/
AnalysisofaStochasticModelofAxonalCytoskeletonSegregationinDiseasesXig AnalysisofaStochasticModelofAxonalCytoskeletonSegregationinDiseasesXig

AnalysisofaStochasticModelofAxonalCytoskeletonSegregationinDiseasesXig - PDF document

cady
cady . @cady
Follow
343 views
Uploaded On 2021-06-10

AnalysisofaStochasticModelofAxonalCytoskeletonSegregationinDiseasesXig - PPT Presentation

Abstract Theshapeandfunctionofanaxonisdependentonitscytoskeletonincludingmicrotubulesneuro28lamentsandactinNeuro28lamentsaccumulateabnormallyinaxonsinmanyneurologicaldisordersAnearlyeventofs ID: 839524

neuro 136 x0000 mts 136 neuro mts x0000 sijs laments ftsfs mtandmt nfbinding nfs sjs0 dwi

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "AnalysisofaStochasticModelofAxonalCytosk..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 AnalysisofaStochasticModelofAxonalCytosk
AnalysisofaStochasticModelofAxonalCytoskeletonSegregationinDiseasesXigeYangDepartmentofMathematics,OhioStateUniversityAdvisor:ChuanXue Abstract Theshapeandfunctionofanaxonisdependentonitscytoskeleton,includingmicrotubules,neurolamentsandactin.Neurolamentsaccumulateabnormallyinaxonsinmanyneurologicaldisorders.Anearlyeventofsuchaccu-mulationisastrikingradialsegregationofmicrotubulesandneurolaments.Thissegregationphenomenonhasbeenobservedforover30yearsnow,buttheunderlyingmechanismisstillpoorlyunderstood.Inthisposterwepresentastochasticmodelthatexplainedthisphenomenonandpreliminaryanalysisofthemodel. BiologicalBackground ˆAxonalcytoskeleton.Theaxonalcytoskeletonisanintracellularpolymersystemthatconsistsofthreelamentouscomponents:microtubules(MTs),neurolaments(NFs),andactin(smallerandthusneglectable).ˆAxonaltransport.Thistransportismediatedbymolecularmotorscalledkinesinanddynein.OrganellesoftenmovemorefrequentlyandmorepersistentlythanNFsandMTs,thelattermoveshorterdistancesandspendmostoftheirtimepausing.ˆNeurodegenerativeDiseases.Neurolamentshasbeenobservedtoaccumulateabnormallyinaxonsandcauseaxonalswellinginmanyneurodegenerativediseasesandtoxicneuropathiesincludingamyotrophiclateralsclerosis,hereditaryspasticparaplegiaetc.Astrikingradialsegregationofmicrotubulesandneurolamentsoftenproceedstheaxonalswelling.IDPNisatoxinthatcausessimilarsymptoms. Figure1:Cross-sectionaldynamicsafterIDPNinjection PriorWork ˆQuestionstobeunderstood:ˆHowdomicrotubulesandneurolamentssegregateafterIDPNapplication?ˆWhydoesthesegregationphenomenaoccursonatimescaleofhoursandisreversible?ˆHowissegregationrelatedtoimpairmentofNFtransportandaxonalswelling? Figure2:MTs,NFsandOrganellesˆThestochasticmodel.Xueetal.[1]developeda2DstochasticmodelthatdescribesthedynamicsofMTs,NFsandorganellesinanaxonalcross-section,dxki=Fki=kdt+kdWki:(1)herexkiisthepositionofthei-thparticleofk-type,(k=1;2;3representingforMTs,NFsandorganellsrespectively)Fkiisthetotalforceactingonthatparticle Figure3:MT-MTandMT-NFbindingˆModelresults:segregationandremixingexplained Figure4:Numericalsimulationofcross-sectionalpolymermove-mentafterIDPNinjectionandwashout.Bluecircles:organells;Darkdots:MTs;Shallowdots:NFs. PreliminaryResults ˆAsimpliedmodel.WeconsiderasimpliedmodelthatreplacestheindirectinteractionofMTsthroughorganellesbydirectinteractionofMTsthroughspringforces.Thisismotivatedbytheresultsofthestochasticmodel,yielding(2)below: Figure5:ModelSimplication8���&#x]TJ ;� -4;.61; Td;&#x [00;&#x]TJ ;� -4;.61; Td;&#x [00;&#x]TJ ;� -4;.61; Td;&#x [00;:dxi=Pj1 (R(xj�xi)+sijS(xj�xi))dt+dWi;sijjumpsbetween0and1withrates 01(xj�xi)and 10(xj�xi)independently:(2)ˆThedCKequation.Sincemodel(2)involvesalargenumberofequations,wewanttoderivethecorrespongdingdierantialChapman-Kolmogorov(dCK)equation.Assumestatedynamicsvarymuchfasterthanpolymerlocations,usingfollowingnotations:ˆx:=(x1;x2;:::;xn):theconcatenatedpositionvectorwithnparticles.ˆs:=fsij;i6=jg:thebindingstateoftheparticlesystemˆp(s;x;t):theprobabilityforthesystem(2)tohavepositionxandstatesattimetwithproperinitialconditions.ˆDu:=2 2:thediusioncoecient.ˆF(s;x):=Pi;j;i6=j1 [R(xi�xj)+sijS(xi�xj)]ˆw(sjs0;x):thejumpratefromstates0tostateswithinitialpositionvectorx.ThecorrespondingdCKequationyields:@p(s;x;t) @t+rx[F(s;x)p(s;x;t)]=x[2 2p(s;x;t)]+1 Xs06=s[w(sjs0;x)p(s0;x;t)�w(s0js;x)p(s;x;t)](3)ˆASpecialCase:ModelReduction.Bymeansofquasi-steady-stateanalysis,wecanwritep(s;x;t)=(x;t)f(s;x)+V(s;x;t).Here(x;t)=Psp(s;x;t)andf(s;x)isthequasi-stationarydistributionofs.Alsodenotevstobetherowvector(v(s;x;t))Tsinwhichviseitherp;f;ForV.VisthenoisetermsatisfyingPsV(s;x;t)=0 DeneprojectionoperatorP:=fs1T,sops=Pps+(I�P)ps.It'seasytocheckPps=(x;t)fs,(I�P)ps=Vs.ActingPon(3),collectingleadingtermsinweget:AVs=Fsfrxfsg+2 2xfs�rx[FTsfs]fs@ @t=�rx(FTsfs)+rx(Brx)WhereA(x);B(x)aresquarematrixeswhosedimensionsmatchthatofVs.ˆNumericalJustication.Numericalresultssuggestthatwecanapproximate(2)withdxki=Xj1 (R(xj�xi)+k1S(xj�xi))dt+dWi(4)wherek1= 01=( 01+ 10).Wesimulatedthemovementof20MTsin1Dintervalof2mlong.Graphsarelistedbelow,indicatingthatmodel(3)and(4)matchquitewell. Figure6:Left:20samplepathsofMTpositions.Right:MeanandstandarddeviationofMTpositions FutureWorks ˆExtendabovecasetoincludebothMTsandNFsthatinteractthroughrandomMT-MTandMT-NFbinding.ˆExtendtheanalysistoallowforrandomarrivalanddepartureofparticles.ˆFurthernumericaljusticationofthemodelastherstbulletpoint. Reference [1]C.Xue,S.B.Brown.AStochasticMultiscaleModelThatExplainstheSegregationofAxonalMicrotubulesandNeurolamentsinNeurologicalDiseases.PLoSComputBiol,2015. Acknowledgement ThisworkisfundedbyUSNSF1312966and1553637.

Related Contents


Next Show more