94K - views

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICSPART C APPLICATIONS AND REVIEWS VOL

37 NO 6 NOVEMBER 2007 1067 Survey of Wireless Indoor Positioning Techniques and Systems Hui Liu Student Member IEEE Houshang Darabi Member IEEE Pat Banerjee and Jing Liu Abstract Wireless indoor positioning systems have become very popular in re

Tags : NOVEMBER
Embed :
Pdf Download Link

Download Pdf - The PPT/PDF document "IEEE TRANSACTIONS ON SYSTEMS MAN AND CYB..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICSPART C APPLICATIONS AND REVIEWS VOL






Presentation on theme: "IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICSPART C APPLICATIONS AND REVIEWS VOL"— Presentation transcript:

1068IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTC:APPLICATIONSANDREVIEWS,VOL.37,NO.6,NOVEMBER2007datalinkisprovidedinapositioningsystem,itispossibletosendthemeasurementresultfromaself-positioningmeasuringunittotheremoteside,andthisiscalledindirectremoteposi-tioning,whichisthethirdsystemtopology.Ifthemeasurementresultissentfromaremotepositioningsidetoamobileunitviaawirelessdatalink,thiscaseisnamedindirectself-positioning,whichisthefourthsystemtopology.Ourpaperisdifferentfromtheprevioussurveypapers[1]and[2]inseveralways.Comparingwiththeprevioussurveypaper[1],ourpaperfocusesonindoorapplicationofwirelesslocationpositioningwhile[1]justgenerallydescribesthelo-cationsystemsforubiquitouscomputing,withoutaddressingdifferenttypesoflocationalgorithms,especiallyforwirelesslocationmethods.Also,thepaper[2]presentsaslightout-of-dateoverviewofthetechnologiesforwirelessindoorlocationsolutions,anddoesnotoffermuchdetailaboutthemandper-formancebenchmarkingforindoorwirelesspositioningsystem.Thepublicationdateofthispaperis2002,andsincethen,sev-eralwirelessindoorpositioningsystemsorsolutionshavebeendeveloped.Inthispaper,wepresentthelatestdevelopedsystemsorsolutions,andtheirlocationalgorithms.Ourmainpurposeistoprovideaqualitativeoverviewforthem.Whenpossible,wealsoofferaquantitivecomparisonofthesesystemsorsolutions.Thisreviewpaperisorganizedasfollows.SectionIIshowsthemeasuringprinciplesforlocationsensingandtheposition-ingalgorithmscorrespondingtodifferentmeasuringprinciples.Performancemetricsforindoorpositioningtechniquesareex-plainedinSectionIII.SectionIVpresentscurrentwirelessin-doorpositioningsystemsandsolutions,andtheirperformancecomparison.Finally,SectionVconcludesthepaperandgivespossiblefuturedirectionsforresearchonwirelesspositioningsystemsforindoorenvironments.II.MRINCIPLESANDItisnoteasytomodeltheradiopropagationintheindoorenvironmentbecauseofseveremultipath,lowprobabilityforavailabilityofline-of-sight(LOS)path,andspecicsiteparam-eterssuchasoorlayout,movingobjects,andnumerousreect-ingsurfaces.Thereisnogoodmodelforindoorradiomultipathcharacteristicsofar[2].Exceptusingtraditionaltriangulation,positioningalgorithmsusingsceneanalysisorproximityaredevelopedtomitigatethemeasurementerrors.Targetingdiffer-entapplicationsorservices,thesethreealgorithmshaveuniqueadvantagesanddisadvantages.Hence,usingmorethanonetypeofpositioningalgorithmsatthesametimecouldgetbetterA.TriangulationTriangulationusesthegeometricpropertiesoftrianglestoestimatethetargetlocation.Ithastwoderivations:laterationandangulation.Laterationestimatesthepositionofanobjectbymeasuringitsdistancesfrommultiplereferencepoints.So,itisalsocalledrangemeasurementtechniques.Insteadofmeasur-ingthedistancedirectlyusingreceivedsignalstrengths(RSS),timeofarrival(TOA)ortimedifferenceofarrival(TDOA)isusuallymeasured,andthedistanceisderivedbycomputingthe Fig.1.PositioningbasedonTOA/RTOFmeasurements.attenuationoftheemittedsignalstrengthorbymultiplyingtheradiosignalvelocityandthetraveltime.Roundtriptimeofight(RTOF)orreceivedsignalphasemethodisalsousedforrangeestimationinsomesystems.Angulationlocatesanobjectbycomputinganglesrelativetomultiplereferencepoints.Inthissurvey,wefocusontheaforementionedmeasurementsintheshorterrange,low-antenna,andindoorenvironment.1)LaterationTechniques:a)TOA:Thedistancefromthemobiletargettothemea-suringunitisdirectlyproportionaltothepropagationtime.Inordertoenable2-Dpositioning,TOAmeasurementsmustbemadewithrespecttosignalsfromatleastthreereferencepoints,asshowninFig.1[4].ForTOA-basedsystems,theone-waypropagationtimeismeasured,andthedistancebetweenmea-suringunitandsignaltransmitteriscalculated.Ingeneral,directTOAresultsintwoproblems.First,alltransmittersandreceiversinthesystemhavetobepreciselysynchronized.Second,atimes-tampmustbelabeledinthetransmittingsignalinorderforthemeasuringunittodiscernthedistancethesignalhastraveled.TOAcanbemeasuredusingdifferentsignalingtechniquessuchasdirectsequencespread-spectrum(DSSS)[22],[23]orultra-wideband(UWB)measurements[78].Astraightforwardapproachusesageometricmethodtocom-putetheintersectionpointsofthecirclesofTOA.Thepositionofthetargetcanalsobecomputedbyminimizingthesumofsquaresofanonlinearcostfunction,i.e.,least-squaresalgo-rithm[4],[5].Itassumesthatthemobileterminal,locatedat),transmitsasignalattime,thebasestationslo-catedat(),()receivethesignalattime.Asaperformancemeasure,thecostfunctioncanbeformedbycanbechosentoreectthereliabilityofthesignalreceivedatthemeasuringunit,andisgivenasfollows. isthespeedoflight,andx,y,t.Thisfunctionisformedforeachmeasuringunit,,...,N,bemadezerowiththeproperchoiceofx,y,and.ThelocationestimateisdeterminedbyminimizingthefunctionThereareotheralgorithmsforTOA-basedindoorlocationsystemsuchasclosest-neighbor(CN)andresidualweighting(RWGH)[5].TheCNalgorithmestimatesthelocationofthe Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 27, 2009 at 17:04 from IEEE Xplore. Restrictions apply. 1070IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTC:APPLICATIONSANDREVIEWS,VOL.37,NO.6,NOVEMBER2007 Fig.4.Positioningbasedonsignalphase. Fig.5.PositioningbasedonAOAmeasurement.beignoredifitissmall,comparedwiththetransmissiontime.However,forshort-rangesystems,itcannotbeignored.Analter-nativeapproachistousetheconceptofmodulatedreection[9],whichisonlysuitedforshort-rangesystems.AnalgorithmtomeasureRTOFofwirelessLANpacketsispresentedin[10]withtheresultofameasurementerrorofafewmeters.ThepositioningalgorithmsforTOAcanbedirectlyapplicableforRTOF.e)ReceivedSignalPhaseMethod:Thereceivedsignalphasemethodusesthecarrierphase(orphasedifference)toestimatetherange.Thismethodisalsocalledphaseofarrival(POA)[2].Assumingthatalltransmittingstationsemitpuresinusoidalsignalsthatareofthesamefrequency,withzerophaseoffset,inordertodeterminethephasesofsignalsre-ceivedatatargetpoint,thesignaltransmittedfromeachtrans-mittertothereceiverneedsanitetransitdelay.InFig.4,thetransmitterstationsAuptoDareplacedatparticularlocationswithinanimaginarycubicbuilding.Thedelayisexpressedasafractionofthesignal’swavelength,andisdenotedwiththe=(2fDinequation)=sin(2ftA,B,C,Disthespeedoflight.Aslongasthetransmittedsignal’swavelengthislongerthanthedi-agonalofthecubicbuilding,i.e.,,wecangettherangeestimation.Then,wecanusethesamepositioningalgorithmsusingTOAmeasurement.Thereceivermaymeasurephasedifferencesbetweentwosignalstransmit-tedbypairsofstations,andpositioningsystemsareabletoadoptthealgorithmsusingTDOAmeasurementtolocatethetarget.Foranindoorpositioningsystem,itispossibletousethesignalphasemethodtogetherwithTOA/TDOAorRSSmethodtone-tunethelocationpositioning.However,there-ceivedsignalphasemethodhasoneproblemofambiguouscar-rierphasemeasurementstoovercome.ItneedsanLOSsig-nalpath,otherwiseitwillcausemoreerrorsfortheindoorenvironment.2)AngulationTechniques(AOAEstimation):InAOA,thelocationofthedesiredtargetcanbefoundbytheintersectionofseveralpairsofangledirectionlines,eachformedbythecircularradiusfromabasestationorabeaconstationtothemobiletarget.AsshowninFig.5,AOAmethodsmayuseatleasttwoknownreferencepoints(A,B),andtwomeasuredanglestoderivethe2-Dlocationofthetarget.EstimationofAOA,commonlyreferredtoasdirectionnding(DF),canbeaccomplishedeitherwithdirectionalantennaeorwithanarrayofantennae.TheadvantagesofAOAarethatapositionestimatemaybedeterminedwithasfewasthreemeasuringunitsfor3-Dpo-sitioningortwomeasuringunitsfor2-Dpositioning,andthatnotimesynchronizationbetweenmeasuringunitsisrequired.Thedisadvantagesincluderelativelylargeandcomplexhard-warerequirement(s),andlocationestimatedegradationasthemobiletargetmovesfartherfromthemeasuringunits.Forac-curatepositioning,theanglemeasurementsneedtobeaccurate,butthehighaccuracymeasurementsinwirelessnetworksmaybelimitedbyshadowing,bymultipathreectionsarrivingfrommisleadingdirections,orbythedirectivityofthemeasuringaperture.SomeliteraturesalsocallAOAasdirectionofarrival(DOA).FormoredetaileddiscussionsonAOAestimationalgo-rithmsandtheirproperties,see[11]–[13].B.SceneAnalysisRF-basedsceneanalysisreferstothetypeofalgorithmsthatrstcollectfeatures(ngerprints)ofasceneandthenestimatethelocationofanobjectbymatchingonlinemeasurementswiththeclosestapriorilocationngerprints.RSS-basedlocationngerprintingiscommonlyusedinsceneanalysis.LocationngerprintingreferstotechniquesthatmatchtheÞngerprintofsomecharacteristicofasignalthatislocationdependent.Therearetwostagesforlocationngerprinting:ofinestageandonlinestage(orrun-timestage).Duringtheofinestage,asitesurveyisperformedinanenvironment.Thelocationcoordinates/labelsandrespectivesignalstrengthsfromnearbybasestations/measuringunitsarecollected.Duringtheonlinestage,alocationpositioningtechniqueusesthecurrentlyobservedsignalstrengthsandpreviouslycollectedinformationtogureoutanestimatedlocation.Themainchallengetothetechniquesbasedonlocationngerprintingisthatthereceivedsignalstrengthcouldbeaffectedbydiffraction,reection,andscatteringinthepropagationindoorenvironments.Thereareatleastvelocationngerprinting-basedposition-ingalgorithmsusingpatternrecognitiontechniquesofar:prob-abilisticmethods,-nearest-neighbor(NN),neuralnetworks,supportvectormachine(SVM),andsmallestM-vertexpolygon1)ProbabilisticMethods:Onemethodconsidersposition-ingasaclassicationproblem.Assumingthattherearetioncandidates,...,L,andistheobservedsignalstrengthvectorduringtheonlinestage,thefollowingcanbeobtained:i,j,...,n,j etal.:SURVEYOFWIRELESSINDOORPOSITIONINGTECHNIQUESANDSYSTEMSdenotestheprobabilitythatthemobilenodeisinlocation,giventhatthereceivedsignalvectoris.Alsoassumethat)istheprobabilitythatthemobilenodeisinlocation.Thegivendecisionruleisbasedonprobability.UsingBayes’formula,andassumingthati,j,...,nwehavethefollowingdecisionrulebasedonthelikelihoodthat()istheprobabilitythatthesignalvectorisreceived,giventhatthemobilenodeislocatedinlocationi,j,...,n,jInadditiontothehistogramapproach,kernelapproachisusedincalculatinglikelihood.AssumingthatthelikelihoodofeachlocationcandidateisaGaussiandistribution,themeanandstandarddeviationofeachlocationcandidatecanbecalculated.Ifthemeasuringunitsintheenvironmentareindependent,wecancalculatetheoveralllikelihoodofonelocationcandidatebydirectlymultiplyingthelikelihoodsofallmeasuringunits.Therefore,thelikelihoodofeachlocationcandidatecanbecal-culatedfromobservedsignalstrengthsduringtheonlinestage,andtheestimatedlocationistobedecidedbythepreviousdeci-sionrule.However,thisisapplicableonlyfordiscretelocationcandidates.Mobileunitscouldbelocatedatanyposition,notjustatthediscretepoints.Theestimated2-Dlocationgivenby(5)mayinterpolatethepositioncoordinatesandgivemoreaccurateresults.Itisaweightedaverageofthecoordinatesofallsamplinglocationsy)=Otherprobabilisticmodelingtechniquesforlocation-awareandlocation-sensitiveapplicationsinwirelessnetworksmayinvolvepragmaticallyimportantissueslikecalibration,ac-tivelearning,errorestimation,andtrackingwithhistory.SoBayesian-network-basedand/ortracking-assistedpositioninghasbeenproposed[48].NNaveragingusestheonlineRSStosearchclosestmatchesofknownlocationsinsignalspacefromthepreviously-builtdatabaseaccordingtorootmeansquareerrorsprinciple.Byaveragingtheselocationcandidateswithorwithoutadoptingthedistancesinsignalspaceasweights,anestimatedlocationisobtainedviaweightedNNorunweightedNN.Inthisapproach,istheparameteradaptedforbetter3)NeuralNetworks:Duringtheofinestage,RSSandthecorrespondinglocationcoordinatesareadoptedastheinputsandthetargetsforthetrainingpurpose.Aftertrainingofneuralnetworks,appropriateweightsareobtained.Usually,amulti-layerperceptron(MLP)networkwithonehiddenlayerisusedforneural-networks-basedpositioningsystem.Theinputvectorofsignalstrengthsismultipliedbythetrainedinputweightma-trix,andthenaddedwithinputlayerbiasifbiasischosen.Theresultisputintothetransferfunctionofthehiddenlayerneuron.Theoutputofthistransferfunctionismultipliedbythetrainedhiddenlayerweightmatrix,andthenaddedtothehiddenlayerbiasifitischosen.Theoutputofthesystemisatwo-elementvectororathree-elementsvector,whichmeansthe2-Dor3-Doftheestimatedlocation.4)SVM:SVMisanewandpromisingtechniquefordataclassicationandregression.Itisatoolforstatisticalanalysisandmachinelearning,anditperformsverywellinmanyclassi-cationandregressionapplications.SVMshavebeenusedexten-sivelyforawiderangeofapplicationsinscience,medicine,andengineeringwithexcellentempiricalperformance[15],[16].ThetheoryofSVMisfoundin[17]and[18].Supportvec-torclassication(SVC)ofmultipleclassesandsupportvectorregression(SVR)havebeenusedsuccessfullyinlocationn-gerprinting[19],[20].5)SMP:SMPusestheonlineRSSvaluestosearchforcan-didatelocationsinsignalspacewithrespecttoeachsignaltrans-mitterseparately.M-vertexpolygonsareformedbychoosingatleastonecandidatefromeachtransmitter(supposetotalofMtransmitters).Averagingthecoordinatesofverticesofthesmall-estpolygon(whichhastheshortestperimeter)givesthelocationestimate.SMPhasbeenusedinMultiLoc[74].C.ProximityProximityalgorithmsprovidesymbolicrelativelocationin-formation.Usually,itreliesuponadensegridofantennas,eachhavingawell-knownposition.Whenamobiletargetisde-tectedbyasingleantenna,itisconsideredtobecollocatedwithit.Whenmorethanoneantennadetectsthemobiletarget,itisconsideredtobecollocatedwiththeonethatreceivesthestrongestsignal.Thismethodisrelativelysimpletoimplement.Itcanbeimplementedoverdifferenttypesofphysicalmedia.Inparticular,thesystemsusinginfraredradiation(IR)andradiofrequencyidentication(RFID)areoftenbasedonthismethod.Anotherexampleisthecellidentication(Cell-ID)orcelloforigin(COO)method.Thismethodreliesonthefactthatmo-bilecellularnetworkscanidentifytheapproximatepositionofamobilehandsetbyknowingwhichcellsitethedeviceisusingatagiventime.ThemainbenetofCell-IDisthatitisalreadyinusetodayandcanbesupportedbyallmobilehandsets.III.PItisnotenoughtomeasuretheperformanceofapositioningtechniqueonlybyobservingitsaccuracy.Referringto[21]andconsideringthedifferencebetweentheindoorandoutdoorwire-lessgeolocation,weprovidethefollowingperformancebench-markingforindoorwirelesslocationsystem:accuracy,preci-sion,complexity,scalability,robustness,andcost.Thereafter,wemakeacomparisonamongdifferentsystemsandsolutionsinSectionIV.A.AccuracyAccuracy(orlocationerror)isthemostimportantrequire-mentofpositioningsystems.Usually,meandistanceerrorisadoptedastheperformancemetric,whichistheaverageEuclideandistancebetweentheestimatedlocationandthetruelocation.Accuracycanbeconsideredtobeapotentialbias,or 1072IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTC:APPLICATIONSANDREVIEWS,VOL.37,NO.6,NOVEMBER2007systematiceffect/offsetofapositioningsystem.Thehighertheaccuracy,thebetterthesystem;however,thereisoftenatradeoffbetweenaccuracyandothercharacteristics.Somecompromisebetween“suitable”accuracyandothercharacteristicsisneeded.B.PrecisionAccuracyonlyconsidersthevalueofmeandistanceerrors.However,locationprecisionconsidershowconsistentlythesys-temworks,i.e.,itisameasureoftherobustnessoftheposi-tioningtechniqueasitrevealsthevariationinitsperformanceovermanytrials.Wealsonoticethatsomeliteraturesdenethelocationprecisionasthestandarddeviationinthelocationerrororthegeometricdilutionofprecision(GDOP),butwepreferitasthedistributionofdistanceerrorbetweentheestimatedlocationandthetruelocation.Usually,thecumulativeprobabilityfunctions(CDF)ofthedistanceerrorisusedformeasuringtheprecisionofasystem.Whentwopositioningtechniquesarecompared,iftheiraccu-raciesarethesame,wepreferthesystemwiththeCDFgraph,whichreacheshighprobabilityvaluesfaster,becauseitsdis-tanceerrorisconcentratedinsmallvalues.Inpractice,CDFisdescribedbythepercentileformat.Forexample,onesystemhasalocationprecisionof90%within2.3m(theCDFofdistanceerrorof2.3mis0.9),and95%within3.5m;anotheronehasaprecisionof50%within2.3mand95%within3.3m.Wecouldchoosetheformersystembecauseofitshigherprecision.C.ComplexityComplexityofapositioningsystemcanbeattributedtohard-ware,software,andoperationfactors.Inthispaper,weem-phasizeonsoftwarecomplexity,i.e.,computingcomplexityofthepositioningalgorithm.Ifthecomputationofthepositioningalgorithmisperformedonacentralizedserverside,theposition-ingcouldbecalculatedquicklyduetothepowerfulprocessingcapabilityandthesufcientpowersupply.Ifitiscarriedoutonthemobileunitside,theeffectsofcomplexitycouldbeevident.Mostofthemobileunitslackstrongprocessingpowerandlongbatterylife;so,wewouldpreferpositioningalgorithmswithlowcomplexity.Usually,itisdifculttoderivetheanalyticcomplexityformulaofdifferentpositioningtechniques;thus,thecomputingtimeisconsidered.Locationrateisanimportantindicatorforcomplexity.Thedualoflocationrateislocationlag,whichisthedelaybetweenamobiletargetmovingtoanewlocationandreportingthenewlocationofthattargetbytheD.RobustnessApositioningtechniquewithhighrobustnesscouldfunctionnormallyevenwhensomesignalsarenotavailable,orwhensomeoftheRSSvalueoranglecharacterareneverseenbefore.Sometimes,thesignalfromatransmitterunitistotallyblocked,sothesignalcannotbeobtainedfromsomemeasuringunits.Theonlyinformationtoestimatethelocationisthesignalfromothermeasuringunits.Sometimes,somemeasuringunitscouldbeoutoffunctionordamagedinaharshenvironment.Thepositioningtechniqueshavetousethisincompleteinformationtocomputethelocation.E.ScalabilityThescalabilitycharacterofasystemensuresthenormalpo-sitioningfunctionwhenthepositioningscopegetslarge.Usu-ally,thepositioningperformancedegradeswhenthedistancebetweenthetransmitterandreceiverincreases.Alocationsys-temmayneedtoscaleontwoaxes:geographyanddensity.Geographicscalemeansthattheareaorvolumeiscovered.Densitymeansthenumberofunitslocatedperunitgeographicarea/spacepertimeperiod.Asmorearea/spaceiscoveredorunitsarecrowdedinanarea/space,wirelesssignalchannelsmaybecomecongested,morecalculationmaybeneededtoperformlocationpositioning,ormorecommunicationinfras-tructuremayberequired.Anothermeasureofscalabilityisthedimensionalspaceofthesystem.Thecurrentsystemcanlocatetheobjectsin2-Dor3-Dspace.Somesystemscansupportboth2-Dand3-Dspaces.F.CostThecostofapositioningsystemmaydependonmanyfactors.Importantfactorsincludemoney,time,space,weight,anden-ergy.Thetimefactorisrelatedtoinstallationandmaintenance.Mobileunitsmayhavetightspaceandweightconstraints.Mea-suringunitdensityisconsideredtobeaspacecost.Sometimes,wehavetoconsidersomesunkcosts.Forexample,aposition-ingsystemlayeredoverawirelessnetworkmaybeconsideredtohavenohardwarecostifallthenecessaryunitsofthatnet-workhavealreadybeenpurchasedforotherpurposes.Energyisanimportantcostfactorofasystem.Somemobileunits(e.g.,electronicarticlesurveillance(EAS)tagsandpassiveRFIDtags,whichareaddressedlater)arecompletelyenergypassive.Theseunitsonlyrespondtoexternaleldsand,thus,couldhaveanunlimitedlifetime.Othermobileunits(e.g.,deviceswithrechargeablebattery)havealifetimeofseveralhourswithoutrecharging.IV.SURVEYOFYSTEMSANDHavingidentiedthecommonmeasuringprinciples,thepo-sitioningalgorithmsandtheimportantperformancemetricsoflocationpositioningsystems,weareabletodiscussspecicsys-tems.Therearetwobasicapproachestodesigningawirelessgeolocationsystem.Therstapproachistodevelopasignal-ingsystemandanetworkinfrastructureoflocationmeasuringunitsfocusedprimarilyonwirelesslocationapplication.Thesecondapproachistouseanexistingwirelessnetworkinfras-tructuretolocateatarget.Theadvantageoftherstapproachisthatthedesignersareabletocontrolphysicalspecicationand,consequently,thequalityofthelocationsensingresults.Thetagwiththetargetcanbedesignedasaverysmallwearabletagorsticker,andthedensityofthesensorcanbeadjustedtotherequiredpositioningaccuracy.Theadvantageofthesecondapproachisthatitavoidsexpensiveandtime-consumingde-ploymentofinfrastructure.Thesesystems,however,mayneed etal.:SURVEYOFWIRELESSINDOORPOSITIONINGTECHNIQUESANDSYSTEMS Fig.6.Outlineofcurrentwireless-basedpositioningsystems.tousemoreintelligentalgorithmstocompensateforthelowaccuracyofthemeasuredmetrics.Severaltypesofwirelesstechnologiesareusedforindoorlocation.Fig.6depictsaroughoutlineofthecurrentwireless-basedpositioningsystems,whichisamodiedversionof[24,Fig.2].Itisbeyondthescopeofthispapertoprovideacompleteoverviewofsystemsavailabletillnow.Wefocusonthewirelesspositioningsystemsprimarilyforindoorsituations.Therearesomeclassicationapproachestosurveyingtheindoorpositioningsystem,suchasapplicationen-vironments(suchas2-D/3-Dpositioninginofce,warehouse,etc.),positioningalgorithms,andwirelesstechnologies.Inthispaper,weadoptthewirelesstechnologiesscheme,alsoaddress-ingtheirpositioningalgorithmsandtheirapplicationsituation.A.GPS-BasedGlobalpositioningsystem(GPS),oritsdifferentialcomple-mentDGPS[25],isoneofthemostsuccessfulpositioningsystemsinoutdoorenvironments.However,poorcoverageofsatellitesignalforindoorenvironmentsdecreasesitsaccuracyandmakesitunsuitableforindoorlocationestimation.SnapTrack,aQualcommCompany,pioneeredwirelessas-sistedGPS(A-GPS)toovercomethelimitationsofconventionalGPS,andprovideGPSindoorstechniquewithanaverageof5–50maccuracyinmostindoorenvironments.A-GPStechnol-ogyusesalocationserverwithareferenceGPSreceiverthatcansimultaneouslydetectthesamesatellitesasthewirelesshandset(ormobilestation)withapartialGPSreceiver,tohelpthepar-tialGPSreceiverndweakGPSsignals.ThewirelesshandsetcollectsmeasurementsfromboththeGPSconstellationandthewirelessmobilenetwork.Thesemeasurementsarecombinedbythelocationservertoproduceapositionestimation.Recently,AtmelandU-bloxannouncedtheavailabilityofanewGPSweaksignaltrackingtechnology,calledSuperSense.WiththisnewGPSsoftware,GPSnavigationbecomespossibleinbuildinginteriorsanddeepurbancanyonsbecauseofitsSnapTrack.http://www.snaptrack.com/AtmelCorporation.http://www.atmel.com/U-bloxAG.http://www.u-blox.comtrackingsensitivitybeyond158dBm.Itsperformanceisnotreportedsofar.LocataCorporationhasinventedanewpositioningtech-nologycalled[26],forprecisionpositioningbothin-doorsandoutside.Partofthe“Locatatechnology”consistsofatime-synchronizedpseudolitetransceivercalledaLocataLite.AnetworkofLocataLitesformsaLocataNet,whichtransmitsGPS-likesignalsthatallowsingle-pointpositioningusingcarrier-phasemeasurementsforamobiledevice(a).TheSatelliteNavigationAndPositioning(SNAP)GroupattheUni-versityofNewSouthWaleshasassistedinthedevelopmentofaandtestingofthenewtechnology.Thetestexperimentsdemonstrateproof-of-conceptforthe“Locatatechnology,”andshowthatcarrier-phasepointpositioning(withoutradiomodemdatalinks)ispossiblewithsubcentimeterprecision[26].B.RFIDRFIDisameansofstoringandretrievingdatathroughelec-tromagnetictransmissiontoanRFcompatibleintegratedcircuitandisnowbeingseenasameansofenhancingdatahandlingprocesses[27].AnRFIDsystemhasseveralbasiccomponents,includinganumberofRFIDreaders,RFIDtags,andthecom-municationbetweenthem.TheRFIDreaderisabletoreadthedataemittedfromRFIDtags.RFIDreadersandtagsuseade-nedRFandprotocoltotransmitandreceivedata.RFIDtagsarecategorizedaseitherpassiveoractive.PassiveRFIDtagsoperatewithoutabattery.Theyaremainlyusedtoreplacethetraditionalbarcodetechnologyandaremuchlighter,smallerinvolume,andlessexpensivethanactivetags.TheyreecttheRFsignaltransmittedtothemfromareaderandaddinformationbymodulatingthereectedsignal.However,theirrangesareverylimited.Thetypicalreadingrangeis1–2m,andthecostofthereadersisrelativelyhigh.PassiveRFIDsys-temsusuallymakeuseoffourfrequencybands:LF(125kHz),HF(13.56MHz),UHF(433,868–915MHz),andmicrowavefrequency(2.45GHz,5.8GHz).BewatorisaknownpassiveRFIDmanufacturer.ActiveRFIDtagsaresmalltransceivers,whichcanactivelytransmittheirID(orotheradditionaldata)inreplytoaninterro-gation.FrequencyrangesusedaresimilartothepassiveRFIDcaseexceptthelow-frequencyandhigh-frequencyranges.TheadvantagesofactiveRFIDarewiththesmallerantennaeandinthemuchlongerrange(canbetensofmeters).Activetagsareideallysuitedfortheidenticationofhigh-unit-valueproductsmovingthroughaharshassemblyprocess.WaveTrendTech-isoneofthefamousActiveRFIDmanufacturers.Awell-knownlocationsensingsystemusingtheRFIDtechnol-ogyisSpotON[28].SpotONusesanaggregationalgorithmfor3-Dlocationsensingbasedonradiosignalstrengthanalysis.SpotONresearchersdesignedandbuilthardwarethatservesasobjectlocationtags.IntheSpotONapproach,objectsarelocatedbyhomogenoussensornodeswithoutcentralcontrol,i.e.,AdHocmanner.SpotONtagsusereceivedRSSvalueasAtmel/U-blox.http://www.automotivedesignline.com/products/164901239BewatorLtd.http://www.bewator.com/uk/WaveTrendTechnologiesLtd.http://www.wavetrend.co.za/ Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 27, 2009 at 17:04 from IEEE Xplore. Restrictions apply. Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 27, 2009 at 17:04 from IEEE Xplore. Restrictions apply. Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 27, 2009 at 17:04 from IEEE Xplore. Restrictions apply. Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 27, 2009 at 17:04 from IEEE Xplore. Restrictions apply. 1078IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTC:APPLICATIONSANDREVIEWS,VOL.37,NO.6,NOVEMBER2007wirelesssensornetworksinawidevarietyofapplications,includingindoorlocationpositioning[65].Suchsystemsusingwirelesssensornetworkhavebeendescribedas“cooperative,”“relative,”“multi-hop,”“GPS-free,”or“network”localization;“ad-hoc”or“sensor”positioning;and“self-localization”invariouspapers.Communicationandmeasurementsbetweenmanypairsofsensorsarerequiredtoachievelocalizationforallsensors.Wereferthereadersto[14]formoredetailsaboutcooperativelocalization.Uptonow,twomajorsensornetworkstandardsaretheIEEE802.15.4physical(PHY)layerandmediumaccesscontrol(MAC)layerstandardforlow-ratewirelesspersonal-areanetworks(LR-WPANs),andtheZigBeenetworkingandapplicationlayerstandard[67].Thesestandardsallowforlocalizationinformationtobemeasuredbetweenpairsofsensors.Inparticular,RSScanbemeasuredinthe802.15.4PHYstandardviathelinkqualityindication(LQI),whichreportsthesignalstrengthassociatedwithareceivedpackettohigherlayers.Mostofthesensor-network-basedlocationestimationsuseRSSmeasurement[68],[69].SomesystemsalsouseTOAmeasurement[68],[70].OtherstakeAOAmeasurementsuchasadhocpositioningsystem(APS)[71].TableIbrieycomparesthecurrentsystemsandsolutions.Thesystemssolutionsshowninthistablearemainlytheoneswhosespecicationshavebeenreportedbytheirdevelopers.Wehaveexcludedthecasesinwhichlittleornoinformationonthemhasbeenmadeavailable.V.CONCLUSIONANDThispapersurveysthecurrentindoorpositioningtechniquesandsystems.Differentperformancemeasurementcriteriaarediscussedandseveraltradeoffsamongthemareobserved.Forexample,theonebetweencomplexityandaccuracy/precisionneedscarefulconsiderationwhenwechoosepositioningsys-temsandtechniquesfordifferentapplicationsenvironmentssuchaswarehousing,robotics,oremergency.Usually,loca-tionngerprintingschemeisbetterforopenareaswhileActiveRFIDissuitablefordenseenvironments.Intermsofscalabilityandavailability,thesepositioningtechniquesandsystemshavetheirownimportantcharacteristicswhenappliedinrealenvi-ronments.Thechoiceoftechniqueandtechnologysignicantlyaffectsthegranularityandaccuracyofthelocationinformation.Futuretrendsofwirelessindoorpositioningsystemsareasfollows.1)Neworhybridpositionalgorithmsareneeded.Afewoftheworkshavealreadybeenstartedsupportingsuchalgo-rithms.Forexample,acalibration-freelocationalgorithmbasedontriangulation,triangularinterpolationandextrap-olation(TIX),isintroducedin[75].Ahybridalgorithmispresentedin[76]forindoorpositioningusingWLANthataimstocombinethebenetsoftheRFpropagationlossmodelandngerprintingmethod.Thesameworkhasbeendonein[77].Theselectivefusionlocationestima-tion(SELFLOC)[72]algorithminferstheuserlocationbyselectivelyfusinglocationinformationfrommultiplewirelesstechnologiesand/ormultipleclassicallocationalgorithmsinatheoreticallyoptimalmanner.2)Internetworkingofdifferentwirelesspositioningsystemsisaresearchandpracticaltopicinordertoextendthepositioningrange.3)Wirelesscombinedwithothertechnologiessuchasoptical(e.g.,IR),inertial,dcelectromagneticandultrasonicforindoorlocationisanothertrend.Howtocombinethesetechnologiesintoapracticalsystemisatopicofsensor4)Howtodeploysensorstoimprovethepositioningaccu-racy,howtonishdeployingwirelesspositioningsysteminashorttime,especiallyforemergencyresponderappli-cationisalsoworthconsidering[73].5)WirelessindoorlocationusingUWB(from3.1to10.6GHz)techniquesandindoorpositioningusingmo-bilecellularnetworkareotherpromisingresearchtop-ics[31].6)Howtointegrateindoorandoutdoorpositioningsystemisanotherareaofresearch.Thisintegrationmayhelpindevelopingmoreefcientandrobustdetectionsystemsforpositioningofmobilecomputingnodes.Inthiscase,amobilenodewillbetrackedindoororoutdoorusingthesamedetectionsystem.[1]J.HightowerandG.Borriello,“Locationsystemsforubiquitouscomput-,vol.34,no.8,Aug.2001.[2]K.Pahlavan,X.Li,andJ.Makela,“Indoorgeolocationscienceandtech-nology,”IEEECommun.Mag.,vol.40,no.2,pp.112–118,Feb.2002.[3]C.Drane,M.Macnaughtan,andC.Scott,“PositioningGSMtelephones,”IEEECommun.Mag.,vol.36,no.4,pp.46–54,59,Apr.1998.[4]B.Fang,“Simplesolutionforhyperbolicandrelatedpositionxes,”Trans.Aerosp.Electron.Syst.,vol.26,no.5,pp.748–753,Sep.1990.[5]M.KanaanandK.Pahlavan,“Acomparisonofwirelessgeolocational-gorithmsintheindoorenvironment,”inProc.IEEEWirelessCommun.Netw.Conf.,2004,vol.1,pp.177–182.[6]D.Torrieri,“Statisticaltheoryofpassivelocationsystems,”IEEETrans.Aerosp.Electron.Syst.,vol.20,no.2,pp.183–197,Mar.1984.[7]J.Zhou,K.M.-K.Chu,andJ.K.-Y.Ng,“Providinglocationserviceswithinaradiocellularnetworkusingellipsepropagationmodel,”inProc.19thInt.Conf.Adv.Inf.Netw.Appl.,Mar.2005,pp.559–564.[8]A.TeuberandB.Eissfeller,“Atwo-stagefuzzylogicapproachforwirelessLANindoorpositioning,”inProc.IEEE/IONPositionLocationNavigat.,Apr.2006,vol.4,pp.730–738.[9]M.Kossel,H.R.Benedickter,R.Peter,andW.Bachtold,“Microwavebackscattermodulationsystems,”IEEEMTT-SDig.,vol.3,pp.1427–1430,Jun.2000.[10]A.GuntherandC.Hoene,“MeasuringroundtriptimestodeterminethedistancebetweenWLANnodes,”inProc.Netw.2005.,Waterloo,ON,Canada,May2005,pp.768–779[11]B.D.VanVeenandK.M.Buckley,“Beamforming:Aversatileapproachtospatialltering,”IEEEASSPMag.,vol.5,no.2,pp.4–24,Apr.1988.[12]P.StoicaandR.L.Moses,IntroductiontoSpectralAnalysis.EnglewoodCliffs,NJ:Prentice-Hall,1997.[13]B.Ottersten,M.Viberg,P.Stoica,andA.Nehorai,“ExactandlargesampleMLtechniquesforparameterestimationanddetectioninarrayprocessing,”inRadarArrayProcessing,S.S.Haykin,J.Litva,andT.J.Shepherd,Eds.NewYork:Springer-Verlag,1993,pp.99–151.[14]N.Patwari,J.Ash,S.Kyperountas,A.O.Hero,R.M.Moses,andN.S.Correal,“Locatingthenodes:Cooperativelocalizationinwirelesssensornetworks,”IEEESignalProcess.Mag.,vol.22,no.4,pp.54–69,Jul.2005.SapphireDARTUWB-basedReal-TimeLocationSystems.http://www.PlaceLab,aprivacy-observantlocationsystem.http://placelab.org etal.:SURVEYOFWIRELESSINDOORPOSITIONINGTECHNIQUESANDSYSTEMS[15]N.CristianiniandJ.Shawe-Taylor,AnIntroductiontoSupportVec-torMachines,CambridgeUniv.Press,2000.[Online].Available:http://www.support-vector.net[16]H.Liu,A.Kshirsagar,J.Ku,D.Lamb,andC.Niederberger,“Computa-tionalmodelsofintracytoplasmicsperminjectionprognosis,”inProc.13thEur.Symp.Artif.NeuralNetw.,Bruges,Belgium,Apr.2005,pp.115–[17]V.Kecman,LearningandSoftComputing.Cambridge,MA:MITPress,[18]V.Vapnik,TheNatureofStatisticalLearningTheory.NewYork:Springer,[19]M.BrunatoandR.Battiti,“Statisticallearningtheoryforlocationn-gerprintinginwirelessLANs,”Comput.Netw.,vol.47,pp.825–845,[20]C.L.Wu,L.C.Fu,andF.L.Lian,“WLANlocationdeterminationine-homeviasupportvectorclassication,”inProc.IEEEInt.Conf.Netw.,Sens.Control,2004,vol.2,pp.1026–1031.[21]S.Tekinay,E.Chao,andR.Richton,“Performancebenchmarkingforwirelesslocationsystems,”IEEECommun.Mag.,vol.36,no.4,pp.72–76,Apr.1998.[22]B.B.Peterson,C.Kmiecik,R.Hartnett,P.M.Thompson,J.Mendoza,andH.Nguyen,“Spreadspectrumindoorgeolocation,”J.Inst.Navigat.vol.45,no.2,pp.97–102,1998.[23]X.Li,K.Pahlavan,M.Latva-aho,andM.Ylianttila,“ComparisonofindoorgeolocationmethodsinDSSSandOFDMwirelessLAN,”inProc.IEEEVeh.Technol.Conf.,Sep.2000,vol.6,pp.3015–3020.[24]M.Vossiek,M.Wiebking,L.Gulden,P.Weighardt,andJ.Hoffmann,“Wirelesslocalpositioning—Concepts,solutions,applications,”inProc.IEEEWirelessCommun.Netw.Conf.,Aug.2003,pp.219–224.[25]P.K.Engee,“Theglobalpositioningsystem:Signals,measurementsandInt.J.WirelessInf.Netw.,vol.1,no.2,pp.83–105,[26]J.Barnes,C.Rizos,J.Wang,D.Small,G.Voigt,andN.Gambale.(2003).Locata:Thepositioningtechnologyofthefuture?presentedat6thInt.Symp.SatelliteNavig.Technol.Incl.MobilePositioningLo-cationServices,Melbourne,Australia[Online].pp.49–62.Available:http://www.gmat.unsw.edu.au/snap/snap.htm[27]M.Chiesa,R.Genz,F.Heubler,K.Mingo,andC.Noessel,RFID,(2002,Mar.).[Online].Available:http://people.interaction-ivrea.it/c.noessel/RFID/research.html[28]J.Hightower,R.Want,andG.Borriello,“SpotON:Anindoor3Dloca-tionsensingtechnologybasedonRFsignalstrength,”Univ.Washington,Seattle,Tech.Rep.UWCSE2000–02-02,Feb.2000.[29]L.M.Ni,Y.Liu,Y.C.Lau,andA.P.Patil,“LANDMARC:IndoorlocationsensingusingactiveRFID,”WirelessNetw.,vol.10,no.6,pp.701–710,Nov.2004.[30]J.J.CafferyandG.L.Stuber,“OverviewofradiolocationinCDMAcellularsystem,”IEEECommun.Mag.,vol.36,no.4,pp.38–45,Apr.[31]V.Otsason,A.Varshavsky,A.LaMarca,andE.deLara,“AccurateGSMindoorlocalization,”UbiComp2005,LectureNotesComputerScience,Springer-Varlag,vol.3660,pp.141–158,2005.[32]S.Gezici,Z.Tian,G.V.Giannakis,H.Kobaysahi,A.F.Molisch,H.V.Poor,andZ.Sahinoglu,“Localizationviaultra-widebandradios:Alookatpositioningaspectsforfuturesensornetworks,”IEEESignalProcess.Mag.,vol.22,no.4,pp.70–84,Jul.2005.[33]R.J.Fontana,“Recentsystemapplicationsofshort-pulseultra-wideband(UWB)technology,”IEEETrans.Microw.TheoryTech.,vol.52,no.9,pp.2087–2104,Sep.2004.[34]R.J.Fontana,E.Richley,andJ.Barney,“Commercializationofanul-trawidebandprecisionassetlocationsystem,”inProc.IEEEUltraWidebandSyst.Technol.Conf.,Reston,VA,Nov.2003,pp.369–373.[Online].Available:http://www.multispectral.com[35]P.BahlandV.N.Padmanabhan,“RADAR:Anin-buildingRF-baseduserlocationandtrackingsystem,”inProc.IEEEINFOCOM2000,Mar.,vol.2,pp.775–784.[36]P.BahlandV.N.Padmanabhan,“EnhancementstotheRADARuserlocationandtrackingsystem,”MicrosoftCorp.,Tech.Rep.MSR-TR-2000–12,Feb.2000.[37]M.Youssef,A.Agrawala,andA.UdayaShankar,“WLANlocationde-terminationviaclusteringandprobabilitydistributions,”IEEEInt.Conf.PervasiveComput.Commun.,Mar.2003,pp.143–151.[38]M.YoussefandA.K.Agrawala,“HandlingsamplescorrelationintheHorussystem,”IEEEINFOCOM2004,HongKong,vol.2,pp.1023–1031,Mar.2004.[39]T.Roos,P.Myllymaki,H.Tirri,P.Misikangas,andJ.Sievanan,“Aproba-bilisticapproachtoWLANuserlocationestimation,”Int.J.WirelessInf.Netw.,vol.9,no.3,pp.155–164,Jul.2002.[40]P.Castro,P.Chiu,T.Kremenek,andR.R.Muntz,“Aprobabilisticroomlocationserviceforwirelessnetworkedenvironments,”inProc.3rdInt.Conf.UbiquitousComput.,Atlanta,GA,Sep.2001,pp.18–34.[41]R.Battiti,T.L.Nhat,andA.Villani,“Location-awarecomputing:AneuralnetworkmodelfordetermininglocationinwirelessLANs,”Tech.Rep.DIT-02–0083,2002.[42]S.Saha,K.Chaudhuri,D.Sanghi,andP.Bhagwat,“Locationde-terminationofamobiledeviceusingIEEE802.11baccesspointsignals,”inProc.IEEEWirelessCommun.Netw.Conf.,Mar.2003,vol.3,pp.1987–1992.[43]S.Thrun,“Probabilisticalgorithmsinrobotics,”AIMag.,vol.21,no.4,pp.93–109,2000.[44]A.M.Ladd,K.E.Bekris,G.Marceau,A.Rudys,L.E.Kavraki,andD.S.Wallach,“Usingwirelessethernetforlocalization,”inProc.2002IEEE/RJSInt.Conf.Intell.RobotsSyst.,2002,vol.1,pp.402–[45]A.M.Ladd,K.E.Bekris,A.Rudys,L.E.Kavraki,andD.S.Wallach,“Onthefeasibilityofusingwirelessethernetforindoorlocalization,”Trans.Robot.Autom.,vol.20,no.3,pp.555–559,Jun.2004.[46]A.Haeberlen,E.Flannery,A.M.Ladd,A.Rudys,D.S.Wallach,andL.E.Kavraki,“Practicalrobustlocalizationoverlarge-scale802.11wire-lessnetworks,”inProc.10thACMInt.Conf.MobileComput.Netw.,Philadelphia,PA,Sep.26–Oct.1,2004,pp.70–84.[47]S.Siddiqi,G.S.Sukhatme,andA.Howard,“ExperimentinMonte-CarlolocalizationusingWiFisignalstrength,”inProc.Int.Conf.Adv.Robot.Combra,Portugal,2003,pp.210–223.[48]P.Kontkanen,P.Myllymaki,T.Roos,H.Tirri,K.Valtonen,andH.Wettig,“Topicsinprobabilisticlocationestimationinwirelessnetworks,”inProc.15thIEEESymp.Pers.,Indoor,MobileRadioCommun.,Barcelona,Spain,Sep.2004,vol.2,pp.1052–1056.[49]Z.Xiang,S.Song,J.Chen,H.Wang,J.Huang,andX.Gao.(2004,Sep./Nov.).AWLANbasedindoorpositioningtechnology.IBMJ.Res.Develop.[Online].Available:http://researchweb.watson.[50]AeroScoutCompany.[Online].Available:http://www.aeroscout.com/[51]S.Manapure,H.Darabi,V.Patel,andP.Banerjee,“Acomparativestudyofradiofrequency-basedindoorlocationsystems,”inProc.IEEEInt.Conf.Netw.,Sens.Control,2004,vol.2,pp.1265–1270.[52]P.Krishnan,A.S.Krishnakumar,W.-H.Ju,C.Mallows,andS.Ganu,“AsystemforLEASE:LocationestimationassistedbystationaryemittersforindoorRFwirelessnetworks,”inProc.IEEEINFOCOM,Mar.2004,pp.21–32.[53]M.Eallbaum,“Wheremops:Anindoorgeolocationsystem,”inProc.IEEEInt.Symp.Pers.,Indoor,MobileRadioCommun.,Sep.2002,vol.4,pp.1967–1971.[54]A.Smailagic,D.P.Siewiorek,J.Anhalt,D.Kogan,andY.Wang,“Lo-cationsensingandprivacyinacontextawarecomputingenvironment,”Proc.Int.Conf.PervasiveComput.,May2001,pp.10–17.[55]A.Kotanen,M.Hannikainen,H.Leppakoski,andT.D.Hamalainen,“ExperimentsonlocalpositioningwithBluetooth,”inProc.IEEEInt.Conf.Inf.Technol.:Comput.Commun.,Apr.2003,pp.297–303.[56]J.Hallberg,M.Nilsson,andK.Synnes,“PositioningwithBluetooth,”Proc.IEEE10thInt.Conf.Telecommun.,Mar.2003,vol.2,pp.954–[57]J.WerbandC.Lanzl,“Designingapositionsystemndingthingsandpeopleindoors,”IEEESpectr.,vol.35,no.9,pp.71–78,Sep.[58]HPSmartLOCUS.[Online].Available:http://www.rdjournal.com/article/articleview/1211/1/50/.[59]MITCricketIndoorLocationSystem.[Online].Available:http://nms.lcs.mit.edu/cricket/.[60]R.Want,A.Hopper,V.Falcao,andJ.Gibbons,“TheactivebadgelocationACMTrans.Inf.Syst.,pp.91–102,Jan.1992.[61]A.Schwaighofer,M.Grigoras,V.Tresp,andC.Hoffmann,“GPPS:AGaussianprocesspositioningsystemforcellularnetworks,”ininNeuralInformationProcessingSystems.Cambridge,MA:MITPress,[62]H.KoshimaandJ.Hoshen,“Personallocatorservicesemerge,”Spectr.,vol.37,no.2,pp.41–48,Feb.2000.[63]I.Akyildiz,W.Su,Y.Sankarasubramaniam,andE.Cayirci,“Wirelesssensornetworks:Asurvey,”Comput.Netw.J.,vol.38,no.4,pp.393–422,Mar.2002. 1080IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTC:APPLICATIONSANDREVIEWS,VOL.37,NO.6,NOVEMBER2007[64]B.J.Feder.(2004,Jul.26).WirelesssensornetworksspreadtonewNewYorkTimes[Online].Available:http://www.nytimes.com/2004/07/26/business/26sensor.html[65]A.Brooks,A.Makarenko,T.Kaupp,S.Williams,andH.Durrant-Whyte,“Implementationofanindooractivesensornetwork,”inProc.9thInt.Symp.Exp.Robot.2004,Singapore,Jun.18–21,2004,pp.37–46.[66]C.Savarese,J.M.Rabaey,andJ.Beutel,“Locationingindistributedad-hocwirelesssensornetworks,”inProc.IEEEICASSP,May2001,pp.2037–2040.[67]ZigBeeTMAlliance.(2004,Dec.).Networkspecicationversion1.0.Tech.Rep.02130r10[Online].Available:http://www.zigbee.org[68]N.Patwari,A.O.Hero,M.Perkins,N.S.Correal,andR.J.O’Dea,“Relativelocationestimationinwirelesssensornetworks,”IEEETrans.SignalProcess.,vol.51,no.8,pp.2137–2148,Aug.2003.[69]J.N.AshandL.C.Potter,“Sensornetworklocalizationviareceivedsig-nalstrengthmeasurementswithdirectionalantennas,”inProc.AllertonConf.Commun.,Control,Comput.,Sep.2004,pp.1861–1870.[70]A.Savvides,C.C.Han,andM.B.Srivastava,“Danamicne-grainedlocalizationinad-hocwirelesssensornetworks,”inProc.ACMInt.Conf.MobileComput.Netw.,May2001,pp.166–179.[71]D.NiculescuandB.Nath,“AdHocPositioningSystem(APS)usingAoA,”inProc.IEEEINFOCOM,SanFrancisco,CA,Apr.2003,vol.3,pp.1734–1743.[72]Y.Gwon,R.Jain,andT.Kawahara,“Robustindoorlocationestimationofstationaryandmobileusers,”inProc.IEEEINFOCOM,Mar.2004,vol.2,pp.1032–1043.[73]H.Liu,H.Darabi,andP.Banerjee,“Anewrapidsensordeploymentapproachforrstresponders,”Int.J.Intell.ControlSyst.,vol.10,no.2,pp.131–142,Jun.2005.[74]P.Prasithsangaree,P.Krishnamurthi,andP.K.Chrysanthis,“OnindoorpositionwithwirelessLANs,”inProc.IEEEInt.Symp.Pers.Indoor,MobileRadioCommun.,Sep.2002,vol.2,pp.720–724.[75]Y.GwonandR.Jain,“Errorcharacteristicandcalibaration-freetech-niquesforwirelessLAN-basedlocationestimation,”inProc.Mobi-WacÕ04,Philadelphia,PA,Oct.1,2004,pp.2–9.[76]J.Kwon,B.Dundar,andP.Varaiya,“Hybridalgorithmforindoorposition-ingusingwirelessLAN,”IEEEVeh.Technol.Conf.,vol.7,pp.4625–4629,Sep.2004.[77]B.Li,A.Dempster,C.Rizos,andJ.Barnes,“Hybridmethodforlocal-izationusingWLAN,”inProc.SpatialSci.Conf.,Melbourne,Australia,Sep.2005,pp.341–350.[78]N.S.Correal,S.Kyperountas,Q.Shi,andM.Welborn,“Anultrawidebandrelativelocationsystem,”inProc.IEEEConf.UltraWidebandSyst.Technol.,Nov.2003,pp.394–397. HuiLiu(S’)receivedtheB.S.degreeinelectri-calengineeringfromNorthChinaElectricPowerUniversity,BaoDing,China,theMaster’sdegreeinelectricalengineeringfromtheBeijingUniversityofTelecommunicationsandPosts,Beijing,China.HeiscurrentlyworkingtowardthePh.D.degreeinelec-tricalandcomputerengineeringattheUniversityofIllinois,Chicago.Hisresearchinterestsincludecommunication,sta-tisticalsignalprocessing,controlandautomation,andarticialintelligence. HoushangDarabireceivedtheB.S.degreeinindus-trialengineeringfromTechnologyandscienceUni-versity,Tehran,Iran,M.S.degreeinindustrialengin-erringfromSharifUniversityofTechnology,Tehran,Iran,andthePh.D.degreeinindustrialengineeringfromRutgersUniversity,NewBrunswick,NJ.HeiscurrentlyanAssociateProfessorwiththeDepartmentofMechanicalandIndustrialEngineer-ing,UniversityofIllinois,Chicago.Hisresearchin-terestsincludeapplicationofdiscrete-eventsystemscontroltheoryinmodelingandanalysisofserviceandmanufacturingsystems,computer-integratedmanufacturing,supplychainnetworks,andmanufacturinginformationsystems.Heistheauthorofmanypaperspublishedinseveraljournalsandconferenceproceedings.Dr.DarabiisaSeniorMemberoftheInstituteofIndustrialEngineers,andamemberoftheInstituteforOperationsResearchandtheManagementSciences. PatBanerjeereceivedtheB.Tech.degreeinmechan-icalengineeringfromtheIndianInstituteofTechnol-ogy,Kanpur,in1984,andtheM.S.andPh.D.degreesinindustrialengineeringfromPurdueUniversity,WestLafayette,IN,in1987and1990,respectively.HeiscurrentlyaProfessorintheDepartmentofMechanicalandIndustrialEngineeringandofCom-puterSciencewiththeUniversityofIllinois,Chicago.Hewasonthe2002ResearchVisionaryBoardatMotorolaLaboratories.Hiscurrentresearchinterestsincludevirtualrealityapplications;hapticsapplica-tions;sensors,diagnostics,andprognostics;immersivelearningeffectivenessanddisplayinterfaces;andlinearandnonlineardesignoptimizationmodels.Heistheauthorofover100publications,includingatextbookVirtualManufac-(Wiley,2001).HewasaDepartmentEditoroftheIIETransactionsProf.BanerjeeisaFellowoftheAmericanSocietyofMechanicalEngineers(ASME).HereceivedtheASMEMED/MHEDBestTechnicalPaperAward.HewasanAssociateEditoroftheIEEETRANSACTIONSONOBOTICSANDUTOMATION JingLiureceivedtheB.S.degreeinchemicalen-gineeringfromtheHebeiUniversityofTechnology,Tianjin,China,theM.S.degreeinmechanicalen-gineeringfromtheBeijingUniversityofPostsandTelecommunications,Beijing,China,andthePh.D.degreeinindustrialengineeringfromtheUniversityofIllinois,Chicago,in2005.SheiscurrentlyaResearcherinGeneralMotorsR&DCenter,Warren,MI,USA.Herresearchin-terestsincludeapplicationofdiscrete-eventsystemscontroltheoryinmodelingandanalysisofmanufac-turingsystems,andplantoorsystemcontrols.Dr.LiuisamemberoftheInstituteofElectricalandElectronicsEngineers,PhiKappaPhi,andtheInstituteofIndustrialEngineers.