorable polynomial with integer coefficients is factored completely when it is written as a product of unfactorable polynomials with integer coefficients  Finding a common monomial factor ID: 917689

common factor difference pattern factor common pattern difference factoring monomial examples completely theorem sum cubes squares polynomials grouping 16x

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Factoring Polynomials Tanya Magana" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Factoring Polynomials

Tanya Magana

Slide2

FACTORING COMPLETELY

A factorable polynomial with integer coefficients is factored completely when it is written as a product of

unfactorable

polynomials with integer coefficients. 

Slide3

Finding a common monomial factor

Slide4

EXAMPLES

x^3 – 4x^2 – 5x 

       X^3 – 4x^2 – 5x = x(x^2-4x – 5)          

Factor common monomial 

       

                             =  x(x-5) (x+1)          

Factor trinomial 

2. 3y^5 – 48y^3 

    3y^5 – 48y^3 = 3y^3(y^2 – 16)            

Factor common monomial

                             = 3y^3(y – 4) (y + 4)      

Difference of Two Squares Pattern

3. 5z^4 + 30z^3 + 45z^2 

     5z^4 + 30z^3 + 45z^2  = 5z^2(z^2 + 6z + 9)  

Factor common monomial

                                              = 5z^2(z+3)^2            

Perfect Square Trinomial pattern

Slide5

SPECIAL FACTORING PATTERN

SUM OF TWO CUBES

      a^3 + b^3 = (a + b) (a^2 – ab + b^2)

DIFFERENCE OF TWO CUBES 

      a^3 – b^3 = (a - b)(a^2 + ab + b^2) 

Slide6

Factoring the sum or difference of two cubes

Slide7

EXAMPLES

X^3 – 125

       X^3 – 125 = x^3 – 5^3                       

Write as a^3 – b^3

                          = (x – 5) (x^2 + 5x + 25)   Difference of Two Cubes Pattern

2.   16x^5 + 54x^2

      16x^5 + 54x^2 = 2x^2 (8x^3 + 27)    

Factor common monomial 

                                 = 2x^2 ((2x)^3 + 3^3)  

Write 8x^3 + 27 as a^3 + b^3

                                 = 2x^2(2x + 3) (4x^2 – 6x + 9)  

Sum of two cubes Pattern

Slide8

Factoring by grouping

Slide9

Factor by grouping pairs of terms that have a common monomial factor. 

Pattern is

ra

+

rb

+

sa

+

sb

=

r

(

a

+

b

) +

s

(

a

+

b

)

                                             = (

r

+

s

) (

a

+

b

)

Example: 

Z^3+5z^2 – 4z – 20 = z^2(z + 5) - 4(z + 5)   

Factor by grouping

                            

= (z^2 – 4) (z + 5)        

Distributive Property

                                    = (z – 2) (z + 2) (z + 5) 

Difference of Two Squares

Slide10

Factoring polynomials in quadratic form

Slide11

EXAMPLES

3p^8 + 15p^5 + 18p^2

3p^8 + 15p^5 + 18p^2 = 3p^2(p^6 + 5p^3 + 6) 

Factor common monomial

                            = 3p^2(p^3 + 3) (p^3 +

Factor trinomial in quadratic form

Slide12

The factor theorem

Slide13

A polynomial 

f

(x) has a factor x – k if and only if

f

(k) = 0

F(x) = (x – k) * q(x) , x – k is a factor of f(x). This result is summarized by the factor theorem,  a special case of the remainder theorem. 

   

Slide14

STRUCTURE

Slide15

a^2 + 2ab + b^2 = ( a + b )^2

a^2 – 2ab + b^2 = (a – b)^2

EXAMPLES:

Show that the expression (x + y) (x - y) - 6x + 9 may be written as the difference of two squares and factor the expression

Factor the following completely: 2(x-2)^2 – 5(x-2) - 12

Factor the following completely: 10(2a-1)^2 – 19(2a-1) - 15

Slide16

PRACTICE

Slide17

X^3 – 2x^2 – 24x

2q^4 + 9q^3 – 18q^2

16t^7 + 250t^4

135z^11 – 1080z^8 

X^3 – 8x^2 – 4x + 32

16n^3 + 32n^2 – n – 2

49k^4 – 9 

4n^12 – 32n^7 + 48n^2

DETERMINE WHETER THE BINOMIAL IS A FACTOR OF THE POLYNOMIAL 

F(x) = 2x^3 + 5x^2 – 37x – 60; x – 4

H(x) = 6x^5 – 15x^4 – 9x^3 ; x + 3