/
Heavisides Method This practical method was popularized by the English electrical engineer Heavisides Method This practical method was popularized by the English electrical engineer

Heavisides Method This practical method was popularized by the English electrical engineer - PDF document

calandra-battersby
calandra-battersby . @calandra-battersby
Follow
588 views
Uploaded On 2015-03-12

Heavisides Method This practical method was popularized by the English electrical engineer - PPT Presentation

4 Heavisides Method This practical method was popularized by the English electrical engineer Oliver Heaviside 18501925 A typical application of the method is to solve 1 1 for the expression cos sin T ID: 44188

Heavisides Method This practical

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Heavisides Method This practical method ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

5.4Heaviside'sMethod231 MultipleRoots.Assume(1)hasrealcoecientsandthedenomi-natorofthefraction(1)haspossiblymultipleroots.LetNpbethemultiplicityofrealrootspandletMqbethemultiplicityofcomplexroot q+i q,1pN,1qM.Thepartialfractionexpansionof(1)isgivenintermsofrealconstantsAp;k,Bq;k,Cq;kbyNXp=1X1kNpAp;k (s�sp)k+MXq=1X1kMqBq;k+Cq;k(s� q) ((s� q)2+ 2q)k:(5)AFailsafeMethodConsidertheexpansioninpartialfractionss�1 s(s+1)2(s2+1)=A s+B s+1+C (s+1)2+Ds+E s2+1:(6)The veundeterminedrealconstantsAthroughEarefoundbyclearingthefractions,thatis,multiply(6)bythedenominatoronthelefttoobtainthepolynomialequations�1=A(s+1)2(s2+1)+Bs(s+1)(s2+1)+Cs(s2+1)+(Ds+E)s(s+1)2:(7)Next, vedi erentvaluesofsaresubstitutedinto(7)toobtainequationsforthe veunknownsAthroughE.Wealwaysusetherootsofthedenominatortostart:s=0,s=�1,s=i,s=�iaretherootsofs(s+1)2(s2+1)=0.Eachcomplexrootresultsintwoequations,bytakingrealandimaginaryparts.Thecomplexconjugateroots=�iisnotused,becauseitduplicatestheexistingequationobtainedfroms=i.Thethreerootss=0,s=�1,s=igiveonlyfourequations,sos=1isusedtogetthe fthequation:�1=A(s=0)�2=�2C�2(�D+E)(s=�1)i�1=(Di+E)i(i+1)2(s=i)0=8A+4B+2C+4(D+E)(s=1)(8)BecauseDandEarereal,thecomplexequation(s=i)becomestwoequations,asfollows.i�1=(Di+E)i(i2+2i+1)Expandpower.i�1=�2Di�2ESimplifyusingi2=�1.1=�2DEquateimaginaryparts.�1=�2EEquaterealparts.Solvingthe55system,theanswersareA=�1,B=2,C=0,D=�1=2,E=1=2. 5.4Heaviside'sMethod233 ExtensiontoMultipleRoots.AnextensionofHeaviside'smethodispossibleforthecaseofrepeatedroots.Thebasicideaistofactor{outtherepeats.Toillustrate,considerthepartialfractionexpansiondetailsR=1 (s+1)2(s+2)Asamplerationalfunctionhavingrepeatedroots.=1 s+11 (s+1)(s+2)Factor{outtherepeats.=1 s+11 s+1+�1 s+2Applythecover{upmethodtothesimplerootfraction.=1 (s+1)2+�1 (s+1)(s+2)Multiply.=1 (s+1)2+�1 s+1+1 s+2Applythecover{upmethodtothelastfractionontheright.Termswithonlyonerootinthedenominatorarealreadypartialfrac-tions.Thustheworkcentersonexpansionofquotientsinwhichthedenominatorhastwoormoreroots.SpecialMethods.Heaviside'smethodhasausefulextensionforthecaseofrootsofmultiplicitytwo.Toillustrate,considerthesedetails:R=1 (s+1)2(s+2)Afractionwithmultipleroots.=A s+1+B (s+1)2+C s+2Seeequation(5).=A s+1+1 (s+1)2+1 s+2FindBandCbyHeaviside'scover{upmethod.=�1 s+1+1 (s+1)2+1 s+2Multiplybys+1.Sets=1.Then0=A+1.Theillustrationworksforonerootofmultiplicitytwo,becauses=1willresolvethecoecientnotfoundbythecover{upmethod.Ingeneral,ifthedenominatorin(1)hasaroots0ofmultiplicityk,thenthepartialfractionexpansioncontainstermsA1 s�s0+A2 (s�s0)2++Ak (s�s0)k:Heaviside'scover{upmethoddirectly ndsAk,butnotA1toAk�1.