/
High Performance Silicon Nanowire Field Effect Transistors Yi Cui Zhaohui Zhong Deli Wang High Performance Silicon Nanowire Field Effect Transistors Yi Cui Zhaohui Zhong Deli Wang

High Performance Silicon Nanowire Field Effect Transistors Yi Cui Zhaohui Zhong Deli Wang - PDF document

calandra-battersby
calandra-battersby . @calandra-battersby
Follow
540 views
Uploaded On 2014-12-15

High Performance Silicon Nanowire Field Effect Transistors Yi Cui Zhaohui Zhong Deli Wang - PPT Presentation

Wang and Charles M Lieber Department of Chemistry and Chemical Biology and Di ision of Engineering and Applied Science Har ard Uni ersity Cambridge Massachusetts 02138 Received November 1 2002 ABSTRACT Silicon nanowires can be prepared with singlec ID: 24304

Wang and Charles

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "High Performance Silicon Nanowire Field ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

HighPerformanceSiliconNanowireFieldEffectTransistorsYiCui,ZhaohuiZhong,DeliWang,WayneU.Wang,andCharlesM.Lieber*DepartmentofChemistryandChemicalBiology,andDiisionofEngineeringandAppliedScience,HarardUniersity,Cambridge,Massachusetts02138ReceivedNovember1,2002Siliconnanowirescanbepreparedwithsingle-crystalstructures,diametersassmallasseveralnanometersandcontrollableholeandelectrondoping,andthusrepresentpowerfulbuildingblocksfornanoelectronicsdevicessuchasfieldeffecttransistors.Toexplorethepotentiallimitsofsiliconnanowiretransistors,wehaveexaminedtheinfluenceofsource-draincontactthermalannealingandsurfacepassivationonkeytransistorproperties.Thermalannealingandpassivationofoxidedefectsusingchemicalmodificationwerefoundtoincreasetheaveragetransconductancefrom45to800nSandaveragemobilityfrom30to560cmswithpeakvaluesof2000nSand1350cms,respectively.Thecomparisonoftheseresultsandotherkeyparameterswithstate-of-the-artplanarsilicondevicesshowssubstantialadvantagesforsiliconnanowires.Theusesofnanowiresasbuildingblocksforfuturenanoelectronicsarediscussed.Semiconductornanowires(NWs)andcarbonnanotubesareattractivecomponentsforfuturenanoelectron-icssincetheycanexhibitarangeofdevicefunctionandatthesametimeserveasbridgingwiresthatconnecttolargerscalemetallization.Forexample,fieldeffecttransistors(FETs)havebeenconfiguredfromNWsandNTsdepositingthenanomaterialonaninsulatingsubstratesurface,makingsourceanddraincontactstotheNWorNTends,andthenconfiguringeitherabottomortopgateelectrode(Figure1).Thisbasicapproachmayserveasthebasisforhybridelectronicsystemsconsistingofnanoscalebuildingblocksintegratedwithmorecomplexplanarsiliconcircuitry,althoughanumberofissuesincludingdeviceperformance,reproducibility,andintegrationwillhavetobeaddressedinordertorealizesuchsystemsinthefuture.InthecaseofNTFETs,considerableefforthasbeenplacedonimprovingkeydeviceparameterssuchasthecarriermobilityandtransconductance.Forexample,recentstudiesreportedbyAvourisandothershaveshownthatthemeasuredcarriermobilitycanbeincreasedsignificantlybycontactthermalannealing.ThefactthatNTsamplesconsistofmixturesofsemiconductingandmetallicbuildingblockscould,however,representahurdletofuturedevelop-mentsinnanoelectronics.Ontheotherhand,siliconnanowires(SiNWs)arealwayssemiconducting,andthedopanttypeandconcentrationcanbecontrolledduringSiNWbuildingblocksmayalsobemorereadilyintegratedintosiliconindustryprocessingandfabricationthanNTs,andthusmightreducebarrierstothecreationofhybridstructures. *Correspondingauthor.E-mail:cml@cmliris.harvard.eduDepartmentofChemistryandChemicalBiology.DivisionofEngineeringandAppliedScience. Figure1.(A)SchematicofaSiNWFETshowingmetalsourceanddrainelectrodeswiththeNWandcontactsonthesurfaceof/Sisubstrate.(inset)High-resolutiontransmissionelectronmicrographofa5nmdiameterSiNW;thescalebaris5nm.(B)ScanningelectronmicrographofaSiNWFETdevice;thescalebaris500nm.Vol.3,No.210.1021/nl025875lCCC:$25.002003AmericanChemicalSocietyPublishedonWeb01/01/2003 InitialtransportstudiesofSiNWFETsshowedrelativelylowtransconductanceandcarriermobility(0.01cm/Vs).SubsequentinvestigationsofSiNWtransistorcharacteristicsinacrossedNWFETconfigurationindicatedthattheinitiallowtransconductanceandmobilityvaluesweredueinparttopoorcontactsbetweentheSiNWsandsource-drainelectrodesandarenotintrinsictothesingle-crystalNWbuildingblocks(inset,Figure1A).Inthisletter,weexplorethelimitsofSiNWFETsbyexaminingtheinfluenceofsource-draincontactannealingandsurfacepassivationonkeytransistorproperties.Thermalannealingandpassivationofoxidedefectsbychemicalmodificationwerefoundtoincreasetheaveragetransconductancefrom45to800nSandaveragemobilityfrom30to560cmswithpeakvaluesfrom2000nSand1350cms,respectively.Comparisonoftheseresultsandotherkeyparameterswithstate-of-the-artplanarsilicondevicesshowssubstantialadvantagesfortheSiNWsasbuildingblocks.TheSiNWsusedinthesestudiesareboron-doped(p-type),20nmdiametersingle-crystalstructures,preparedbyananocluster-mediatedgrowthmethoddescribedpreviously.TheSiNWsweredepositedontooxidizedsiliconsubstrates(600nmthermaloxide)fromethanolsuspension.ElectricalcontactstotheSiNWsweremadebydefiningsource-drainelectrodesseparatedby8002000nmwithelectron-beamlithographyandsubsequentevaporationof50nmTiand50nmAu.Rapidthermalannealingwascarriedoutat300Cfor3minintheforminggas(10%HinHe)toimprovethecontactandpassivateSiinterfacetraps.AtypicalSiNWdeviceisshowninFigure1B.Electricaltransportmeasurementswereperformedintheair.Source-draincontactstoSiNWFETsweremadeusingTimetal,andtransportcharacteristicswerestudiedasafunctionofannealing.Ingeneral,metalsiliconcontactshavebeenwellstudied,anditisknownthatTicanformastableconductingsilicidewithalowSchottckybarrierheightonp-typesilicon.Figure2Ashowsthecurrent(I)versussource-drainvoltage(V)behaviorofatypicalTi-contactedSiNWdevicebeforeandafterthermalannealing.TheIcurvesbecomemorelinearandsymmetric,theconductanceincreases3-fold,andthetransportbehaviorbecomesmorestableafterannealing.Tocharacterizethereproducibilityoftheseobservations,wehavemadesimilarmeasurementsonover50devices.Theseresultsaresummarizedinahistogramshowingthefrequencythatdifferentvaluesoftwo-terminalresistancewereobserved(Figure2B).Beforeannealing,theresistanceshowsalargedistributionrangingfromwithanaverageof160M.Incontrast,theresistanceafterannealinghasanarrowerdistributionof0.1to10Mwithanaverageof0.62M;thatis,a260inthetwo-terminalconductance.Theincreasedtwo-terminalconductanceandstabilitycanbeattributedinparttobetterSiNWcontacts,althoughpassivationofdefectsatSiinterface,whichcanoccurduringannealing,mayalsocontributetotheobservedenhancements.WehavealsoinvestigatedhowchemicalpassivationoftheSiOshellsurroundingthesingle-crystalSiNWcoresaffectstransportbehavior(Figure3A),sincetheSi/SiOinterfaceandSiOsurfacedefectscouldcompensatetheappliedgatevoltageandtrapandscattercarriers.modificationwascarriedoutbyreactionwith4-nitrophenyloctadecanoate.ThisspecificreagentwaschosensinceitwillleadtoastableandrelativelynonpolarSiCesterConductance(I/V)versusbackgatevoltage(Vmeasurementswerecarriedoutbeforeandaftermodificationtoassessclearlytheeffectofsurfacechemistryoncharac-teristicsofaspecificSiNWFET.Inatypicaldevice(Figure3B),theconductancerespondsweaklytoVbeforemodification.Incontrast,theconduc-tanceisextremelysensitivetoVaftermodificationandcanbeshutoffatV2.5Vwithanon/offratioover4ordersofmagnitude.Thetransconductanceaftermodificationisanorderofmagnitudelargerthanbeforemodification.Usingacylinderonaninfiniteplatemodel,weestimateaholemobilityof1000cms.ThismobilityissubstantiallylargerthanobtainedinconventionalSidevices.Toassessthereproducibilityofthissurfacechemistryandcorrespond-ingdramaticimprovementsindevicebehavior,wecarriedoutexperimentsonanumberofdistinctSiNWdevices.Thesummaryoftheseresults(Figure3CandD)showsthattransconductanceandmobilityincreaseanorderofmagni-tudeaftermodification.Significantly,thehighestandtheaverageholemobilityvaluesof1350and560cmsinp-SiNWsaremorethananorderofmagnitudelargerthanthevalueforbulkSi,40cms,atacomparableeffective Figure2.(A)IvsVmeasuredonthesameSiNWbefore(green)andafter(red)thermalannealing.(B)HistogramofTi-contactedSiNWresistancedeterminedfrommeasurementsbefore(opengreenbars)andafter(filledredbars)contactannealing.Thearrowsmarktheaverageresistancevaluesforthetwodistributions.NanoLett.,Vol.3,No.2, dopingconcentration.ThehighermobilitiesobservedinourSiNWdevicesmayarisefromimprovedstructuralperfectionandcylindricalmorphology,althoughadditionalstudiesareneedtoaddressunambiguouslythispoint.WealsonotethattheseSiNWvaluesarenotupperboundssincecontactsandsurfacepassivationhavenotbeenoptimized.Toobtainadditionalinformationabouttheoriginofthesepassivationresults,wehavecarriedoutotherexperiments.First,theeffectofchainlengthoncharacteristicsofSiNWFETswasinvestigated.Immediatelyaftermodification,18-carbonand6-carbonchainsgavesimilartransportresults,althoughthelifetimeoftheobservedimprovementwasweekand1day,respectively.Theseresultssuggestthataccessibilityofthesurfacetowaterhydrolysismaycontrolstabilityofthepassivation,andmoreover,thatthepassivationofpolarsurfacesites,suchasSiO,isimportanttotheobservedimprovedtransportbehavior.Second,andtotestthisidea,wehavemodifiedSiNWsurfaceswithtetraethyl-ammoniumbromidesolutions.Significantly,tetraethyl-ammonium-modifiedNWsalsoshowthesignificantin-creasesinthetransconductanceandmobility(Figure3E).Inaddition,itisworthnotingthatourSiNWFETsarestructurallyandchemicallyanalogoustothesilicon-on-insulator(SOI)structuresbeingdevelopedforfuturegenera-tionmicroelectronics.Toexplorethisanalogyinquanti-tativeterms,wehavecomparedkeycharacteristicsofSiNWFETswithstate-of-the-artplanarmetal-oxideFETs(MOSFETs)fabricatedusingSOI(Table1).First,theholemobility,whichisca.independentofdevicesize,isanordermagnitudelargerthanthatinplanarSideviceswithcomparabledopantconcentrations.Sincethemobilitydetermineshowfastchargecarriersmoveintheconductingchannel,itisonekeyparameteraffectingtherawdevicespeed.Ignoringotherfactors,ourmobilityimpliesthatterahertzoperationcouldbeachievedina2000nmSiNWFordirectcomparisonofotherkeyparameters,theSiNWFETresultshavebeenscaledusingtheSOIFETgatelengthof50nmandgateoxidethicknessof1.5nm.Significantly,thescaledon-statecurrent(I)fortheSiNWFETislargerthanstate-of-the-artSiFETs,andmoreovertheaveragesubthresholdslopeapproachesthetheoreticallimitandtheaveragetransconductanceisca.10timeslarger.Theseimprovementscouldleadtosubstantialbenefitsforhigh-speedandhigh-gaindevices.TheSiNWFETdevicesalsohavelargerleakagecurrents,butthisissuecouldbeaddressedbyimplementingpn-diodesatthesourceanddraincontactsasinconventionalMOSFETs.ThiscomparisonsuggeststhateffortstomakesmallerSiNWFETsandexplicitlytestscalingpredictionscouldhaveanimportantimpactinthefuture.Inconclusion,wehaveperformedstudiesaddressingthelimitsofp-typeSiNWFETs.Source-draincontactthermalannealingandsurfacepassivationwerefoundtoimprovesignificantlytheFETperformancewithincreasesintheaveragetransconductancefrom45to800nSandaveragemobilityfrom30to560cms,withpeakvaluesof2000nSand1350cms,respectively.Inaddition,comparisonofscaledSiNWFETtransportparameterswiththoseforstate-of-the-artplanarMOSFETsshowthatSiNWshavethepotentialtoexceedsubstantiallyconventionaldevices,andthuscouldbeidealbuildingblocksforfuturenanoelectronics.WethankH.ParkandL.Lauhonforhelpfuldiscussion.C.M.L.acknowledgestheDefenseAd-vancedResearchProjectsAgencyforgeneroussupportofthiswork.(1)Cui,Y.;Duan,X.;Hu,J.;Lieber,C.M.J.Phys.Chem.B,5213. Figure3.(A)Schematicillustratingsurfacedefectpassivation.(B)ConductancevsVmeasuredonthesameSiNWbeforeandafter4-nitrophenyloctadecanoatemodification.HistogramsofSiNWtransconductance(C)andmobility(D)beforeandafter4-nitrophenyloctadecanoatemodification.(E)HistogramofSiNWmobilityvaluesaftermodificationwithtetraethylammoniumbro-mide.Inplots(B)to(E),thegreen(red)colordesignatesbefore(after)surfacemodification. Table1.ComparisonoftheKeyDeviceParametersbetweenSiNanowireandSOIFET rawdatacoverteddataplanarSigatelength(nm)80020005050gateoxidethickness(nm)6001.51.5mobility(cm/Vs)2301350230m)5020020005600650m)2504459subthresholdslope609607010027007500650NanoLett.,Vol.3,No.2, (2)Cui,Y.;Lieber,C.M.,891.(3)Duan,X.;Huang,Y.;Cui,Y.;Wang,J.;Lieber,C.M.,66.(4)Huang,Y.;Duan,X.;Cui,Y.;Lauhon,L.J.;Kim,K.-H.;Lieber,C.,1313.(5)Huang,Y.;Duan,X.;Cui,Y.;Lieber,C.M.NanoLett.(6)Duan,X.;Huang,Y.;Lieber,C.M.NanoLett.,487.(7)Tans,S.;Verschueren,A.;Dekker,C.Nature(London)(8)Martel,R.;Schmidt,T.;Shea,H.R.;Hertel,T.;Avouris,Ph.Phys.Lett,2447.(9)Wind,S.J.;Appenzeller,J.;Martel,R.;Derycke,V.;Avouris,Ph.Appl.Phys.Lett,3817.(10)Derycke,V.;Martel,R.;Appenzeller,J.;Avouris,Ph.NanoLett.,453.(11)Martel,R.;Derycke,V.;Lavoie,C.;Appenzeller,J.;Chan,K.K.;Tersoff,J.;Avouris,Ph.Phys.Re.Lett.,256805.(12)Rosenblatt,S.;Yaish,Y.;Park,J.;Gore,J.;Sazonova,V.;McEuen,P.L.NanoLett.,869.(13)Lieber,C.M.Sci.Am.,50.(14)Wolf,S.;Tauber,R.N.SiliconProcessingfortheVLSIEra;LatticePress:SunsetBeach,CA,1986;Vols.1,2.(15)Cui,Y.;Lauhon,L.J.;Gudiksen,M.S.;Wang,J.;Lieber,C.M.Appl.Phys.Lett.,2214.(16)Sze,S.M.PhysicsofSemicondutorDe;JohnWiley&Sons:NewYork,1981.(17)Gambino,J.P.;Colgan,E.G.Mater.Chem.Phys.,99.(18)SiNWsurfaceswerecleanedinOplasma(20W,60s,0.4TorrOfollowedbyreactionin(a)thepyridinesolutionwith0.5mg/mL(dimethylamino)pyridine(Aldrich)and1mg/mL4-nitrophenyloctadecanoate(or4-nitrophenylhexanoate,Aldrich)for6h,or(b)1Mtetraethylammoniumbromide(Aldrich)aqueoussolutionfor30min.Thedeviceswerethenrinsedanddriedwithnitrogengas.(19)Iler,R.K.TheChemistryofSilica;Wiley:NewYork,1979.(20)Scriven,E.F.V.Chem.Soc.Re,129.(21)Chau,R.Proc.IEDM,621.(22)ThemeasuredSiNWFETvalues(column2)werescaledtothedimensionsofastate-of-the-artMOSFET(column4)assumingthecontactresistanceismuchsmallerthanthechannelresistanceandtheresistanceofchannelisproportionaltolength,andcalculatingthecapacitancebasedonthecylinderoninfiniteplatemodelthecurrentperunitwidthusingaNWdiameter20nm.Calculationsdonotaccountforinterfacetrapstates,andthusitshouldbepossibletoincreasethetransconductancefurther.NanoLett.,Vol.3,No.2,