/
Chapter10PlumesandThermalsSUMMARY:Thischapterdescribesseveraldistincts Chapter10PlumesandThermalsSUMMARY:Thischapterdescribesseveraldistincts

Chapter10PlumesandThermalsSUMMARY:Thischapterdescribesseveraldistincts - PDF document

calandra-battersby
calandra-battersby . @calandra-battersby
Follow
351 views
Uploaded On 2015-09-26

Chapter10PlumesandThermalsSUMMARY:Thischapterdescribesseveraldistincts - PPT Presentation

164CHAPTER10PLUMES Figure101AhydrothermalventatthebottomofthePaci cOceandischarginghotwaterupto400CandformingaverticalplumeThedarkcolorgivingrisetothenicknameblacksmokerisduethepresenceofsul ID: 141370

164CHAPTER10.PLUMES Figure10.1:AhydrothermalventatthebottomofthePaci cOcean discharginghotwater(upto400C)andformingaverticalplume.Thedarkcolor givingrisetothenicknameblacksmoker isduethepresenceofsul

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Chapter10PlumesandThermalsSUMMARY:Thisch..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Chapter10PlumesandThermalsSUMMARY:Thischapterdescribesseveraldistinctstructuresthat\ruidsdevelopinreactiontolocalizedinputsofbuoyancy.Apunctualandsustainedsourceofbuoyancyusuallycreatesacontinuousriseoflighter\ruidthroughtheambientdenser\ruid,withmixingoccurringalongtheway.SuchstructureiscalledaplumeShouldtheprocessbeintermittent,therisingbuoyant\ruidparcelsarecalledther-malsBuoyantjetsareplumeswiththeaddedpropulsionofmomentum,andbuoy-antpu sare\ruidparcelsthatriseunderthecombinedactionofbuoyancyandmomentum.10.1PlumesPlumesarecommonfeaturesinenvironmental\ruids,whichoccurwheneveraper-sistentsourceofbuoyancycreatesarisingmotionofthebuoyant\ruidupwardandawayfromthesource.Theclearestexampleisthatofhydrothermalventsatthebottomoftheocean(Figure10.1).AnotheroccurrenceistherisingoffreshwaterfromthebottomoftheseaatsubmarinespringsinkarsticregionssuchasalongtheDalmatianCoastofCroatia,wheresuchfeaturesarecalledvrulje.Thecom-monurbansmokestackplumeis,however,somewhatdi erentbecausethewarmgasrisesnotonlyunderitsownbuoyancybutalsounderthepropulsionofmomentum(inertia).Suchplumeismoreproperlycategorizedasabuoyantjetorforcedplume.Whatdrivesaplumeisitsheat\rux,de nedastheamountofheat(expressedinjoules)beingdischargedthroughtheexitholeperunittime.Becauseitismorepracticalinlatermathematicaldevelopments,thisquantityisdividedby0Cp(the\ruid'sreferencedensityandheatcapacityatconstantpressure)andthenmultipliedby g(the\ruid'sthermalexpansioncoecientandthegravitationalacceleration),givingrisetothebuoyancy\ruxF163 164CHAPTER10.PLUMES Figure10.1:AhydrothermalventatthebottomofthePaci cOcean,discharginghotwater(upto400C)andformingaverticalplume.Thedarkcolor,givingrisetothenicknameblacksmoker,isduethepresenceofsul desinthewater.[PhotographtakenbyDudleyFoster,courtesyoftheWoodsHoleOceanographicInstitution]F= g 0Cpheat time(10.1)NotethatbecauseheatpertimeisexpressedinJ/s,thebuoyancy\ruxismeasuredinunitsofm4/s3Letusconsiderathree-dimensionalradiallysymmetricplumeprogressingverti-callyfromthebottomthroughahomogeneousandresting\ruid,asshowninFigure10.2.IfwedenotebyT0thetemperatureoftheambient\ruid,thenthetempera-tureinsidetheplumehasthevalueT0+T0,inwhichT0denotesthetemperatureanomaly(positiveinarisingplume,negativeinasinkingplume).Tothistemper-atureanomalycorrespondsadensityanomaly0= 0T0.Fromthelatter,itisconvenienttode nethelocalbuoyancy,orreducedgravity,g0as:g0=g0 0=+ gT0(10.2)Naturally,becauseoftheheterogeneousstructureoftheplume,withentrainmentanddilutiontakingplacealongitssides,thebuoyancyg0andverticalvelocitywwithintheplumedependonbothdistancezabovethesourceandradialdistancerfromthecenterline.Likeforturbulentjets(previouschapter),observationsrevealthattheGaussianpro le(bellcurve)providesarealisticdescriptionofthestatisticalaveragesofg0andwovertheturbulent\ructuations.Beforeusingsuchexpressions,however,weshallinitiallylimitourselvestoconsideringonlycross-plumeaverageswandg0,eachafunctionofz,theheightwithintheplume.Thebuoyancy\ruxFcanbeexpressedastheintegralacrossthesectionoftheplumeoftheproductoftheverticalvelocitywwiththebuoyancyg0.Intermsof 10.1.PLUMES165 Figure10.2:Asmokestackplumerisinginstillair.(Photobytheauthor) Figure10.3:Meanisotherms(left)andstreamlines(right)inandaroundaplumemain-tainedfromapunctualsourceatthebottom.Thenumbersontheisothermsarerelativeval-uesg0=gandthosealongthestreamlinesarerelativevaluesoftheStokesstreamfunction.(FromRouseetal.,1952asshowninTurner,1973) 166CHAPTER10.PLUMESthemeanvaluesacrosstheplume,areasonablygoodapproximationisF=R2wg0=R2 gT0w;(10.3)whereR(z)istheradiusoftheplumeatlevelzAstheplumerises,itentrainsambient\ruid,butthisdoesnotchangetheheat\ruxcarriedbytheplumesincethatambient\ruidcarriesnoheatanomaly.Thus,byvirtueofconservationofheat,thebuoyancy\ruxremainsunchangedwithheightandisthesameatlevelzasitwasatthestartoftheplume.Inotherwords,thequantityFisconstant.Itiswhatdrivestheplume,likemomentumdrivesajet. Figure10.4:Athinslideoftheplumeonwhichtoperformmassandmomentumbudgets.Perfomingamassconservationbudgetoverathinsliceoftheplumeextendingfromlevelztolevelz+dz(Figure10.4),wecanwrite:Massexitingfromthetop=Massenteringthroughthebottom+MassentrainedthroughthesideeR20wz+dz=[R20wz+2Rdz0u;inwhichuisthelateralentrainmentvelocityand2Rdzthelateralareaoftheslice(Figure10.4).Indi erentialform,thisequationbecomesd dz(R2w)=2Ru:(10.4)Likewise,theverticalmomentumbudgetoverthesameslicerequiresMomentumexitingfromthetop=Momentumenteringthroughthebottom+Momentumentrainedthroughtheside+UpwardbuoyancyforceThereisnoverticalmomentumacquiredbylateralentrainmentsincetheambient\ruidisatrest.ByvirtueofArchimedes'principle,theupwardbuoyancyforceisequaltotheweightofthedisplaced\ruid(atdensity0)minustheactualweightoftheplumesegment(atlowerdensity0+0),foratotalof 10.1.PLUMES167Upwardbuoyancyforce=R20gdzR2(0+0)gdz=R20gdz=+R20g0dz;byvirtueof(10.2).Thus,theverticalmomentumbudgettakestheform::R20w2z+dz=[R20w2z+R20g0dz;or,indi erentialform,d dz(R2w2)=R2g0(10.5)Letusstopforamomentandtakestockoftheequationswehave.Therearethreeequations:(10.3)fromtheheatbudget,(10.4)fromthemassbudget,and(10.5)fromthemomentumbudget.And,therearefourunknowns:theradiusRtheaveragevelocityw,theentrainmentvelocityu,andtheaveragedbuoyancyg0eachafunctionoftheelevationz.Thereisthusonemoreunknownthanavailableequations.Toclosetheproblemwithoutsolvingforthedetailsoftheturbulent\row,westateinanalogywiththeturbulentjet,thattheentrainmentvelocityisproportionaltotheshear\rowinducedbytheplume.Inotherwords,weassumeproportionalitybetweenuandwu=aw;(10.6)withconstantdimensionlesscoecientaThesolutionoftheproblemoughttobeexpressedsolelyintermsofthequan-titiesF(inm4/s3)andz(inm),becausethosearetheonlydimensionalvariablesenteringtheequations.Thus,dimensionalconsiderationsleadustoanticipatetheformofthesolution:R=tanzw=bF13 z13g0=cF23 z53whereistheangleoftheconemadebytheplume(Figure10.3).Observations(Turner,1973)indicatethatthisangleisabout8.9,forwhichtan=0157.Substitutionintheequationsatourdisposalyields:Eq.(10.3)!bctan=1Eq.(10.4)!5 3tan=2aEq.(10.5)!4 3b2=c: 168CHAPTER10.PLUMESThevaluesofthedimensionlesscoecientsarefoundtobea=5 6tan=01305b=3 4tan213=214c=4 32tan413=608andtheassembledsolutionisR=0157z(10.7)w=214F13 z13(10.8)u=0130w=0279F13 z13(10.9)g0=608F23 z53(10.10)Letusnowpassfromwandg0averagedacrosstheplumetofunctionswandg0withGaussianpro leacrosstheplume.Forthis,wewrite:w=wmax(z)expr2 22(10.11)g0=g0max(z)expr2 22(10.12)withthestandarddeviation(z)beingsuchthat2(z)representstheradiusR(z)oftheplumeatheightz.(Seetheoryfortheturbulentjetinthepreviouschapter.)Thus,=R=2.Thepeakvaluesalongtheplume'scenterlinecanthenberelatedtotheirrespectiveaveragesbyw=1 R2Z10w2rdr(10.13)g0=1 R2Z10g02rdr;(10.14)andweobtain:w=427F13 z13exp816r2 z2(10.15)g0=122F23 z53exp816r2 z2(10.16) 10.2.PLUMESINSTRATIFICATION169 Figure10.5:Aplumerisinginanearlymorningwhentheloweratmosphereisstrati ed.Aclueofthisstrati cationisthethinhorizontalbandofcloudontheleftoftheplume(markedinpicture).Notetheinertialovershootoftheplumecloudbeforesettlingatthelevelofneutralbuoyancy.[Photographbytheauthor]Laboratoryexperiments(Turner,1973),indicatethatthefollowingadjustedexpressionsw=47F13 z13exp96r2 z2(10.17)g0=11F23 z53exp71r2 z2(10.18)bettermatchtheobservations.Notethatwiththeselastexpressions,thewidthofthevelocitypro leisslightlynarrowerthanthatofthebuoyancy.10.2PlumesinaStrati edEnvironmentWhenaplumerises(orsinks)inastrati edenvironment,itencountersatempera-turebecomingclosertoitsownandprogressivelylosesbuoyancy.Atsomelevel,itwillhavelostallbuoyancyandwillbegintospreadhorizontally.Suchisthecaseofasmokestackplumeinacalm(nowind)andstrati edatmospheretypicaloftheearlymorning(Figure10.5).Theobviousquestiontoaskishowhighdoestheplumereach?Thestrati edambient\ruidischaracterizedbyitsstrati cationfrequencyNde nedfromN2= gdT dz(10.19) 170CHAPTER10.PLUMESwhereT(z)isthetemperaturepro leoftheambient\ruid.Todescribeaplumeinthistypeofenvironment,thesamequantitiesareneededasbefore,namelytheplume'sradiusR,averagedverticalvelocityw,andaveragedbuoyancyg0,eachfunctionoftheelevationz.Thedi erencewiththeprevioussectionisthatnowthebuoyancy\ruxF,de nedin(10.3),isnolongeraconstantalongtheaxisoftheplume.Threeequationsareatourdisposal:Themassbudgetd dz(wR2)=2uR=2awR;(10.20)themomentumbudgetd dz(w2R2)=g0R2(10.21)whichremainunchanged,andtheheatbudget,whichisd dz(wTplumeR2)=uT(z)2R:(10.22)Usingthebuoyancylocallyexperiencedbytheplume,g0= ggTplumeT(z)],thelastequationcanberecastasd dz(g0wR2)+d dzz gT(z)wR2]=2uR gT(z)WithEquation(10.20)andde nition gdT(z)=dz=N2,itcanbereducedtod dz(g0wR2)=N2wR2(10.23)Thesolutiontothissetofequationsdoesnotexhibitsimilarity,buttheequationscaneasilybeintegratednumerically.Startingwithinitialconditions(atlevelz=0)suchthatthemomentumandvolumetric\rowarenilbutbuoyancy\rux nite,one ndstheresultsshowninFigure10.6.Onthat gure,thevariablesaremadedimensionlessbyscalingasfollows:zandRby(F=N3)14,wby(F=N)14,andg0by(F=N5)14,whereFisthestartingbuoyancy\rux(atz=0).Theentrainmentparameterawastakenas0125.(Forasimilarnumericalintegration,seeMorton,TaylorandTurner,1956).WenoteonFigure10.6thatthebuoyancycrosseszeroatz=298(F=N3)14buttheresidualverticalvelocityatthatlevelmakestheplumeovershoot,uptoz=392(F=N3)14,bywhichleveltheverticalvelocityvanishesandtheradiusbecomesin nite.Laboratoryexperimentsand eldobservationscon rmandtweakthistheoreti-calprediction(Figure10.7).Briggs(1969)giveszmax=50F N314=376F N314(10.24) 10.3.THERMALS171 Figure10.6:Numericalinte-grationofEquations(10.20),(10.21)and(10.23),witha=0125,tracingtheverticalstruc-tureofabuoyantplumeasitrisesinastrati edenviron-ment.Thebuoyancycrosseszeroatz=298,abovewhichtheplumebecomesnegativelybuoyant.Theverticalveloc-ityvanishesatz=392andtheradiusbecomesin nite.Seetextfordetailsofthenon-dimensionalizationemployedinmakingthegraph.10.3ThermalsAthermalisa niteparcelof\ruidconsistingofthesame\ruidasitssurroundingsbutatadi erenttemperature.Becauseofitsbuoyancy,acoldthermalsinks(neg-ativebuoyancy),whileawarmthermalrises(positivebuoyancy).Thenamewasgivenbygliderpilotstowhattheyperceivedasregionsofwarmairrisingaboveaheatedgroundinwhichtheycouldsoar.Convectionintheatmospheredoesindeedproceedbymeansofrisingthermals(Priestley,1959).Thesituation,however,canbequitechaotic,withacollectionofthermalsrisinghereandthereatvarioustimes,someofthemsmallerandslower,andotherslargerandfaster.Here,forthesakeofunderstandingthebasicmechanism,weshallbeconcernedwithasinglethermalimmersedinanin nitehomogeneous\ruidatrest.Experimentshavebeenconductedinthelaboratory(Figure10.8),andithasbeenfoundthatallthermalsroughlybehaveinsimilarways:astheyrise(orsink),theyentrainsurrounding\ruidandbecomemoredilute,therebyslowingdownintheirascent(ordescent).Theactualshapeofathermal,however,canvaryconsid-erablyfromonesetofobservationstoanother.Here,basicdynamicssupplementedbyafewdimensionlessnumbersgleanedfromexperimentswillbeusedtoestablishasimpletheoryforthepredictionofathermal'sbehaviorovertime.Thekeypropertyofathermalisitstotalbuoyancy,de nedasB= gT0V=g0V(10.25)inwhichVisthevolumeofthethermal,T0itstemperatureanomaly,andg0= gT0thereducedgravityitexperiences.Thistotalbuoyancyisaconservedquantityasthethermalrises(orsinks)because,whileitentrainssurrounding\ruid,itstem-peratureanomalydecreasesbydilutioninproportiontoitsvolumeincrease,thuskeepingtheproductT0Vconstantduringthethermal'slife. 172CHAPTER10.PLUMES Figure10.7:Measurementsofplumeriseincalmstrati edsurroundings,revealingthattheultimateheightreachedbyaplumefollowsEquation(10.24).(AdaptedfromBriggs,1969)ThevolumeofathermalcanbeexpressedasV=mR3(10.26)whereRistheradiusofthethermalseenfromabove,andmisacoecientlessthat4=3=42(valueforasphericalvolume)becauseathermalhasaslightly\rattenedshape.Thevalueofmisnotoriouslydiculttomeasure,andsomeindirectmeasurementisinorder,asweshallseelater.MassconservationovertimecanbeexpressedasdV dt=Au;inwhichAistheenclosingsurfaceareaofthethermalandutheaverageentrainmentvelocityacrossthatsurface(Figure10.9).TakingtheareaAasproportionaltoR2thesquareofthethermal'sradius,andtheentrainmentvelocityuasproportionaltothethermal'sverticalvelocityw,wecanexpresstheprecedingequationasdV dt=aR2w;(10.27)inwhichthecoecientaoughttobeadimensionlessconstant,tobedeterminedfromexperimentsorobservations.Using(10.26),thisequationcanbereducedto:dR dt=a 3mw:(10.28)Themomentumbudgetovertimetakestheformd dt3 2thermalVw=UpwardbuoyancyforceDownwardweight 10.3.THERMALS173 Figure10.8:Descendingthermalsinalaboratoryexperiment.Thesethermalsinwateraremadevisiblebybariumsulfate.Thestemleftbehindbyeachthermalisduetothemannerasphericalcapwasrotatedtoprovoketherelease.Thesecondthermal(bottomrow)hasalargernegativebuoyancythanthe rst(toprow).[FromScorer,1997]=ambientVgthermalVg=thermal T0Vg=thermalg0V;inwhichthefactor3=2ontheleftisduetotheadded-masse ect.Physically,thethermalissubjecttoitsownacceleration(timederivativeofonetimethermalVw),butitschangingpacealsocausesaccelerationofthesurrounding\ruiddivertedbyitspassage,e ectivelyaccelerating50%more\ruidmass,hencethefactor3=2=15.Divisionbythermal,whichatalltimesremainsclosetothereferencedensityofthe\ruid,yieldsd dt(Vw)=2 3g0V:(10.29)Eliminationoftheproductg0VbyvirtueofEquation(10.25)indicatesthattheright-handsideoftheprecedingequationisaconstant,leadingtoanimmediateintegration:Vw=2 3Bt;(10.30)forwhicht=0marksthetimewhenthethermalhadzeromomentum.Next, 174CHAPTER10.PLUMES Figure10.9:TheanatomyofarisingthermalaccordingtoScorer(1997).Fluidwithinaconeofabout12isentrainedbythetopofthethermal,while\ruidoustideofthisandwithinawiderconeof15isentrainedintherear.Therestoftheambi-ent\ruidismerelyde\rectedbythepassageofthethermal.Theobliqueredlinetracestheouteredgeofthethermalovertime,forminganangleofabout14fromthevertical.(FromScorer,1997)solvingforw(w=2Bt=3V=2Bt=3mR3)andreplacinginEquation(10.28),weobtainasingleequationfortheradiusRofthethermal:dR dt=2a 9m2Bt R3Thesolutionofthisequationis:R=4a 9m214B14t12(10.31)Nowknowingtheradiusasafunctionoftime,wecanreadilysolvefortheotherquantities,namelyvolumeV,verticalvelocitywandreducedgravityg0V=64a3 729m214B34t32(10.32)w=9m2 4a314B14 t12(10.33)g0=729m2 64a314B14 t32(10.34) 10.3.THERMALS175Intheseexpressions,itisclearthatthetimeoriginactuallyreferstoavirtualstageinwhichthethermalhadzerovolume,in nitevelocityandin nitetemperatureanomaly.Obviously,theactuallifeofthethermalstartedsome nitetimeafterthis,witha nitevolume, nitevelocityand nitetemperatureanomaly.Notethatthecompletesolutiondependsontwodimensionlessparameters,aandm.Sinceneitheriseasytodeterminedirectly,itiswisetoseektheirvalueindirectlybymatchingthermal'spropertiesthataremorereadilyobserved.Onesuchpropertyisthemannerinwhichthethermal'sradiusgrowswithdistance.Forthis,weintegratedz=dt=wtoobtainthethermal'selevationasafunctionoftime.Theresultis:z=36m2 a314B14t12(10.35)ItappearsthatbothelevationzandradiusRgrowatsimilarrates,yieldingaconstantratio:R z=a 3m(10.36)Laboratoryobservations(Figure10.9)revealthatthisisindeedthecasethatther-malsbehaveinaself-similarway,andthattheratioofRtozisabouttan14=025.Thus,R=025z;(10.37)anda=075mTheotherreliableobservationisthattheratioz2=t(atimeconstantaspredictedbythetheory)variesfromexperimenttoexperimentinproportiontop B(Figure10.10).Thetheoreticalcoecientofproportionalityisp 36m2=a3,andexperimentsgiveitavalueof5.80.Solvinga=075mtogetherwithp 36m2=a3=580yields:a=190andm=254.Fromthisfollowallothercoecients:R=060B14t12(10.38)V=055B34t32(10.39)w=120B14 t12(10.40)z=241B14t12(10.41)g0=181B14 t32(10.42) 176CHAPTER10.PLUMES Figure10.10:Plotofthequan-tityz2=t(atimeconstantdur-ingthelifeofthermal)versusthesquarerootofthethermal'sbuoyancy.Eachnumbereddotreferstoadi erentlaboratoryexperiment,andthesolidlineshowsthebestlinear t.(FromScorer,1997)10.4ThermalsinaStrati edEnvironmentWhenathermalrises(orsinks)inastrati edenvironment,itprogressivelyencoun-tersatemperatureclosertoitsownandthereforelosesitsbuoyancy.Ultimately,itwillreachalevelofnobuoyancyandbegintospreadlaterally(Figure10.11).Withnothermalcontrastleft,thethermallosesitsidentity.Whatisthisultimatelevelisnotanobviousquestion.Indeed,itcanbeeasilyestablishedthatthethermalwillneverreachthelevelofitsinitialtemperature.Thereasonisitspartialdilutionbyentrainmentofsurrounding\ruid(whichchangesasthethermalcrossesisotherms)anditsconsequentdilution.Apracticalapplicationofthissituationisthedumpingofwasteinastrati edbodyofwater:Thedumpedwastesinksfromthesurface,graduallymixeswithsurroundingwaterduringitsfall,andeventuallysettlesdownatsomeintermediatedepth.ThedeterminationofthatdepthiscrucialinwaterqualitystudiesandpermittingThestrati edenvironmentischaracterizedbyitsstrati cationfrequencyNde nedfromN2= gdT dz(10.43) 10.4.THERMALSINSTRATIFICATION177 Figure10.11:Alaboratoryexperimentofathermalsinkinginastrati edenvi-ronment.Notetheultimatearrestandspreadingofthethermalonceitlosesitsbuoyancy.(FromScorer,1997)whereT(z)isthetemperaturepro leoftheambient\ruid.Totrackathermalinthisenvironment,thesamequantitiesareneededasbefore,namelythethermal'sradiusR,volumeV=mR3,verticalpositionz,verticalvelocityw=dz=dt,reducedgravityg0,andtotalbuoyancyB=g0V.Thedi erencewiththeprevioussectionisthatnowthetotalbuoyancyBisnolongeraconstantofthemotion.Threeequationsareatourdisposal:ThemassbudgetdV dt=Au=aR2w;(10.44)themomentumbudgetd dt(Vw)=2 3g0V;(10.45)whichremainunchanged,andtheheatbudget,whichisd dt(VTthermal)=AuT(z)=aR2wT(z)(10.46)Usingthereducedgravitylocallyexperiencedbythethermal,g0= ggTthermalT(z)],thelastequationcanberecastasd dt(Vg0)+d dttV gT(z)]=aR2w gT(z)Using(10.44)andthefactthatdT(z)=dt=(dT=dz)(dz=dt)=w(dT=dz),itreducestod dt(Vg0)=N2Vw:(10.47)EliminatingVfromEquations(10.44),(10.45)and(10.47)byusingV=mR3yieldsasetofthreeequationsforthethreeunknownsRwandg0 178CHAPTER10.PLUMESdR dt=a 3mw(10.48)d dt(R3w)=2 3R3g0(10.49)d dt(R3g0)=N2R3w:(10.50)Viewingthesethreequantitiesnolongerasfunctionsoftimetbutratherofelevationzandcallinguponw=dz=dt,wecantransformtheminto:dR dz=a 3m(10.51)d dz(R3w)=2R3g0 3w(10.52)d dz(R3g0)=N2R3(10.53)The rstoftheseequationsyieldsR=R0+a 3mz;(10.54)inwhichR0istheinitialradiusatthedeparturelevelz=0.AslongasN2isaconstant(linearstrati cation),thelastequationofthesetcan,too,beintegratedtoyield:R3g0=R30g003m 4aN2(R4R40)(10.55)inwhichg00areistheinitialvalueofg0Thethermallosesallitsbuoyancywhenitsg0dropstozero,whichoccurswhenitsradiushasgrowntothevalueRendsuchthat3m 4aN2(R4endR40)=R30g00(10.56)thatisRend=R40+4a 3mR30g00 N214(10.57)Assumingthatthethermalstartedwithaninsigni cantradiusandhasvastlyexpandedduringitstravel,wecanapproximatetheprecedingexpressiontoRend4a 3mR30g00 N2144a 3m2B0 N214(10.58) 10.5.PLUMESINCROSS-FLOW179whereB0=V0g00=mR30g00isthethermal'sinitialbuoyancy.Translatingthisradiusintothecorrespondingelevationgivestheterminallevelwherethethermallosesitsidentity:zend=3m a(RendR0)3m aRend108m2 a314B0 N214(10.59)Withtheparametervaluesa=190andm=254determinedattheendoftheprevioussection,wehavezend317B0 N214(10.60)Notethatatthelevelwhereg0=0,thethermalhassomeresidualverticalvelocityandwillovershootslightlyitslevelofneutralbuoyancy.ThisexplainsthebulgeonthefrontsideofthethermalseeninFigure10.11.10.5PlumesinaCross-FlowThelinethermalmodel.Problems10-1.Byusingablowerandsomepreheating,onecanadjustboththeupwardvelocityandbuoyancyoffumesexitingfromthetopofasmokestack.Speci -cally,twoscenariosarebeingconsidered,onewithmorevelocityandonewithmorebuoyancy,asfollows:Scenario1: Averageexitverticalvelocity=12m/sAverageexitbuoyancy=0.01m/s2Scenario2: Averageexitverticalvelocity=1m/sAverageexitbuoyancy=0.12m/s2Ineachcase,theexitdiameteris1.5mandtheentrainmentcoecientaistakenas0.115.Whichofthetwoscenariosgivesthehighestverticalvelocityatthecenteroftheplume20mabovethesmokestack?10-2.Younoticeabuzzardsoaringinacirclingfashionandguessthatitistak-ingadvantageoftheupwardmotionofathermal.Asyouhappentohave 180CHAPTER10.PLUMESmeteorologicalgearwithyou,includingaradarpro ler,youdeterminethatthebuzzardis\ryingatanaltitudeof80mandthatthetemperatureatthecenterofthebird'scircleis0.30Chigherthanoutsidethethermal,wherethetemperatureis25C.Whatistheradiusofthethermalanditscenterverticalvelocity?Also,howoldisthisthermal?10-3.10-4.10-5.Showthat,forathermalrisinginahomogeneousambient\ruid,w2isequaltog0z=2.Doesthisrelationhaveanyparticularsigni cance?10-6.Establishtheformofthetotalenergyofathermal(kineticpluspotential)forathermalrisinginauniformenvironmentanddetermineitsvariationalongthepathofthethermal.Resolveanyparadox.10-7.Itwasmentionedattheendofthesectiononthermalsinastrati eden-vironmentthat,onceitreachesitslevelofneutralbuoyancy,athermalstillpossessesaresidualverticalvelocity.Whatisthatvelocity?And,atwhatultimatelevelzdoestheverticalvelocity nallyvanish?Assumethattheinitialradiusofthethermalwasnegligiblecomparedtoitsradiusatthelevelofneutralbuoyancy.10-8.10-9.

Related Contents


Next Show more