/
Animmersedinterfacemethodforsimulatingtheinteractionofa Animmersedinterfacemethodforsimulatingtheinteractionofa

Animmersedinterfacemethodforsimulatingtheinteractionofa - PDF document

calandra-battersby
calandra-battersby . @calandra-battersby
Follow
394 views
Uploaded On 2017-01-10

Animmersedinterfacemethodforsimulatingtheinteractionofa - PPT Presentation

CorrespondingauthorTel16072548593Emailaddressessx12cornelleduSXujanewangcornelleduZJWang JournalofComputationalPhysicsxxx2006xxx ID: 508151

Correspondingauthor.Tel.:+16072548593.E-mailaddresses:sx12@cornell.edu(S.Xu) jane.wang@cornell.edu(Z.J.Wang). JournalofComputationalPhysicsxxx(2006)xxx

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Animmersedinterfacemethodforsimulatingth..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Animmersedinterfacemethodforsimulatingtheinteractionofa”uidwithmovingboundariesShengXu,Z.JaneWangDepartmentofTheoreticalandAppliedMechanics,CornellUniversity,KL214KimballHall,Ithaca,NY14853,USAReceived21March2005;receivedinrevisedform1December2005;accepted16December2005Intheimmersedinterfacemethod,boundariesarerepresentedassingularforceintheNavier…Stokesequations,whichentersanumericalschemeasjumpconditions.Recently,wesystematicallyderivedallthenecessaryspatialandtemporaljumpconditionsforsimulatingincompressibleviscous”owssubjecttomovingboundariesin3Dwithsecond-orderspatialandtemporalaccuracyneartheboundaries[ShengXu,Z.JaneWang,Systematicderivationofjumpconditionsfortheimmersedinterfacemethodinthree-dimensional”owsimulation,SIAMJ.Sci.Comput.,2006,inpress].Inthispaperweimplementtheimmersedinterfacemethodtoincorporatethesejumpconditionsina2Dnumericalscheme.Westudytheaccuracy,eciencyandrobustnessofourmethodbysimulatingTaylor…Couette”ow,”owinducedbyarelaxingballoon,”owpastsingleandmultiplecylinders,and”owarounda”appingwing.Ourresultsshowthat:(1)ourcodehassecond-orderaccuracyinthein“nitynormforboththevelocityandthepressure;(2)theadditionofanobjectintroducesrelativelyinsigni“cantcomputationalcost;(3)themethodisequallyeectiveincomputing”owsubjecttoboundarieswithpre-scribedforceorboundarieswithprescribedmotion.2006ElsevierInc.Allrightsreserved.Immersedinterfacemethod;Immersedboundarymethod;Cartesiangridmethod;Movingdeformableboundaries;Complexgeometries;Flowaroundmultipleobjects;Singularforce1.IntroductionItisimportanttoaccuratelyandecientlyresolvemovingboundariesandtheireectson”uidsinnumer-icalsimulationsof”uid…structureinteractions.Body-“ttedgridmethods,whichemploystructuredorunstruc-turedbody-“ttedgrids,aredesignedtoresolveboundariesandtheireectswithhigh-orderaccuracy,butitiscomputationallycostlytoupdategridsinmovingboundaryproblems.VariousCartesiangridmethodshavebeendevelopedtoavoidthegridregeneration.Theyallowforfast”owsolversandhavetheadvantagesofsimplicityandeciency.OneclassofCartesiangridmethodsaresuitableforsolving”owswithmovingboundariesundergoingprescribedmotion.Examplesincludethevirtual/immersedboundarymethod0021-9991/$-seefrontmatter2006ElsevierInc.Allrightsreserved.doi:10.1016/j.jcp.2005.12.016 Correspondingauthor.Tel.:+16072548593.E-mailaddresses:sx12@cornell.edu(S.Xu),jane.wang@cornell.edu(Z.J.Wang). JournalofComputationalPhysicsxxx(2006)xxx…xxx www.elsevier.com/locate/jcp ARTICLEINPRESS [9,28,6,14,29],thesharpinterfacemethod[34,39],theghost”uidmethod[7,32,10],PHYSALIS[25,31],Cal-hounsmethodmethodandRussellandWangsmethodmethod.AnotherclassofCartesiangridmethodsaremoresuitabletosolve”owswithboundariesmovedanddeformedbydrivingforce,mostnotably,Peskinsimmersedboundarymethod[21,22]andthemorerecentimmersedinterfacemethod[17…19,16].Ourgoalofthispaperistodeveloptheimmersedinterfacemethodforsimulating”owwithbothtypesofmovingboundariesinanaccurateandecientway.Inhissimulationofblood”owintheheart,Peskinintroducedtheimmersedboundarymethod[21,22].Inthismethod,theboundaryofanimmersedobjectistreatedasasetofLagrangian”uidparticles.Thecon“g-urationoftheseLagrangian”uidparticlesdeterminesaforcedistributioninthe”uidtorepresenttheeectoftheobject.Theforcedistributionisdeterminedbyaprescribedconstitutivelawofmaterial,anditappearsintheformoftheDiracdeltafunction.Inthissense,Peskinsimmersedboundarymethodisamathematicalformulation,inwhichsingularforceisaddedtotheNavier…Stokesequationsformodelingimmersedbound-aries.Thisformulationnaturallycouplesa”uidwithmultiplemovingobjects,andcanbecomputedinane-cientway.Arigorousderivationoftheformulationfromtheprincipleofleastactioncanbefoundinin.Thenumericalimplementationoftheimmersedboundarymethodemploysa“xedCartesiangridfora”uidandaLagrangiangridforanimmersedboundary.Thecommunicationbetweenthe”uidandtheimmersedboundaryisachievedthroughthespreadingofthesingularforcefromtheLagrangiangridtotheCartesiangridandtheinterpolationofthevelocityfromtheCartesiangridtotheLagrangiangrid.AdiscreteDiracdeltafunctionisusedtospreadthesingularforceandinterpolatethevelocity.TherearemultiplechoicesofthediscreteDiracdeltafunction,whichisconstructedtopreservevariousmoments.TheuseofthediscreteDiracdeltafunctionremovesthesingularityinthegoverningequationsandthereforethediscontinuitiesofthe”ow“eld.Thus,standarddiscretizationschemescanbeadoptedwithoutmodi“cations.Tocon“nethethick-nessoftheinterfacebetweena”uidandanobject,thediscreteDiracdeltafunctionhasanarrowsupport,andisdependentonthegridsize.Sincetheimmersedboundarymethodwasintroducedin19721972,ithasbeenwidelyusedinthesimulationof”uid…structureinteractions,especiallyinbiological”uiddynamics.Examplescanbefoundinin.Despiteitseciencyandrobustness,theinitialimplementationsofthemethodhadthefollowingshortcomings.First,itwasonly“rst-orderaccurateinspace;Second,therewasasystematictendencyforaclosedimmersedboundarytoslowlylosevolumeasthoughthe”uidwereleakingout;Third,asolutionwhichispiecewisesmoothacrossanimmersedboundarywassmearedout.Inthepast30years,therehavebeenvariousresearcheortstoanalyzeandimprovetheimmersedbound-arymethod.BeyerandLeVequeLeVequeexaminedtheaccuracyofthemethodfortheone-dimensionaldiusionequation,andfoundthatadditionaltermsforthediscreteapproximationoftheDiracdeltafunctionaresome-timesnecessaryinordertoachievesecond-orderaccuracy,butitisunclearhowtomaintainthesecond-orderaccuracyfor”owsimulationinhigherdimensions.Aformallysecond-orderimmersedboundarymethodwasproposedbyLaiandPeskinin,butthesecond-orderaccuracyisachievedonlyiftheDiracdeltafunctionisapproximatedbyagrid-independent“xedsmoothfunction.Inpractice,itisstill“rst-orderaccurate.RealizingthattheprojectionofadiscreteDiracdeltafunctionontoadivergence-freespacemaybecomputedanalyt-ically,CortezandMinionMiniondevisedtheblobprojectionimmersedboundarymethod,whichdisplayedfor-mallyfourth-orderconvergenceratesoftheirbackground”owsolver.However,theanalyticalformoftheprojectiondependsonthevelocityboundaryconditionsimposedonthecomputationaldomain.Sincethepressurewasnotreported,itisalsounclearhowaccuratelythepressurecanberecovered.Analyzingtheleakageproblemintheimmersedboundarymethod,PeskinandPrintzPrintzfoundthatthevolumelossenclosedbyanimmersedboundaryiscausedbytheviolationofthedivergence-freeconditionatLagrangian”uidparticles.Theyruledouttheobviousexplanationthat”uidescapesbetweendiscreteLagrangian”uidparticleswhichde“netheimmersedboundary,andintroducedarecipefortheconstructionofa“nite-dierencedivergenceoperatortoachievebettervolumeconservation.TheblobprojectionimmersedboundarymethodbyCortezandMinionMinionalsoachievedgoodvolumeconservation.OtheranalysisandimprovementoftheimmersedboundarymethodincludethestabilityanalysisbyTuandandandStockieandWettonn,theadaptiveversionbyRomaetal.al.,andtheinclusionofbound-arymassbyZhuandPeskinPeskin.However,despiterecentimprovements,themethodstillsuersfromsomeshortcomings,inparticular“rst-orderaccuracyingeneral.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS Motivatedbythegoaltoeventuallyobtainsecond-orderaccuracyinPeskinsimmersedboundarymethod,LeVequeandLiidevelopedtheimmersedinterfacemethod.Thekeyideaoftheimmersedinterfacemethod,whichisalsothemaindierencefromtheimmersedboundarymethod,istoincorporatethejumpconditionscausedbytheDiracdeltafunctioninto“nitedierenceschemes.TheapproximationoftheDiracdeltafunctionbyasmoothfunctionisthereforeavoided.TheimmersedinterfacemethodwasoriginallyproposedforellipticequationsuationsandStokesequationsuations.Later,itwasextendedtoone-dimensionalnon-linearparabolicequationsuations,PoissonequationswithNeumannboundaryconditionsitions,andthetwo-dimensionalincompressibleNavier…Stokesequations[19,16]For”uiddynamicsproblems,theimmersedinterfacemethodisbasedonthesamemathematicalformula-tionasPeskinsimmersedboundarymethod,butthecouplingbetweena”uidandanobjectisnowhandledbyincorporatingjumpconditions.Ifnecessaryjumpconditionsareallknown,theimmersedinterfacemethodcanachievesecond-orderorevenhigher-orderaccuracy.Thesharpnessofaninterfacecomputedbythemethoddoesnotdependongridresolutions.Furthermore,themethodshowsverygoodconservationofthemassenclosedbyano-penetrationboundary.Thus,theimmersedinterfacemethodsharestheadvantagesoftheimmersedboundarymethodwiththesamemathematicalformulation,whileovercomingsomeofitsshortcomingsbyeliminatingtheuseofdiscreteDiracdeltafunctions.Theapplicabilityoftheimmersedinterfacemethoddependsonwhetherthenecessaryjumpconditionsareknown.Recently,wesystematicallyderivedthejumpconditionsofall“rst-,second-andthird-orderspatialderivativesofthevelocityandthepressureaswellas“rst-andsecond-ordertemporalderivativesofthevelocityforthe3DincompressibleNavier…Stokesequationssubjecttosingularforceforce.Usingthesejumpconditions,theimmersedinterfacemethodcanbeappliedtothesimulationof3Dincompress-ibleviscous”owswithlocal“rst-orsecond-orderspatialandtemporaldiscretizationaccuracy.Inthispaper,weobtainthejumpconditionsin2Dfromour3Dresultstsbytakingonedirectionin3Dasuni-form,andimplementtheimmersedinterfacemethodtosimulatetheinteractionofa”uidwithmovingboundaries.Themethodwedevelopinthispapercansimulatetwoclassesof”owproblems,onewithboundariesmovedanddeformedbydrivingforceandtheotherwithboundariesprescribedwithknownmotion.LiandLaiLaiandLeeandLeVequeuehaveimplementedtheimmersedinterfacemethodforsometwo-dimensional”owsandachievedsecond-orderspatialaccuracyintheirsimulations.Thecurrentpaperdiersfromtheirworkinthefollowingaspects:(1)wederivethejumpconditionsinthispaperfromourthree-dimen-sionaltheoreticalresultsts,sothenumericaltestsinthecurrentpaperserveinparttoverifyourprevioustheoreticalderivation;(2)inadditiontomorespatialjumpconditions,wealsoderivetemporaljumpcondi-tionsandexaminetheireectontemporalintegration;(3)wesimulate”owproblemswithboundariesmovedanddeformedbydrivingforceandwithboundariesinprescribedmotion,andinvestigatethespatialandtem-poralconvergenceandaccuracyofourmethodagainstknownanalytical”owsolutionsandcanonical”owexamples;(4)weinvestigatetheeciencyandrobustnessofthemethodtosimulate”owwithmultiplemovingboundaries.Thispaperiswrittenwithsucientdetailssothataninterestedreadercanprogramandtestthemethod.InSection,wepresentthemathematicalformulationofgoverningequationsintheimmersedinterfacemethod.InSection,wedescribetheimmersedinterfacemethodandgive“nitedierenceschemeswithjumpcondi-tionsincorporated.InSection,wepresentthenecessaryjumpconditionsforachieving“rst-orderlocalspa-tialandtemporaldiscretizationaccuracyin2Dsimulation.Thosejumpconditionsarefunctionsofthesingularforce.InSection,wediscusstheconstructionofthesingularforce.InSection,weimplementtheMACschemeschemeasabasic”owsolverandalsogiveinterpolationschemesand”uidforcecalculations.InSection,weprovidenumericalteststoexaminetheaccuracy,eciencyandrobustnessoftheimmersedinterfacemethod.Sectionisconclusions.2.GoverningequationssubjecttosingularforceBoththeimmersedinterfacemethodandtheimmersedboundarymethodmodelobjectsassingularforceintheNavier…Stokesequations.Thenondimensional2DNavier…StokesequationssubjecttosingularforceS.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS Þ¼r istime,isthevelocity,isthepressure,istheReynoldsnumber,isthenumberofobjects,andisthesingularforcefromobject.Takingthedivergenceofthemomentumequationtheequationforpressure Dot2vD ReDDþ2 ouox ovoy ouoy ¼risthedivergenceofthevelocityandistheCartesiancoordinates.WekeeptermswithdivergenceinEq.toenforcethedivergence-freeconditionintheMACscheme,whichwewillusetosolveEqs.(1)and(3)Sinceournumericaltreatmentofeachobjectisthesame,weomitsubscriptassociatedwithobjectinlaterpresentation.Weconsiderthesituationinwhichthesingularforceisappliedtotheclosedsmoothboundaryof.ReferringtoFig.1,theclosedboundaryisaclosedcurvein2D,andwedenoteitbyanditscoor-dinatesby.WeparametrizecurveatareferencetimebynondimensionalizedLagrangianparam-.Thesingularforcecanbeexpressedbyisthenondimensionalsingularforcedensity,and)isthenondimensionalDiracdeltafunction.Weassumearesmoothfunctionsof3.FinitedierenceswithjumpcontributionsBecauseofthesingularforceappliedoncurve,a”ow“eldgovernedbyEqs.(1)and(2)isgenerallynotsmoothacrossthecurve.Theimmersedinterfacemethoddiersfromtheimmersedboundarymethodinitshandlingoftheforcesingularity.InsteadofapproximatingtheDiracdeltafunctionbysmoothfunctions,theimmersedinterfacemethodmodi“esthestandarddiscretizationschemestoincludethediscontinuitiesofthe”ow“eld.Themodi“cationisbasedonthegeneralizedTaylorexpansion.Lemma1(GeneralizedTaylorexpansion).Assumefunctiong(z)hasdiscontinuitypointsoftheÞrstkindatin(z),z,andandz1;z2Þ[[ð.g(z)canbeeithercontinuousordiscontinuousatzandz.LetÞ¼...;.Then gðnÞðzþ0Þn!ðzmþ1z0ÞnþXml¼1X1n¼0 ½gðnÞðzlÞn!ðzmþ1zlÞn.ð5Þ x(X, Y)Š+Lagrangian poin t Fig.1.Geometricdescriptionofanobjectsurface.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS Theproofoftheabovelemmawaspresentedinin.Weapplytheabovelemmatoconstructcentral“nitedierenceschemeswherethediscontinuitymayoccuratmostoncebetweentwoadjacentgridpoints.Lemma2(Generalizedcentral“nitedierences).Letx0andx.Supposeu(x)isinÞnitelysmoothexceptatdiscontinuitypointsoftheÞrstkind,.u(x)canbeeithercontinuousordiscontinuousatxandx.Then duðxiÞdx¼ uðxiþ1ðxþi1Þ2hþ 12hX2n¼0 ½uðnÞðnÞn!ðxi1nÞnX2n¼0 ½uðnÞðnÞn!ðxiþ1gÞnOðh2Þ;ð6Þ d2uðxiÞdx2¼ uðxiþ1uðxiðxþi1Þh2 1h2X3n¼0 ½uðnÞðnÞn!ðxi1nÞnþX3n¼0 Other“nitedierenceschemeswithdierentorderscanalsobeconstructedbasedonLemma1,buttheavail-abilityofjumpconditionssetsanupper-limitontheorderofaccuracy,asstatedinthefollowingproposition.Proposition1.ThehighestorderofaÞnitedifferenceschemeforu(x)withastencilcontainingadiscontinuityismn+1,wheremtakesamaximumnumbersuchthatjumpconditions[u)](l=0,1,2,,m)areallknown.Thehighestorderofspatialderivativesinmomentumequationandpressureequationis2.Accord-ingtoProposition1,todiscretizethesederivativeswith“rst-orderaccuracyatgridpointsnearanobjectboundary,thejumpconditionsofthevelocity,thepressureandtheir“rst-orderandsecond-orderspatialderivativesareneeded.Toachievesecond-orderaccuracy,thejumpconditionsoftheirthird-orderspatialderivativesarealsoneeded.Ifanobjectismoving,thetemporalderivativesofthevelocityatagridpointmayhavejumpswhenevertheobjectboundarycrossesthatgridpoint.Supposeaboundarypassesagridpointattimebetweentime.Thentherelationforvelocityatthegridpointbetweentimeisgiven on~vðt0Þotn ðtmþ1t0Þnn!þXml¼1X1n¼0 on~vðtlÞot where[[]]denotesatemporaljumpattime¼ðÞðÞ.Eq.followsdirectlyfromLemma1.Thehighestorderoftemporalderivativesinmomentumequationis1.AccordingtoProposition1,todiscretizethesederivativeswith“rst-orderaccuracyatgridpointscrossedbyanobjectboundary,thejumpconditionsofthe“rst-ordertemporalderivativesofthevelocityareneeded.Toachievesecond-orderaccuracy,thejumpconditionsofsecond-ordertemporalderivativesofthevelocityareneededaswell.4.SpatialandtemporaljumpconditionsInthissection,wegivethenecessaryjumpconditionsforachieving“rst-orderlocalspatialandtemporaldiscretizationaccuracyinthe2DNavier…Stokesequations.Theyarederivedfromthe3Dresultsininbytakingonedirectionin3Dasuniform.ForcurveFig.1,unittangentialvectorandunitnormalvectorarede“nedas J oXoa; where oXoaÞ2 .Asbefore,weuse[]todenoteaspatialjump,i.e.¼ðÞðÞ,whereisatthesideofinthedirectionofnormal,andisattheothersideof.IntheCartesiancoordinatesystem,tangentialforcedensityandnormalforcedensityarede“nedasS.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS fs¼ fxsxþfysyJ;fn¼ 4.1.SpatialjumpconditionsThespatialjumpconditionsusedfor2Dsimulationare o~voxsy~sfs; o~voyResx~sfs; o2~vox2~ru1ðs2xs2yru2ð2sxsyru3ðs2yÞ; o2~voy2~ru1ðs2ys2xru2ð2sxsyru3ðs2xÞ; ½¼ opox sxJ ofnoaþ syJ ofsoa; opoy syJ ofnoa sxJ ofsoa; o2pox2rp1ðs2xs2yp2ð2sxsyp3ðs2yÞ; o2poy2rp1ðs2ys2xp2ð2sxsyp3ðs2xÞ; o2poxoyrp1ð2sxsyp2ðs2ys2xp3ðsxsyÞ;where~ru1,~ru2,~ru3,rp1,rp2andrp3are~ru1 J2 oJsxoa o~vox oJsyoa o~voy~ru2 JRe ofs~soaþ onxoa o~vox onyoa o~voy~ru3¼Re½rp;rp1¼ 1J2 o2fnoa2 oJsxoa opox oJsyoa opoyrp2¼ 1J ooa 1J ofsoa onxoa opox onyoa opoyrp3¼2 ouox ovoy2 ouoy Termswiththeformof[]appearhereinandalsolater.Notethat[[a]Æ[b].Thecorrectcalcu-lationof[]is½½canbeobtainedthroughinterpolation.WegivetheinterpolationschemeinSection4.2.TemporaljumpconditionsWhencurvepassesa“xedpointinspaceattime,usingtodenotethepointonwhichcoincideswiththepoint,wehavethefollowingrelationbetweenÞ¼ðÞ¼ðS.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS ½¼0,wecanapproximatetemporalderivativesatbythoseatwith[[]]=0.Accord-ingtoEq.,weneedspatialjumpconditions inour2Dsimulation.Thelatterisgivenby ½r5.ConstructionofsingularforceThejumpconditionsgiveninSectionarefunctionsofthesingularforcedensity.Theconstructionofthesingularforcedependsonwhetherthemotionofanimmersedboundaryisprescribedordrivenbyaforcelawbasedonitsdeformation.WeconsiderthegeneralcaseinwhichtheimmersedboundaryhasLagrangianmassdensity).Wecanwritethedensity)ofthewholesystemaswhere)isthe”uiddensity.NotethattheDiracdeltafunctionisnondimensional.Takinganin“ni-tesimalsegmentofcurveasshowninFig.2,weapplyonittheNewtonssecondlawnondimensionalizedbythesamescalesasthoseusedtonondimensionalizeEqs.(1)and(2)toobtain qsqf whereisthevelocityofthesegment,istheresultant”uidforceactingonthesegment,andistheforcegeneratedbytheobjectitself,whichcanbemuscleforceorcontrolforce.Wesimplycallnon”uidforce.The”uidforceisrelatedtothesingularforcedensitybyIfanobjectisdeformableandiftheforcelawrelatesthemechanicforceandthedeformationoftheobjectisknown,thesingularforcecanbereadilyobtained.Therelaxationofastretchedmembraneina”uidisatyp-icalexample.Ifthemembraneiselastic,wehave wheretensionisgivenby inwhichisaconstantandfortheunstretchedmembrane. Fig.2.SurfacesegmentofvelocitysubjecttoforcesS.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS Ifthemotionofanobjectisprescribed,aninverseproblemneedstobesolvedtoobtainasingularforcedensitydistributionsuchthattheresultingmotionoftheobjectmatchestheprescribedone.Here,wecon-structthesingularforcedensitydistributionbasedonafeedbackcontrol.Welet,givenby qmqf areconstants,arethesimulatedandprescribedvelocityoftheboundaryseg-ment,andanditssimulatedandprescribedcoordinates.Wemayalsocombineasolidmodelwithfeed-backcontrol,i.e.Whenisfromonly,afterpluggingEq.(13)and(16)intoEq.,weobtain dD~VdtþKdD~VþKsZD~Vdt¼~fþ~fs;ð17ÞwhereKm¼ qsþqmqf,D~V¼~Ve~Vand~fs¼ qsqf .ThuswehaveafeedbackcontrolsystemasgovernedbyandsketchedinFig.3.ThisfeedbackcontrolsystemhasalinearPID(ProportionalIntegralDeriv-ative)controllerandanonlinearplantoperatedthroughtheNavier…Stokesequations.Ifcurveismassless=0),andwelet=0,thelinearcontrollerbecomesaPI(ProportionalIntegral)controllerwithinEq.ThenonlinearplantmakestheanalyticaldesignofthePIDorPIcontrollerverydicult.TotunethePIDorPIcontrollerforreducingtheerror,,andmaintainingnumericalstability,wecurrentlyresorttoatrialanderrorapproach.Ourexperienceindicatesthathavetotakeverysmallpositivevaluesorzerotoensurenumericalstability.ThemainparametertobetunedinthePIDorPIcontrolleristhus.Sincethepressurejumpacrossaboundaryissubjecttoanarbitraryconstant,wetunebasedontheorderofmag-nitudeanalysisfortheviscousforce.TheviscoustermsinEq.haveorderof1intheboundarylayerofthickness alongtheboundary.FromSection,weestimate 1Re o~vo~n LetthetolerancesforinEq.,wheresubscriptdenoteatangentialcomponentofavector.Wehave 6.ImplementationoftheimmersedinterfacemethodWehavedescribedthethreemaincomponentsoftheimmersedinterfacemethod,whicharethesingularforcedensity,thejumpconditionsintermsofthesingularforcedensity,and“nitedierenceschemesincor-poratedwiththejumpconditions.Nextweimplementthemethodina”owsolverbasedontheMACscheme Fig.3.Blockdiagramofthefeedbackcontrolintheforceconstructionforanobjectinprescribedmotion.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS 6.1.MACgridandboundaryrepresentationAMACgridisastaggeredCartesiangrid.WeuseauniformMACgridassketchedinFig.4(a)forthe“nite-dierenceapproximationtogoverningequations(1)…(3).Thecenterofacellforpressureis(),where{1,2,}and{1,2,}.Thecenterofacellforvelocitycomponentis()andthecenterofacellforvelocitycomponentis(),where()correspondsto 12;jþ {0,1,}and{0,1,}.ThedimensionsofacellareWecalculategeometricquantitiesandthesingularforcedensityattheLagrangianpointsnumberedbyoncurve,asmarkedbycirclesinFig.4(b),where{0,1,}.WeuseperiodiccubicsplinestointerpolatethevaluesofthegeometricquantitiesandthesingularforcedensityattheirregularpointsmarkedasXinFig.4(b),whicharetheintersectionsofcurveandgridlines.Thecostofcubic…splineinterpolationisoforder.Wecanthenidentify“nitedierencestencilsthatcontaintheirregularpoints,andcomputethejumpcontributionsforthe“nitedierenceschemesonthosestencils.TomoveLagrangianpoints(),we“rstinterpolatethevelocityofalltheirregularpointswithaninterpolationschemegiveninSection,andthenuseperiodiccubicsplinestointerpolatevelocity(attheLagrangianpoints.Whentwoirregularpointsareveryclosetoeachother,weuseoneoftheminordertoavoidfailureofthecubicsplines.6.2.SpatialdiscretizationWiththecellde“nitionsforandshowninFig.5,wecanwritethesecond-ordercentral“nitedierenceapproximationstoEqs.(1)and(3)inthefollowingform: u(I,j)v(i,J)p(i,j)Š1)u(IŠ1,j)i,I j ,Jxy Fig.4.Discreterepresentationofthecomputationaldomainandtheobjectsurface.(a)TheMACgridwithstaggeredarrangementof”owvariables;(b)Lagrangianpoints(opencircle)andirregularpoints(x-mark)ontheobjectsurface. Fig.5.Cellde“nitionsfor(a)velocitycomponent,(b)velocitycomponent,and(c)pressureandvelocitydivergenceS.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS ouot;j¼CuI;j u2iþ1;ju2i;jDxþ uI;JvI;JuI;J1vI;J1Dy piþ1;jpi;jDxþ 1Re uIþ1;j2uI;jþuI1;jDx2þ uI;jþ12uI;jþuI;j1Dy2ð18Þ ovot;J¼Cvi;J uI;JvI;JuI1;JvI1;JDxþ v2i;jþ1v2i;jDy pi;jþ1pi;jDyþ 1Re viþ1;J2vi;Jþvi1;JDx2þ vi;Jþ12vi;Jþvi;J1Dy2ð19Þ oDot;j¼Cpi;jþ piþ1;j2pi;jþpi1;jDx2þ pi;jþ12pi;jþpi;j1Dy22 uI;jDI;juI1;jDI1;jDxþ vi;JDi;Jvi;J1Di;J1Dy 1Re Diþ1;j2Di;jþDi1;jDx2þ Di;jþ12Di;jþDi;j1Dy22 uI;juI1;jDx vi;Jvi;J1Dy ui;Jui;J1Dy arethetermsduetojumpcontributionsin“nitedierences,andiscomputedas uI;juI1;jDxþ withthejumpcontributiontermdenotedby.SomeofthevelocityanddivergencevaluesinEqs.arenotcenteredintheircellsshowninthecelldiagraminFig.5.Weinterpolatethemfromadjacentvalues.Again,theinterpolationschemesarepresentedlaterinSection6.4isnonzeroonlyifthestencilofa“nitedierenceinthecorrespondingequationcontainsirregularpoints.Togiveanexample,wecalculateforthecaseshowninFig.6(a).Wedenotethecoordi-natesofthetwoirregularpointsas()and(),respectively.Ajumpconditionatpointnowde“nedas½¼ðÞðÞ,andajumpconditionatpoint½¼ðÞðÞisthesumofthejumpcontributionfromeach“nitedierenceinEq..Inthiscase,thejumpcontributionassociatedwith u2iþ1;ju2i;jDxis 1Dx ou2oxxiþ1X 2 thejumpcontributionassociatedwith uI;JvI;JuI;J1vI;J1Dyis Fig.6.Schematicsofexamplesfor(a)thecalculationofjumpcontributiontermand(b)thetreatmentofboundaryconditionsonafar-“eldrigidwall.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS 1Dy ouvoyyJY 2 thejumpcontributionassociatedwith piþ1;jpi;jDxis 1Dx½p poxxiþ1X 2 thejumpcontributionassociatedwith 1 Iþ1;j2uI;jþuI1;jDx2is 1ReDx2 ouoxxIþ1X 2 thejumpcontributionassociatedwith 1 I;jþ12uI;jþuI;j1Dy2is 1ReDy2 ouoyyjþ1Y 2 (22)and(23)containtermsoftheformof[],forexample ou2ox½u ,whichcanbecalculatedaccordingtoEq.InournumericaltestsinSection,wesometimesplotthestreamfunctionofavelocity“eld,whichisobtainedbysolving o2wox2þ whereisthestreamfunctionandisthevorticity.Byde“nition,wehave woy;v¼ owox;ð28Þx¼ ovox Thuswecanderivethefollowingjumpconditions: owox0; owoy0; o2wox2 ovox o2woy2 Thecentral“nitedierenceapproximationstoEq.andde“nition wiþ1;j2wi;jþwi1;jDx2þ wi;jþ12wi;jþwi;j1Dy2þCwi;j¼xi;j;xi;j¼ vI;jvI1;jDx wherearefromthejumpcontributionsin“nitedierences.Theyarecomputedinthesimilarwayasthecalculationofgiveninthepreviousexample.Wenowdiscussourimplementationoftheno-slip,no-penetrationandthepressureboundaryconditionsonafar-“eldrigidwall.ReferringtoFig.6(b),weenforcetheno-slipandno-penetrationboundaryconditionsasfollows: uðI;0ðI;2Þ2¼0; Withthetreatmentof aspresentedinSection,Eq.forthepressureisadiscretePoissonequa-tion.WecurrentlysolvethediscretepressurePoissonequationandstreamfunctionPoissonequationusingFFT,whichhascostoforder,whereisthenumberofnodesinaCartesiangrid.ReferringFig.6(b),wederivefromEq.thefollowingNeumannboundaryconditionforthepressureatarigidS.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS opoy;j¼1¼ 1Re iscomputedbasedonthedivergencefreeconditionatgridnode(=0)asfollowing: uI;J¼0uI1;J¼0Dxþ 6.3.TemporalintegrationWeemployanexplicitfourth-orderRunge…Kuttaschemeinthetemporalintegration.High-orderexplicitschemesareappropriateforthemoderateReynoldsnumbersthatweconsiderhere,asshownbyJohnstonandandandEandLiuLiu.Inthe”owregimeofmoderatetohighReynoldsnumbers,viscoustimestepconstraintismuchlessrestrictivethantheconvectiveone.Ahigh-ordertemporalintegrationschemewhosestabilityregionincludesaportionoftheimaginaryaxiscanensurestability,andanimplicittreatmentofvis-coustermsisnotnecessary.Inthissection,wefocusonhowtoincorporatetemporaljumpconditionsintothefourth-orderRunge…Kuttascheme.Duetolimitedtemporaljumpconditions,thetemporalaccuracyisonly“rst-orderforagridpointattheinstantwhenthegridpointiscrossedbyanimmersedboundary,buttheoveralltemporalaccuracyisnotaectedmuchsincethenumberofsuchgridpointsismuchlessthanthetotalnumberofgridpoints.Wede“nevectorsandaretheright-handsidesofEqs.(18)and(19),respectively.Thenwehavetheordinarydierentialequationasfollowing: supplementedwithEq.,whichisrewrittenbelowwithsubscriptsomitted. Withsuperscriptdenotingatimelevelandatimestep,thesequenceoftemporalintegrationofEq.usingtheforth-orderRunge…Kuttaschemeisasfollows:(1)solvepressure andthencompute 121: 0Dn Dt2Dpnþ 121þRpðqnÞ;qnþ 121¼qnþ Dt2Rðqn;pnþ (2)solvepressure andthencompute 122: 0Dn Dt2Dpnþ 122þRpðqnþ 121Þ;qnþ 122¼qnþ Dt2Rðqnþ 121;pnþ (3)solvepressureandthencompute 0DnDt¼Dpnþ13þRpðqnþ 122Þ;qnþ13¼qnþDtRðqnþ S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS (4)solvepressureandthencompute 0DnDt¼Dpnþ14þRpðqn3Þ;qnþ1¼qnþDt 16Rðqn;pnþ 121Rðqnþ 121;pnþ 122Rðqnþ wherearejumpcontributionsforthetemporaldiscretizationof inRunge…Kuttasub-steps.Theyarenonzeroonlyatthosegridnodeswhicharepassedbyaboundary.Theyarecomputedasfollows:treatRunge…Kuttasub-step(1)asaforward“nitedierenceininterval ,andcalculateforagridnodeifthecurvepassesthegridnodeattimebetweentimeand 12:cn1¼ þ oqotnþ treatRunge…Kuttasub-step(2)asabackward“nitedierenceininterval ,andcalculateforagridnodeifthecurvepassesthegridnodeattimebetweentimeand 12:cn2¼ þ treatRunge…Kuttasub-step(3)asacentral“nitedierenceininterval,andcalculateforagridnodeifthecurvepassesthegridnodeattimebetweentimeand 12:cn3¼ þ orifthecurvepassesthegridnodeattimebetweentime 12andtncn3¼ þ treatRunge…Kuttasub-step(4)asacombinationofoneforward,onebackward,andtwocentral“nitedif-ferencesininterval,andcalculateforagridnodeifthecurvepassesthegridnodeattimebetween 12:cn4¼ þ oqottnþ1tÞ þ oqottnþ1tÞ þ orifthecurvepassesthegridnodeattimebetweentime 12andtncn4¼ þ oqottnþ1tÞ þ oqottntÞ þ andajumpcondition[[]]attime,whichisde“neas½½¼ðÞðÞ,areobtainedbyinterpolationusingknowninformationattimelevel +1.WepresenttheinterpolationschemesinSection6.4.FilteringandinterpolationForamovingobjectproblem,Lagrangianpointsontheobjectboundaryaremovedusingthevelocityinterpolatedfromthesurrounding”uidvelocityonCartesiangridpoints.Theboundaryshapethuscontainstheirregulartruncationerrorsoftheinterpolation.Sincethejumpconditionsinvolvethedierentiationofgeometricquantitiesandthesingularforcedensityalongaboundary,itisimportanttomaintaintheshapesmoothnessoftheobject.WeemployFourier“lteringtosmooththeshape.Itisnecessarytointerpolatequantitiessuchas,[[)andthevelocityatirregularpoints.Wecategorizetheinterpolationsintothreescenarios,asshowninFig.7S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS Todeterminetimewhenaninterfacecrossesagridpoint,wemonitorthepositionofairregularpointalongagridline,i.e.intheinsetofFig.7(a).Sincethetimeisasmoothfunctionofthechangingcoordinateoftheirregularpoint,theinterpolateschemeisgivenby istimeandisthechangingcoordinateinFig.7(a)forthecurrentcase.Itcanalsobeshownthatjumpcondition[[)isasmoothfunctionoftimealongthegridline,andthereforetheaboveinterpolationschemeappliesto[[Thespatialinterpolationfor)andthevelocityatirregularpointsisdescribedinFig.7Theinterpolationschemeis hgCþhþgAh h½gBh hþhh2 ogBozOðh2Þ;ð38Þg¼ hgCþhþgAhþ hþ½gBh hþhh where[]=0andforthevelocityinterpolationsincethevelocityiscontinuous.TheinterpolationforisdescribedinFig.7(c).WhenpointDfallsbetweenpointsAandBasinFig.7(c),wehave gAþgC2þ 12½gD 2 ogDozþ 14 WhenpointDfallsbetweenpointsBandC,wehave gAþgC2 12½gD 2 ogDozþ 14 6.5.ForcecalculationWehereuserespectivelytodenotethecomponentsofthenondimensionalforceappliedbythe”uidtotheobject.TheyarenondimensionalizedbyhalfofthepressurescaleinEq..ReferringtoFig.1,theycanbecalculatedasfollows: h Fig.7.Interpolationscenariosassociatedwith(a)asmoothfunction,(b)adiscontinuousfunctionatitsdiscontinuitypoint,and(c)apiecewisesmoothfunction.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS Cx¼2ICpþnxþ 1Re ouonCð42ÞICfxdaþ2ICpnxþ 1Re ouonC;ð43ÞCy¼2ICpþnyþ 1Re ovonCð44ÞICfydaþ2ICpnyþ 1Re Foracentrallysymmetricboundary,decomposingitsprescribedmotiontothesuperpositionofatranslationandarotationaroundthegeometriccenter,we“nd duTdt;ICðpnyÞdC¼S dvTdt;IC ouondC¼0;IC where()arethetranslationalvelocityandistheareaoftheobject.SoinEqs.(43)and(45)canbesimpli“edto duTdt;CyICfydaþ2S 7.ResultsInthissection,wetestthemethodinseveraldistinct”uid…structureinteractions,including”owsofknowanalyticalsolutions,”owinducedbyarelaxingballoon,”owpastacylinder,a”apper,andmultiplecylinders.Inparticular,weinvestigatethespatialandtemporalconvergenceratesofthemethod,anddemonstratetherobustnessandeciencyofthemethodinhandlingsingleormultipleboundariesprescribedwithknownmotionordrivenbyaforcelaw.TheReynoldsnumber,,ofthe”owsrangesfrom1to200.Inthesetests,objectboundariesaremassless,i.e.=0inEqs.(11)and(12),andwehave.Welet=0inEq..So=0and=0inEq.whenthefeedbackcontrolisusedtoconstructforce7.1.FlowwithoutimmersedboundariesAsa“rsttest,wesimulatea”owwithoutanyimmersedboundariestocheckthe”owsolver.Weconsiderthefollowing”owwhichsatis“estheNavier…Stokesequationsexactly:          17sin    15cos    Wesimulatedthe”owat=1inthedomainde“nedby    .Periodicboundaryconditionswereusedinthistest.Werunthesimulationuptotime=10withtimestep=0.01anddierentspatialresolutionstocheckthespatialconvergencerate.Thein“nitynormofnumericalerrorbasedontheanalyticalsolutionisgiveninTable1,wheretheorderofaccuracyisde“nedasS.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS order kkisthein“nitynormofa“eldwitharesolutiontwicetheresolutionofa“eldassociatedwithin“nity.Clearly,second-orderspatialconvergencerateisachieved,asexpectedfromthecentral“nitedif-ferenceschemesinspace.We“x=10and=3232,butusedierenttimestepstocheckthetemporalconvergencerate.Wecomputeareferencesolutionusingasmalltimestep,=0.001,andsubtractthereferencesolutionfromtheothernumericalsolutionstocancelouttheerrorduetospatialdiscretization.Thein“nitynormofnumer-icalerrorbasedonthereferencesolutionisgiveninTable2.Only“rst-ordertemporalconvergencerateisachieved,whichislowerthantheexpectedfourth-orderconvergencerateoftheRunge…Kuttascheme.Thisisduetothenumericaltreatmentofthetemporalderivativeofthedivergence, ,inpressureequation,wherewesetdivergenceattimelevels and+1tobezero,whichdoesnotfollowtheerrorcan-cellationmechanismintheRunge…Kuttascheme.Ifwediscardterm inEq.,wecanachievenearlyfourth-ordertemporalconvergencerate,asseenTable3.Thesimulationisrunto=25.6,andthereferencesolutioniscomputedwith=0.0005=3232.However,keeping inpressureequationimprovesthedivergence-freecondition,asindicatedbythecomparisonsinTable4.InTable4,thesimulationwasrunto=10with=0.01and Table1Spatialconvergenceanalysisforthe”owsolverwithoutimmersedboundaries161.40323.472.018.662.011.03648.652.002.162.002.571282.162.005.402.006.43Thein“nitynormisbasedontheanalyticalsolution. Table2Temporalconvergenceanalysisforthe”owsolverwithoutimmersedboundaries0.013.280.026.921.083.591.086.170.041.431.057.391.041.270.082.901.021.511.032.59Temporaldivergenceterm inpressureequationisincluded.Thein“nitynormisbasedonareferencesolutioncomputedwith=0.001. Table4Eectoftemporaldivergenceterm inpressureequationonnumericalaccuracy oDot3.46·1048.66·1051.03·1051.25·108Discard oDot4.71·1042.22·1047.46·1044.13·104 Table3Temporalconvergenceanalysisforthe”owsolverwithoutimmersedboundaries0.045.840.089.714.061.193.301.520.161.754.171.914.002.550.324.084.543.084.014.27Temporaldivergenceterm inpressureequationisnotincluded.Thein“nitynormisbasedonareferencesolution.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS =3232.FromTable4,wenotethattheaccuracybasedontheanalyticalsolutionisaboutthesamewithorwithout ,whichindicatesthattheerrorisdominatedbythespatialerrorinsteadofthetemporaloneevenatthislarge=0.01.Inourlatersimulations,wehaveaboutthesamespatialresolutionasthecurrentcasebutsmaller.Sowekeep tobetterenforcethedivergence-freeconditionwithoutlosingtheaccuracy.7.2.Taylor…Couette”owWenextconsiderTaylor…Couette”owbetweentworotatingandtranslatingconcentriccylinders.Thegeometryofthe”owisshowninFig.8,with=0.5,=1,=1and1.TheReynoldsnumberbasedontheradiusandtheangularvelocityoftheoutercylinderis 10.Totestmovingbound-ariescrossingtheCartesiangrid,weallowthecenterofthecylinderstooscillateaccordingtowhereisaconstant.Theanalyticalsolutiontothe”owbetweenthetwocylindersisgivenby Br2yycÞ;v¼dcosðtþ Br2xxcÞ;p¼dsinðtþy 2r22 where X2r22X1r21r22r21,B¼ .Theanalyticalsolutiontothe”owinsidetheinnercylinderis Weuseperiodicboundaryconditionsatthefar-“eldboundaries.Thenon”uidforcemodelforbothcylindersisgivenby=1000. Fig.8.Geometryof”owbetweentworotatingconcentriccylinders.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS 7.2.1.d=0Inthesteadystate,thenormalforcedensity,,iszeroandthetangentialforcedensity,,isaconstantattheinnercylinder.ReferringtothejumpconditionsinSection,weknowthejumpconditionsacrosstheinnercylinderforallthe“rst-orderandsecond-ordervelocityderivativesandallthesecond-orderpressurederivativesarenonzero.Thereforethesimulationofthiscaseisagoodtesttocheckthespatialconvergencerateoftheimmersedinterfacemethod.Inparticular,welookatthein“nityerrornormtocheckthesimulationaccuracylocally.Weuseaverysmalltimestep,=0.0001,toensurethetemporaldiscretizationerrorisneg-ligiblecomparedwiththespatialone.TheresultsaregiveninTable5,whichindicatesecond-orderspatialconvergencerateforboththevelocityandthepressure.AsindicatedbyLemma2,thediscretizationoftheLaplaceoperatornearthecylindersinEqs.(1)and(3)only“rst-orderaccuratebecauseonlylimitedjumpconditionsareusedandthejumpconditionsforvelocityandpressurederivativesofhigherordersarenonzero.Interestingly,westillachievesecond-orderaccuracyofthe”ow“eldevennearthecylinders.ThesamephenomenonwasnotedbyLiandLaiintheirsimulationlation.Wecalculatejumpconditionsacrosstheinnercylindersurfacebasedontheanalyticalsolutions,andcom-parethemwiththosecomputedfromtheformulagiveninSectionFig.9showsthecomparisonfor ¼ðÞðÞ,and ¼ðÞðÞ,indicatingverygoodagreement.Forthesecomparisons,thespatialresolutionofthesimulationis=647.2.2.d=0.5Inthiscase,thevelocityacrossthetwocylindersarenotsmooth,whichcausesjumpsoftemporalvelocityderivativesandthereforejumpcontributionsintemporalvelocitydiscretizationsforagridpointwhenitiscrossedbythecylinders.Thusthiscaseprovidesatestoftheeectofthetemporaljumpcontributionsonthetemporalaccuracy.We“rstrunsimulationswiththetemporaljumpcontributionsupto=10witha“xedspatialresolution,=128256.Wecomputeareferencesolutionusingaverysmalltimestep,andsubtractthereferencesolutionfromtheothernumericalsolutionstocanceloutspatialdiscretizationerror Table5SpatialconvergenceanalysisforsteadyTaylor…Couette”ow32,642.0964,1286.031.795.331.639.18128,2561.561.951.351.982.34256,5124.121.924.231.674.68Thein“nitynormisbasedontheanalytical”owsolution. 60 120 180 240 300 360 Š20 Š10 0 10 20 30 analytical []]2ux2versus 0 60 120 180 240 300 360 Š15 Š10 Š5 0 5 10 15 analytical versus Fig.9.Comparisonsbetweenanalyticalandnumericalresultsforjumpconditions.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS andobtaintemporalerror.Thein“nitynormofthetemporalerrorisshowninTable6.Wethenrunanothersetofsimulationswithoutthetemporaljumpcontributions.TheresultsareprovidedinTable7Tables6and7indicatethatthetemporalconvergencerateswithandwithoutthetemporalcontributionsareaboutthesame.Botharenearly“rst-orderinsteadoffourth-orderbecauseofthenumericaltreatmenttothetemporaldivergenceterminthepressureequation(seeSection).Inaddition,theinclusionofthetem-poraljumpcontributionshasnegligibleeectonthelocalandoverallaccuracyofthenumericalsolutionsbasedontheanalyticalsolution,asindicatedbyTables8and97.3.FlowinducedbyarelaxingballoonInthistest,wecomputethemovingboundaryproblemconsideredbyLiandLaiLai,wherea2Ddistortedpressurizedballoonimmersedinanincompressible”uidrelaxestoitscircularequilibriumshape.Theinitialvelocityandthepressurearesetzero,andtheonlydrivingforceistheballoontension.The”uid”owandtheballoonmotionarefullycoupled.Atequilibrium,thevelocityiszeroandthepressureispiecewiseconstantinsideandoutsidetheballoonwithajumpacrosstheballoon.Theinitialshapeofthedistortedballoonexpressedinthecylindricalcoordinates()iswhereandareconstants,andisaninteger.Thenormalandthetangentialforcedensitiesofthedrivingforcearewhereisaconstantandthecurvature.Atequilibrium,theradiusoftheballoon,,isandthepressurejumpacrosstheballoonis.TheareaoftheballoonisconservedanditisequaltoWe“rstrunthetestwiththesameparametervaluesasusedbyLiandLai(aftercorrectingsometypoerrorsintheirpaperpaper1).Theyare=0.5,=0.4,=5,=0.05and=1.HereReynoldsnumbercorrespondstoviscosity=1.Theinitial(=0)andtheequilibrium()balloonshapesinthecompu-tationaldomainaregiveninFig.10.Theboundariesofthecomputationaldomainarerigidwalls.Wesimulatethecaseupto=98with=64128and Theinitialinterfaceshouldbe)with=0.2.Thevalueofshouldbe1insteadof0.1 Table6TemporalconvergenceanalysisforoscillatingTaylor…Couette”ow1.065.941.158.700.672.171.454.762.147.671.501.00Temporaljumpcontributionsareincluded.Thein“nitynormisbasedonareferencesolution. Table7TemporalconvergenceanalysisforoscillatingTaylor…Couette”ow0.906.091.128.690.841.581.944.762.006.001.401.01Temporaljumpcontributionsarenotincluded.Thein“nitynormisbasedonareferencesolution.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS Fig.10plotstheballoonshapes,thevorticitycontoursandthevelocityvectorsattime=7,21and35.TheballoonshapesatthesetimeinstantsareveryclosetothoseobtainedbyLiandLaiLai.Weregardtheballoonisnearequilibriumattime=98.Thepressureattime=98isplottedinFig.11.TheconservationoftheareaoftheballoonischeckedinFig.12=1and=100,whichindicatesverylittleleakage,about0.1%.Thesimulationfor=100isrunwith=0.0001andthesamespatialresolutionas=1.Fig.13plotsthetemporalvariationoftheballoonradiusat/10at=1and=100.Wecanobserveat=100thefastrelaxationoftheballoonthroughdampedoscillations,whichareabsentat=1. Table8NumericalaccuracywithandwithouttemporaljumpcontributionsWithtemporaljumpcontributions2.04Withouttemporaljumpcontributions2.04Thein“nitynormisbasedontheanalyticalsolution. Table9NumericalaccuracywithandwithouttemporaljumpcontributionsWithtemporaljumpcontributions6.94Withouttemporaljumpcontributions6.94The2-normisbasedontheanalyticalsolution. 1 Š0.5 0 0.5 1 Š1 Š0.5 0 0.5 1 t=0,t= 1 Š0.5 0 0.5 1 Š1 Š0.5 0 0.5 1 t=7 Š0.5 0 0.5 1 Š1 Š0.5 0 0.5 1 1 Š0.5 0 0.5 1 Š1 Š0.5 0 0.5 1 (a)(b)Fig.10.Numericalevolutionoftheballoonshapeandthevorticityandthevelocity“eldsfor”owinducedbytherelaxationofadistortedS.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS Weperformspatialconvergenceanalysisforthe”ow“eldof=10attime=2.Inthisanalysis,thetimestepis=0.0001.Wecalculatetheerrorbetweenasimulated”ow“eldandtheoneobtainedbythe“negrid=256Table10givethein“nitynormoftheerroragainstthespatialresolution.Nearsecond-orderconvergencerateforbothvelocitycomponentsisobserved.Whenthespatialconvergence 0 1 –1 0 1 –0.05 0 0.05 0.1 p(x,y) Š1 Š 0.1 0.15 analytical (x=0, Fig.11.Equilibriumpressure:(a)pressure“eld,(b)comparisonofpressuredistributionalongaxisat=0betweentheoreticalandnumericalresults. 20 40 60 80 100 0.847 0.8475 0.848 0.8485 0.849 timearea numerical 5 0.847 0.8475 0.848 0.8485 0.849 numerical =100Fig.12.Thetemporalevolutionoftheareaenclosedbytheballoon. 20 40 60 80 100 0.5 0.55 0.6 0.65 0.7 radius 5 10 15 0.45 0.5 0.55 0.6 0.65 0.7 radius=100Fig.13.ThetemporalevolutionoftheradiusofaLagrangianpointontheballoon.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS rateforthepressureiscalculated,specialcareisneededneartheinterface.Atdierentspatialresolutions,agridpointcanbeinsidetheballoonatonegridlevelandoutsideatanother,suchasthemiddlegridpointsketchedinFig.14.Wethusdiscardthistypeofpointstoexcludethepressurejumpinthecalculationofthein“nitynorm.Thesametreatmentisnotnecessaryforthevelocitysincethevelocityiscontinuousacrosstheinterface.Wedenotethemodi“edin“nitynormsforinsteadof,respectively.Theresultsoftheconvergenceanalysisbasedonthemodi“edin“nitynormaregiveninTable11,whichindicatetheconvergencerateforthepressureisaboutthesameasthevelocity.7.4.FlowpassingamovingcylinderInsimulationsusingtheimmersedinterfacemethodandtheimmersedboundarymethod,”exibleobjectsareoftenconstructedasanetworkofsprings.Springsarealsousedtotethertheobjects.Thespringconstantisgivenbythematerialpropertyanditde“nesacharacteristictimescaleassociatedwiththevibrationmodeofanobject.Toinvestigatetheeectofthistimescaleonatime-dependent”ow,wesimulate”owpassingacylinderwhichisacceleratedfromresttoauniformvelocity.ThegeometryisgiveninFig.15,withrigidwallsasfar-“eldboundaries.Thevelocityofthecylinder,,isgivenby 11þtanhð2Þtanh 4ttc2tanhð2Þ Table10Spatialconvergenceanalysisforthe”owinducedbyarelaxingballoon16,326.1432,641.492.042.9164,1283.562.077.25128,2567.332.287.80Thein“nitynormisbasedonareferencesolution. Table11Spatialconvergenceanalysisforthe”owinducedbyarelaxingballoon16,322.3332,649.661.272.221.162.6264,1282.561.916.211.841.10128,2565.682.176.063.362.15Thein“nitynormisbasedonareferencesolutionandismodi“edtoexcludethegridpointsneartheinterface. Fig.14.Schematictoshowthatagridpointisatonesideofapressurediscontinuitypointatonegridresolutionlevelandattheothersideatanotherlevel.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS whereisthecharacteristicaccelerationtime.Fig.16.Wede“neReynoldsnumbersbasedontheuniformvelocity.ThespringforcemodelisgivenbyEq.,andsketchedontheleftinFig.17.Thetem-poralresolutionofthesimulationissetbytheCFLnumberswithCFL Dt 1Dx2þ 1andCFL uxþ Wevarytobe0.1,0.2,0.4,0.8,1.6,3.2and6.4with“xed=20and=1000.AsseeninFig.18,theLagrangianpointscanfollowtheprescribedmotionwhen1.6.When=0.1,largeoscillationsareseenindraghistory,asshowninFig.19(a).ItspowerspectruminFig.19(b)hasadominantfrequency,=7.=1.6,oscillationsinthedraghistoryhasthesamefrequencybutsmalleramplitude,asseeninFig.20.Thesamefrequencyisobservedforallvaluesof.Theamplitudesoftheoscillationsdecreaseasincreases.Thiscylinderandspringsystemcanbeeectivelyapproximatedasaspring-mass…dampersystem,asdescribedontherightofFig.17.Thefrequencyofthedampedoscillationsisgivenby (0,0)xy1WNSERe Fig.15.Geometryfor”owpassingastationarycylinder. Fig.17.Schematicshowingthephysicalinterpretationofthenon”uidforcemodel. velocity Fig.16.Schematicshowingcylindervelocityversustime.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS fs¼  comesfromtheupperlimitofnondimensionalLagrangianparameter)istheeectivespringstiness, isthe”uidmass,and isthedampingratio,whereisthedampingcoecientofthedamper.AsshowninFig.21(a),theoscillationfrequencyisproportionalto,asexpectedforalin-earspring.De“ne.FromEq.,wehave 2pMc1f2¼ ,whichisonlyafunctionofthedamping.WenowlookattherelationbetweenandReynoldsnumber,asplottedinFig.21(b),where 0.5 1 1.5 0 0.5 1 1.5 timevelocitytc= 0.1 0 1 2 3 0 Fig.18.VelocityofLagrangianpoints…solidlines:simulated(coveredbyopencirclesandinvisiblein(b)),dashedlineswithopencircles:prescribed. 1 2 3 Š150 Š100 Š50 0 50 100 timedrag 0 20 30 40 50 x 104 Fig.19.Dragassociatedwith=0.1:(a)timesignaland(b)frequencycontent. 2 4 6 Š8 Š6 Š4 Š2 0 2 timedrag 0 10 20 30 40 0 5 10 15 20 25 Fig.20.Dragassociatedwith=1.6:(a)timesignaland(b)frequencycontent.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS =20,40,50,100,150,200with“xed=0.2andthecorresponding=1000,500,400,200,150,100.WeobservelittledependenceofontheReynoldsnumber,,intherange.Insummary,we“ndthataslongasthetypicaltimescaleofthe”owisabout10timeslargerthanthechar-acteristictimescaleofthespringsystem,theLagrangianpointscanfollowtheprescribedmotion.Wewillusethisasourruleofthumbforsimulating”owpastacylinderanda”appingwinginthefollowingsections.7.5.FlowpassingastationarycylinderFlowpassingastationarycylinderisacanonicalexampletotestnumericalmethods.WeusethegeometryshowninFig.15forthetestofourimmersedinterfacemethod.Initially,the”owissettobeuniformwith=1andthecylindermoveswiththesamevelocityasthe”ow.Thefar-“eldboundaryconditionsusedforthetestare=1,=0and opox¼ 1 8(boundaryW); ouox¼0, 0and pox¼ 1 =24(boundaryE); =0and opoy¼ 1 8(boundaryS); =0and opoy¼ 1 =8(boundaryN).ThediscreteformsoftheaboveboundaryconditionsaresimilartothosedescribedinEqs.(30)and(31).Inparticular,thedivergence-freeconditionisincorporatedinthediscretepressureboundaryconditions.Wetakethefar-upstreamvelocityandthecylinderdiameterasthevelocityandthelengthscales.Wecomputethe”owat“veReynoldsnumbers,=20,40,50,100and200.Thespatialresolutionforthesecomputationsis=640128.ThetemporalresolutionissetbyCFL=CFL=0.2.Non-”uidforceforthecylinderisacombinationofafeedbackcontrolandaspring-supportedmem-brane,asshownschematicallyinFig.22.Thus,wehavesolid,withandgivenby ooa JJe1Es1 whereandareconstants,istheradius,andisthedesiredradius,i.e.=0.5.Table12liststhevaluesofforceparametersfortheconsideredReynoldsnumbers.Thedominantparameterinthesetestsis.FortheReynoldsnumbersconsideredhere,wecandeterminefromthefollowingempiricalformula: 20000Re. 500 1000 1500 2000 0 20 40 60 80 100 Ksfs2 100 150 200 250 20 30 40 50 (a)(b)Fig.21.(a)Thefrequency,,versusthespringstiness,;(b)theconstant(equivalenttothedampingratio),,versustheReynoldsS.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS Weremarkthatthecombinationofthesolidmodelandthefeedbackcontrolinthesetestsistodemon-stratethe”exibilityoftheforceconstruction.Incasesof=20,50and200,weonlyusethefeedback Lagrangian point(X, V)Fig.22.Schematicoftheforceconstructionforastationarycylinderin”ow. Table12Parametervaluesintheforceconstructionforastationarycylinderin”owatdierentReynoldsnumbers=20=40=50=100=200040010004002000.10.10001000400500160100 2 4 6 8 10 –100 –50 0 50 dragversus 40 60 80 100 2.22 2.24 2.26 2.28 dragversus 5 10 15 20 0.05 0.1 versus 20 40 60 80 100 –5 –4.8 –4.6 –4.4 –4.2x 10 versus(a)(b)(c)(d)Fig.23.Dragandliftcoecientsversustimefor”owpassingastationarycylinderat=20:(a)draghistoryintransient;(b)draghistoryfromtransienttosteadystate;(c)lifthistoryintransient;(d)lifthistoryfromtransienttosteadystate.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS 7.5.1.Re=20,40and50Fig.23showsthedragandthelifthistoryfor=20.Thelargeoscillationsatthestartareduetotheimpulsivestopofthecylinder,whichareanalyzedintheprevioussection.The”owcanbeconsideredsteady=100,longafterthetransient.Thenonzeroliftoforder10isascribedtonumericalerror.Between=40and=50,the”owbecomesunstableanddevelopsavonKarmanwake.Figs.24andshowthedragandthelifthistoryfor=40and=50.At=40theoscillationsinliftdampout,and=50theyamplify.Figs.26…28showthe”owdetailsaroundthecylinderfor=20at=100and=40at=120.Table13compareslengthofthetrailingbubble,angleofseparation,anddragcoecientpreviousexperimentalandcomputationalresultssummarizedinin.Geometricquantitiescom-parefavorablywithothers,thoughthevalueofdragcoecientisslightlyhigherthanpreviousstudies.RussellandWangWangsuggestedthattheirsimpli“cationofthefar-“eldboundaryconditionsisasourceofincreaseddrag.Webelievethereasonforthedragincreaseinourcaseisthesame.Totestthis,wehavechan-gedthedomainsizefor=20from3216to4824withthecorrespondingchangeof320to960480.ThenewdragandlifthistoryisshowninFig.29.Atthesteadystate,thedragcoef-“cientsettlesdownto2.14,whichisintherangeofpreviouslyreportedvalues.The”owinsidethecylinderisstaticinourcase.Thusthevorticityandthepressuredistributionsoverthecylindersurface,denotedasrespectively,canbecalculatedasfollows: ovox ouoy¼ ovox ouoyfs;psn; 100 120 1.654 1.656 1.658 dragversus 40 60 80 100 120 –2 –1.5 –1 –0.5x 10 versus(a)(b)Fig.24.(a)Dragand(b)liftcoecientsversustimefor”owpassingastationarycylinderat=40. 60 80 100 120 140 1.518 1.52 1.522 1.524 1.526 1.528 dragversus 40 60 80 100 120 140 –5 0 5x 10 versus(a)(b)Fig.25.(a)Dragand(b)liftcoecientsversustimefor”owpassingastationarycylinderat=50.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS –1 0 1 2 3 4 –1 –0.5 0 0.5 1 0 1 2 3 4 –1 –0.5 0 0.5 1 Fig.26.Streamlinesof”owpassingastationarycylinderatthesteadystate. 0 5 10 15 20 –5 0 5 Re = 20 0 5 10 15 20 –5 0 5 Fig.27.Vorticitycontoursof”owpassingastationarycylinderatthesteadystate.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS 0 5 15 20 5 0 5 5 Fig.28.Pressurecontoursof”owpassingastationarycylinderatthesteadystate. Table13Summaryof”owcharacteristicsfor”owpassingastationarycylinderat=20and=40=20=40Previous0.73:42.3:2.00:1.89:52.8:1.48:1.48:0.9445.32.222.3554.2Present0.9244.22.232.2153.51.66 100 150 200 2.12 2.13 2.14 2.15 2.16 2.17 2.18 dragversus 50 100 150 200 0x 10 versus(a)(b)Fig.29.(a)Dragand(b)liftcoecientsversustimefor”owpassingastationarycylinderat=20inadomainofsize48S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS ¼ðÞðÞFigs.30and31comparethevorticityandthepressuredistributionsoverthecylindersurfacewiththepreviouscomputationalresultstsforRe=20and=40,indicatingagoodagreement.Wealsomonitorthesurfacepositionandthesurfacevelocitydistributionforanobjecttoseewhethertheforcemodelenforcesthedesiredmotionwhilemaintainingtheshape.Fig.32(a)showsthetemporalvariationoftherelativeerrorforthesurfaceposition,whereisde“nedas 90 180 270 360 0 5 10 vorticityersus 0 90 180 270 360 0 0.5 1 1.5 versus (a)(b)Fig.30.(a)Vorticityand(b)pressuredistributionsonthecylindersurfacein”owat=20…lines:currentresults,opencircles:numericalresultsfrom 40 60 80 100 0.025 0.03 0.035 0.04 0.045 0.05 0.055 timeerror 0 90 180 270 360 0.005 0 0.005 0.01 alphavelocity v Fig.32.Flowpastastationarycylinderat=20:(a)relativeshapeerrorversustime;(b)thevelocitydistributiononthecylindersurfaceattime=100. 90 180 270 360 0 5 10 15 vorticityversus 0 90 180 270 360 0 0.5 1 1.5 versus(a)(b)Fig.31.Vorticity(a)andpressure(b)distributionsoncylindersurfacein”owat=40…lines:currentresults,opencircles:numericalresultsfromfrom.30S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS er¼100 Therelativeerrorofthesurfacepositionatsteadystateislessthan0.04%.Fig.32(b)showsthevelocitydistributionaroundthecylindersurfaceattime=100.7.5.2.Re=100and200Figs.33and34arethedragandthelifthistoryfor=100and=200.Figs.35and36showthe”owsaroundthecylinderintermsofvorticityandpressure.TheexpectedtrailingVonKarmanvortexstreetdevelopsinthewake.Table14providesasummaryofresultsfor=100and=200,whereistheStrouhalnumber,i.e.thenondimensionalvortexsheddingfrequency.Ourresultsarewithintherangesofthepreviouslyreported 100 150 200 1.1 1.2 1.3 1.4 1.5 dragversust 100 150 200 0 0.2 0.4 versustFig.33.(a)Dragand(b)liftcoecientsversustimefor”owpassingastationarycylinderat=100. 50 60 70 80 90 100 110 120 130 1.2 1.3 1.4 1.5 dragversus 0 20 40 60 80 100 120 0 0.5 1 versusFig.34.(a)Dragand(b)liftcoecientsversustimefor”owpassingastationarycylinderat=200.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS 0 5 15 20 5 =100 5 15 20 5 =200Fig.35.Vorticitycontoursof”owpassingastationarycylinder. 0 5 10 15 20 0 5 0 5 10 15 20 0 5 Fig.36.Pressurecontoursof”owpassingastationarycylinder. Table14Summaryof”owcharacteristicsfor”owpassingastationarycylinderat=100and=200=100=200Previous1.33±0.014:±0.25:0.164:1.17±0.058:±0.47:0.192:0.192:1.43±0.009±0.3390.1751.45±0.036±0.750.202Present1.423±0.013±0.340.1711.42±0.04±0.660.202S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS values.Wehavealsochangedthedomainsizefor=100from3216to4824withthecorrespondingchangeoffrom640320to960480.ThenewdragandlifthistoryisshowninFig.37,whichshows=1.379±0.009,=±0.31,and=0.167.7.6.Flowarounda”appingwingInthisexample,wesimulatethe”owaroundahoveringwinginsidearigidbox,asdescribedinFig.38=512512and=0.001.Thenon”uidforceisgivenbyEqs.(49)and(50)=2,=2,=0.1and=160.Thewingisanellipsewithchordlengthandaspectratio.Wetakeasthelengthscale, thevelocityscale,and thetimescale,whereistheamplitudeofthewingcentertranslationandisthewing”appingperiod.Thenondimensional”appingperiodis .Thenondimen-sionalizedwingmotionisgovernedbycos 2ta01hðt01sin 2ta0þ/ 170 180 190 200 1.365 1.37 1.375 1.38 1.385 1.39 dragversus 170 180 190 200 0.4 versus(a)(b)Fig.37.(a)Dragand(b)liftcoecientsversustimefor”owpassingastationarycylinderat=100inadomainofsize48 1yx(0,0) (6,6) a00.25 Fig.38.Geometryfor”owaroundahovering”apper.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS )isthedisplacementofthewingwithanamplitude)istheangleofattack(weuseinsteadof,sinceisusedastheLagrangianparameterofasurface)withamplitude2,andthephasedierence.TheReynoldsnumberisde“nedas .Werunthesimulationfor=4,=2.5, =0and=157,whicharethesameasusedbyWangang.Fig.39showsfoursnapshotsofthecomputedvorticity“eldsnearthewingduringone”appingperiod.TheyareverysimilartothoseobtainedbyWangWang,wherethephysicalinterpretationwasgiven.WeplotinstantaneousdragandliftinFig.40andcomparethemwiththeresultsofWangWang.Consideringthedierenceinthefar-“eldboundaryconditionsandtheinevitabledierenceofthewingmotionduetotheoscillationsofLagrangianpoints,theagreementisquitegood.Wede“netheshapedistortiontobe Fig.39.Vorticity“eldsaroundahoveringwingof=157atfourdierentinstantsina”appingperiod.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS where()istheprescribedcoordinatesofLagrangianpoint.Theshapedistortionofthewingisverysmall,asseeninFig.41Fig.42(a)and(b)showthevelocityevolutionofLagrangianpointsattheleadingedgeandinthemiddleofthewing,whichindicatesthatitismorediculttocontroltheLagrangianpointsattheleadingandtrailingedgestofollowtheprescribedvelocity.7.7.FlowpassingmultiplecylindersWeprovidetwoexamplesbelowtodemonstratethecapabilityandeciencyofourmethodtosimulate”owswithmultiplemovingobjects. 70 75 80 85 90 95 100 105 110 115 1 versus 70 75 80 85 90 95 100 105 110 115 1 2 3 versusFig.40.(a)Dragand(b)liftcoecientsversustimefor”owaroundahovering”apperof=157„solidlines:currentresults,dashedlines:previousresults 125 130 135 140 velocity 125 130 135 140 velocity(a)(b)Fig.42.Velocityonthewingsurface:(a)thevelocityversustimeofaLagrangianpointat=0;(b)thevelocityversustimeofaLagrangianpointat p2. 125 130 135 140 0 1 2 3x 10 Fig.41.Theshapeerrorofahoveringwingat=157.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS 7.7.1.TwocylindersmovingwithrespecttoeachotherThisexamplewaspreviouslystudiedbyRussellandWangg.Theinitialgeometry,showninFig.43,isthesameastheirs.Inthissimulation,=640128,and=0.0005.Thefar-“eldbound-ariesarerigidwalls.Thenon”uidforceforbothcylindersisgivenbyEq.=800.Toavoidtheimpulsivestartofthecylinders,weleteachcylinderoscillateaboutitsinitialpositionfortwoperiodsandthenmovetowardtheotherat=40.Themotionofthelowercylinderisgivenby 4psin andthemotionoftheuppercylinderisgivenby 0 5 10 15 20 0 5 0 5 10 15 20 0 5 Fig.44.Flow“eldsaroundtwocylindersmovingwithrespecttoeachotherat=40whentwocylindersareclosest.Contoursof(a)vorticityand(b)pressure. (0,0)xy1WNSE1(16,1.5)u=1 (24,8) Fig.43.Geometryfor”owaroundtwocylindersmovingwithrespecttoeachother.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS 0 5 5 0 5 5 Fig.45.Flow“eldsaroundtwocylindersmovingwithrespecttoeachotherat=40whentwocylindersareseparatedbyadistanceof16.Contoursof(a)vorticityand(b)pressure. 1 1.5 2 2.5 dragversus 20 22 24 26 28 30 1820222426283032 0 0.5 1 versusFig.46.(a)Dragand(b)liftcoecientsversustimefortheuppercylinderin”owaroundtwocylindersmovingwithrespecttoeachother=40.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS x16 4psin Fig.44showsthevorticityandpressure“eldsattime=24,whenthetwocylindersareclosesttoeachother,andFig.45showsthevorticityandpressure“eldsattime=32.Fig.46showsthetemporalevolutionofthedragandliftcoecientsfortheuppercylinder.WeseethesamedragbehaviorasobtainedbyRussellandWangWang,thatisanincreaseindragasthetwocylindersapproacheachotherandadecreaseindragastheypassincloseproximity.Thetwocylindersarerepulsivewhenapproachingeachotherandbecomeattractiveafterpassedeachother.7.7.2.CylinderstranslatingalongacircleInthislastexample,wesimulatecylinderstranslatingwiththesamespeedalongacircletoexaminetheeciencyofourmethodforsimulatingmultiplemovingobjects. 0 2 4 0 2 4 0 2 4 0 1 2 3 4 Fig.48.(a)Vorticityand(b)pressure“eldsaround“vecylinderstranslatingaboutacommoncenterwith=20. Table15ComputationalcostintermsofthenumberofcylindersNumber12345678Hours2.582.833.263.453.453.883.894.19Intel(R)Xeon(TM)3.20GHzCPU,512KBcache,1GRAM;CompiledbyIntelFortranCompilerwithcommand:ifort-ftz-fpe0-O3-ip-parallel;=256=0.0002,40,000timeintegrationsteps. (–4,–4)(4,–4)Fig.47.Geometryfor”owaroundcylinderstranslatingaroundacenter.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS ThegeometryofthesimulationisgiveninFig.47.TheReynoldsnumberbasedonthediameterandthetranslationalspeedofacylinderis=20.Thenon”uidforceforeachcylinderismodeledagainbyEqs.and(50)with=20,=20,=0and=800.Simulationsarecarriedoutwith=256256,and=0.0002.Table15liststhecomputationaltimeversusthenumberofcylindersin40,000timeintegrationsteps.Sincethecomputationaltimeassociatedwithacylinderisoforder,thereisnosigni“cantincreaseofthecom-putationaltimewhenoneortwomorecylindersareadded.MostcomputationaltimeisspentontheFFTPoissonsolverforthepressure,whichhascostoforderFig.48showsthevorticityandthepressurecontoursforthe”owcontaining“vecylinders.8.ConclusionsTheimmersedinterfacemethodsharesthesamemathematicalformulationandthereforetheadvantageofPeskinsimmersedboundarymethod.Withtheappropriateinclusionofjumpconditionsin“nitedierenceschemes,theimmersedinterfacemethodasdescribedherecanachievehigherorderaccuracy,maintainasharpinterfaceandpreservevolumes.Speci“cally,ournumericaltestsshowthatsecond-orderspatialaccuracyintermsofthein“nitynormforboththevelocityandthepressurecanbeachieved.Becauseoftheuseofa“xedCartesiangrid,themethodissimpleandecientfor”owswithmovingobjects.Thecosttotreatanobjectisoforder,whereisthenumberofLagrangianpointsintheobjectrepresentation.Themethodcanbeappliedequallywelltoobjectswithprescribedforceorobjectswithprescribedmotion.Inthecurrentimple-mentationofthemethod,wechoosetoemployuniformgridsandFFTPoissonsolvers,butthemethodisamenabletononuniformgridsandotherPoissonsolvers.Wearenowimplementingthemethodin3Dwiththejumpconditionsthathavebeenpresentedinin.AcknowledgementsWethankProfessorRandallJ.LeVequeandProfessorZhilinLiforhelpfuldiscussionsduringthecourseofthiswork.TheworkissupportedbyAFOSRandPackardFoundation.References[1]R.P.Beyer,R.J.Leveque,Analysisofaone-dimensionalmodelfortheimmersedboundarymethod,SIAMJ.Numer.Anal.29(2)(1992)332…364.[2]M.Braza,P.Chassaing,H.HaMinh,Numericalstudyandphysicalanalysisofthepressureandvelocity“eldsinthenearwakeofacircularcylinder,J.FluidMech.165(1986)79…130.[3]DonnaCalhoun,ACartesiangridmethodforsolvingthetwo-dimensionalstreamfunction-vorticityequationsinirregularregions,J.Comput.Phys.176(2002)231…275.[4]R.Cortez,M.Minion,TheBlobprojectionmethodforimmersedboundaryproblems,J.Comput.Phys.161(2000)428…453.[5]WeinanE,Jian-GuoLiu,Vorticityboundaryconditionandrelatedissuesfor“nitedierenceschemes,J.Comput.Phys.124(1996)[6]E.A.Fadlun,R.Verzicco,P.Orlandi,J.Mohd-Yusof,Combinedimmersed-boundary“nite-dierencemethodsforthree-dimensionalcomplex”owsimulations,J.Comput.Phys.161(2000)35…60.[7]RonaldP.Fedkiw,TariqAslam,BarryMerriman,StanleyOsher,Anon-oscillatoryEulerianapproachtointerfacesinmultimaterial”ows(theGhostFluidMethod),J.Comput.Phys.152(1999)457…492.[8]AaronL.Fogelson,JamesP.Keener,ImmersedinterfacemethodforNeumannandrelatedproblemsintwoandthreedimensions,SIAMJ.Sci.Comput.22(5)(2000)1630…1654.[9]D.Goldstein,R.Handler,L.Sirovich,Modelingano-slip”owboundarywithanexternalforce“eld,J.Comput.Phys.105(1993)[10]YueHao,AndreaProsperetti,Anumericalmethodforthree-dimensionalgas…liquid”owcomputations,J.Comput.Phys.196(2004)[11]FrancisH.Harlow,J.EddieWelch,Numericalcalculationoftime-dependentviscousincompressible”owof”uidwithfreesurface,Phy.Fluids8(12)(1965)2182…2189.[12]HansJohnston,Jian-GuoLiu,Finitedierenceschemesforincompressible”owbasedonlocalpressureboundaryconditions,J.Comput.Phys.180(2002)120…154.[13]HansJohnston,Jian-GuoLiu,Accurate,stableandecientNavier…Stokessolversbasedonexplicittreatmentofthepressureterm,J.Comput.Phys.199(2004)221…259.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS [14]JungwooKim,DongjooKim,HaecheonChoi,Animmersed-boundary“nite-volumemethodforsimulationsof”owincomplexgeometries,J.Comput.Phys.171(2001)132…150.[15]Ming-ChihLai,CharlesS.Peskin,Animmersedboundarymethodwithformalsecond-orderaccuracyandreducednumericalviscosity,J.Comput.Phys.160(2000)705…719.[16]LongLee,RandallJ.LeVeque,AnimmersedinterfacemethodforincompressibleNavier…Stokesequations,SIAMJ.Sci.Comput.25(3)(2003)832…856.[17]RandallJ.LeVeque,ZhilinLi,Theimmersedinterfacemethodforellipticequationswithdiscontinuouscoecientsandsingularsources,SIAMJ.Numer.Anal.31(4)(1994)1019…1044.[18]RandallJ.LeVeque,ZhilinLi,Immersedinterfacemethodsforstokes”owwithelasticboundariesorsurfacetension,SIAMJ.Sic.Comput.18(3)(1997)709…735.[19]ZhilinLi,Ming-ChihLai,TheimmersedinterfacemethodfortheNavier…Stokesequationswithsingularforces,J.Comput.Phys.171(2001)822…842.[20]ZhilinLi,PrivateCommunication.[21]CharlesS.Peskin,Flowpatternsaroundheartvalves:anumericalmethod,J.Comput.Phys.10(1972)252…271.[22]CharlesS.Peskin,Numericalanalysisofblood”owintheheart,J.Comput.Phys.25(1977)220…252.[23]CharlesS.Peskin,BethFellerPrintz,Improvedvolumeconservationinthecomputationof”owswithimmersedelasticboundaries,J.Comput.Phys.105(1993)33…46.[24]CharlesS.Peskin,Theimmersedboundarymethod,ActaNumer.(2002)1…39.[25]A.Prosperetti,H.N.Oguz,PHYSALIS:anewo()methodforthenumericalsimulationofdispersesystems:potential”owofspheres,J.Comput.Phys.167(2001)196…216.[26]A.M.Roma,C.S.Peskin,M.J.Berger,Anadaptiveversionoftheimmersedboundarymethod,J.Comput.Phys.153(1999)509…534.[27]DavidRussell,Z.JaneWang,ACartesiangridmethodformodelingmultiplemovingobjectsin2Dincompressibleviscous”ow,J.Comput.Phys.191(2003)177…205.[28]E.M.Saiki,S.Biringen,Numericalsimulationofacylinderinuniform”ow:applicationofavirtualboundarymethod,J.Comput.Phys.123(1996)450…465.[29]A.L.F.Lima,E.Silva,A.Silveira-Neto,J.J.R.Damasceno,Numericalsimulationoftwo-dimensional”owsoveracircularcylinderusingtheimmersedboundarymethod,J.Comput.Phys.189(2003)351…370.[30]JohnM.Stockie,BrianR.Wetton,Analysisofstinessintheimmersedboundarymethodandimplicationsfortime-steppingschemes,J.Comput.Phys.154(1999)41…64.[31]S.Takagi,H.N.Oguz,Z.Zhang,A.Prosperetti,PHYSALIS:anewmethodforparticlesimulationPartII:two-dimensionalNavier…Stokes”owaroundcylinders,J.Comput.Phys.187(2003)371…390.[32]Yu-HengTseng,JoelH.Ferziger,Aghost-cellimmersedboundarymethodfor”owincomplexgeometry,J.Comput.Phys.192(2003)593…623.[33]C.Tu,C.S.Peskin,Stabilityandinstabilityinthecomputationof”owswithmovingimmersedboundaries,SIAMJ.Statist.Comput.13(1992)70…83.[34]H.S.Udaykumar,R.Mittal,P.Rampunggoon,A.Khanna,AsharpinterfaceCartesiangridmethodforsimulating”owswithcomplexmovingboundaries,J.Comput.Phys.174(2001)345…380.[35]Z.JaneWang,Twodimensionalmechanismforinsecthovering,Phys.Rev.Lett.85(10)(2000).[36]AndreasWiegmann,KennethP.Bube,Theimmersedinterfacemethodfornonlineardierentialequationswithdiscontinuouscoecientsandsingularsources,SIAMJ.Numer.Anal.35(1)(1998)177…200.[37]AndreasWiegmann,KennethP.Bube,Theexplicit-jumpimmersedinterfacemethod:“nitedierencemethodsforPDEswithpiecewisesmoothsolutions,SIAMJ.Numer.Anal.37(3)(2000)827…862.[38]ShengXu,Z.JaneWang,Systematicderivationofjumpconditionsfortheimmersedinterfacemethodinthree-dimensional”owsimulation,SIAMJ.Sci.Comput.,2006,inpress.[39]T.Ye,R.Mittal,H.S.Udaykumar,W.Shyy,AnaccurateCartesiangridmethodforviscousincompressible”owswithcompleximmersedboundaries,J.Comput.Phys.156(1999)209…240.[40]LuodingZhu,CharlesS.Peskin,Simulationofa”apping”exible“lamentina”owingsoap“lmbytheimmersedboundarymethod,J.Comput.Phys.179(2002)452…468.S.Xu,Z.J.Wang/JournalofComputationalPhysicsxxx(2006)xxx…xxx ARTICLEINPRESS

Related Contents


Next Show more