/
TAIWANESE JOURNAL OF MATHEMATICS Vol TAIWANESE JOURNAL OF MATHEMATICS Vol

TAIWANESE JOURNAL OF MATHEMATICS Vol - PDF document

calandra-battersby
calandra-battersby . @calandra-battersby
Follow
391 views
Uploaded On 2015-05-04

TAIWANESE JOURNAL OF MATHEMATICS Vol - PPT Presentation

11 No 1 pp 267275 March 2007 This paper is available online at httpwwwmathnthuedutwtjm REDUCED AND pq BAER MODULES Muhittin Bas er and Abdullah Harmanci Abstract In this paper we study pq Baer modules and some polynomial extensi ID: 60325

baer module ring reduced module baer reduced ring modules theorem called corollary armendariz rings resp left quasi proof power

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "TAIWANESE JOURNAL OF MATHEMATICS Vol" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

TAIWANESEJOURNALOFMATHEMATICSVol.11,No.1,pp.267-275,March2007Thispaperisavailableonlineathttp://www.math.nthu.edu.tw/tjm/REDUCEDANDp.q.-BAERMODULESMuhittinBas¸erandAbdullahHarmanciInthispaper,westudyp.q.-Baermodulesandsomepolynomialextensionsofp.q.-Baermodules.Inparticular,weshow:(1)Forareduced ReceivedJanuary4,2005,acceptedMarch21,2005.CommunicatedbyShun-JenCheng.MathematicsSubjectClassification:16D80,16S36.Keywordsandphrases:Reducedmodule,p.q.-Baermodule. MuhittinBas¸erandAbdullahHarmanciIn[12]Lee-Zhouintroducedthefollowingnotation.Foramodule,weex;]=si=0mixi:s0,miM,M[[x;]]==x,xxx,x]]=EachoftheseisanAbeliangroupunderanobviousadditionoperation.More-More-x;]becomesamoduleoveroverx;]underthefollowingscalarproductoperation:ForForx;]andf(x)=ti=0aixiR[x;]m(x)f(x)=s+tk=0i+j=kmii(aj)xk.Similarly,,x;]]ismoduleoveroverx;]].Themodulesmodulesx;]andM[[x;]]arecalledtheskewpolynomialextensionandtheskewpowerseriesextensionofrespectively.If,thenwithasimilarscalarproduct,product,x,xxx,x)becomesamoduleoveroverx,xxx,x).TheThex,xxx,xarecalledtheskewLaurentpolynomialandtheskewLaurentpowerseriesextensionof,respectively.Firstwerecallthefollowingtheorem.Theorem1.[12,Theorem1.6]Thefollowingareequivalentforamodule-reduced;educed;x;]R[x;]isreduced;educed;x;]]R[[x;]]isreduced.If,thentheconditionsareequivalenttoeachofofx,xxx,xŠ1;]isreduced;educed;x,xxx,xŠ1;]]isreduced. Reducedandp.q.-BaerModulesAccordingtoLee-Zhou[12]amoduleiscalledifthefol-lowingconditions(1)and(2)aresatisfied,andmoduleiscalledofpowerseriestypeifthefollowingconditions(1)and(3)aresatisfied:(1)Forifandonlyif)=0(2)Foranyanyx;]andf(x)=ti=0aixiR[x;],m(x)f(x)=0)=0forall(3)Foranyanyx;]]andf(x)=i=0aixiR[[x;]],m(x)f(x)=0)=0forallThemoduleiff-Armendariz;wecalldarizofpowerseriestype-Armendarizofpowerseriestype.If-reducedthen-Armendarizofpowerseriestype.IfofpowerseriestypethenForasubsetofamodule,let.In[12]Lee-ZhouintroducedBaermodules,quasi-Baermodulesand.-modulesasfollows.iscalledif,foranysubsetiscalledif,foranysubmoduleiscalledprincipallyprojective(orsimply)if,foranyInthispaper,westudyp.q.-modulesandthesomepolynomialandpowerseriesextensionsofp.q.-modules.Inparticular,weshow:(1)Forareducedmoduleisap.p.-moduleiffisap.q.-Baermodule.(2)Ifisanmodulewhereisanendomorphismof,thenisap.q.-Baermoduleifffx;]R[x;]isap.q.-Baermodule.(3)Foranarbitrarymoduleisap.q.-Baermoduleifandonlyififx]R[x]isap.q.-Baermodule.Webeginwiththefollowingdefinitionwhichisdefinedin[10].Definition2.beamodule.iscalledprincipallyquasi-Baerp.q.)moduleif,foranyItisclearthatisarightp.q.-Baerringiffisap.q.-Baermodule.Ifp.q.-Baerring,thenforanyrightidealisap.q.-Baermodule.Every MuhittinBas¸erandAbdullahHarmancisubmoduleofap.q.-Baermoduleisp.q.-Baermodule.Moreover,everyquasi-Baermoduleisp.q.-Baer,andeveryBaermoduleisquasi-Baer.iscommutativethenp.p.-moduleiffp.q.-Baermodule.Thefollowingexamplesshowthatthereexistsap.q.-Baermodulethatisnotap.p.Example3.[7,Example2(1)]Letbetheringofintegersandfullmatrixringover.Weconsidertheringd,bThenthemodulep.q.-Baer,butitisnotap.p.Theorem4.beamodulesuchthatforanymRa.Thenisap.p.-moduleifandonlyifisap.q.-Baermodule.Proof..Ifandbyassumption,mRaandso.Then.Butholds.Consequently,.Hencetheclaimfollows. Ournextresultextends[7,Lemma1].Corollary5.beareducedmodule.Thenisap.p.-moduleifandonlyifisap.q.-Baermodule.Proof.isareducedmodule.ThenM,aR,mamRaby[12,Lemma1.2].TheclaimfollowsfromTheorem4. Corollary6.[7,Lemma1]beareducedring.Thenisarightp.p.ifandonlyifisarightp.q.-Baerring.Theorem7.beanendomorphismofandassumethat,for)=0.Thenthefollowinghold:(1)((x;]R[x;]isap.q.-Baermodule,thenisap.q.-Baermodule.Theconverseholdsifinadditionreduced.educed.x;]]R[[x;]]isp.q.-Baer,thenisp.q.-Baer..x,xxx,xŠ1;]isap.q.-Baermodule,thenisap.q.-Baermodule.Theconverseholdsifinadditionreduced. Reducedandp.q.-BaerModulesModulesx,xxx,xŠ1;]]isap.q.-Baermodule,thenisap.q.-Baermodule.Proof.(1)(a)Similartotheproofof(1)(b).Converseof(1)(a):Assumethatisan-reducedmoduleandp.q.module.ForanymRa.ThenbyTheoremisap.p.-module.Sinceisan-reducedmodule,By[12,Theorem2.11.(1)(a)],1.(1)(a)],x;]R[x;]isp.p.-module.SinceSincex;]R[x;]isreducedbyTheorem1.ByCorollary5,5,x;]R[x;]isap.q.Baermodule.(1)(b)SupposeSupposex;]]R[[x;]]isap.q.-Baermodule.Forwehavehavex;]](mR[[x;]])==x;]]wheref(x)2=f(x)R[[x;]].ThusThusx;]]rR[[x;]](mR)=rR(mR)[[x;]].ForForx;]],mRbforallandhencemR)=0forall,byassumption.Foranyanyx;]],u(x)g(x)=ijuii(bj)xi+j=0.Sog(x)rR[[x;]]((mR)[[x;]]))x;]]==x;]].Write,whereallThen,foranyforsomesomex;]]sof(x)a=f(x)f(x)h(x)=f(x)h(x)=a.Itfollowsthatforall.Sop.q.-Baermodule.Nowtherestisclear(2)Similartotheproofof(1). Corollary8.ThefollowingholdforamoduleIfanyoneofofx]R[x],M[[x]]R[[x]],M[x,xxx,xŠ1]andM[[x,xxx,xŠ1]]isap.q.-Baermodule,thensoisbereduced.Ifisap.q.-Baer,thenbothbothx]R[x]andM[x,xxx,xŠ1]arep.q.-Baer.Corollary9.ThefollowingholdforaringIfanyoneofofx],R[[x]],R[x,xxx,xisarightp.q.-Baerring,thensoisbeareducedring.Ifisrightp.q.-Baer,thenbothbothx]andR[x,xarep.q.-Baerring. MuhittinBas¸erandAbdullahHarmanciExample10.Thereisareducedp.q.-Baermodulesuchthatthatx]]R[[x]]isnotap.q.-Baermodule.Proof.beafieldandbetheringiseventuallyconstantwhichisthesubringof,where,....Letdenotethe.Weclaimisap.q.-Baermoduleandreduced.ButButx]]R[[x]]isnotp.q.-Baermodule.Itiswellknownthatisap.q.-Baermoduleandreduced.denotethe”unitvector”,...,,...andlet,...···x]]R[[x]].Assumethatthatx]]R[[x]]isap.q.Baermodule.ThenThenx]](m(x)R[[x]])==x]]forsomeidempotentidempotentx]].Sinceiscommutativering,everyidempotentintheringringx]]belongstobyLemma8in[9].Hencebelongsto,sayNowitiseasytocheckthatthatx]](m(x)R[[x]])==x]]impliesrR(X)=f0R.ThisisnotpossiblebyExample7.54in[11].ThusThusx]]R[[x]]isnotp.q.module.Sinceisreducedreducedx]]R[[x]]isreducedbyTheorem1.ThereforeThereforex]]R[[x]]isnotp.q.-BaermodulebyCorollary5. Recallfrom[4],anidempotent),forall.Equivalently,isleft(resp.right)semicentralif)isanidealof.Ifisap.q.-Baermodule,thenisgeneratedbyaleftsemicentralidempotentbecauseisanideal.Weuseforthesetofallleftsemicentralidempotents.ThenexttheoremimprovedCorollary8forthepolynomialextensioncase.Theorem11.isap.q.-Baermoduleifandonlyififx]R[x]isap.q.Proof.isap.q.-Baermodule.LetLetx].Thereexistssuchthat,for,...,n....e.ThenThenx]rR[x](m(x)R[x]).ObserveObservex](m(x)R[x])rR[x](m(x)R).Leth(x)rR[x](m(x)R)andg(x)=b0+b1x+...+bkxkR[x].Then Reducedandp.q.-BaerModulesModulesx](m(x)R[x]).Consequently,,x](m(x)R[x])==x](m(x)R).Now,letletx](m(x)R).Since)=0wehavethefollowingsystemofequationswhereisanarbitraryelementofByfirstequation,,where.Letinequation(1).Then.But.Hence,where.Since,thenequation(1)yields.Hence.Takeinequation(2).Then.But=0=.Hence,soandsowehavebyequation(2)Inequation(2)substitutetoobtain.But,so.Thus,thenequation(2)yields.Hence.Summarizingatthispoint,wehaveR,a.Continuingthisprocedureyieldsforall,...,t..x].ConsequentlyConsequentlyx]=rR[x](m(x)R[x]).Conversely,iffx]R[x]isap.q.-Baer,thenisp.q.-BaerbyCorollary8(2). Corollary12.Assumethatisacommutativering.Thenisap.p.ifandonlyififx]R[x]isap.p.Proof.ThisisanimmediateconsequenceofTheorem11,sinceifiscom-mutativethenisap.p.-moduleifandonlyifisap.q.-Baermoduleandiscommutativeifandonlyififx]isacommutative. Corollary13.[4,Theorem3.1]isarightp.q.-Baerringifandonlyififx]isarightp.q.-Baerring. MuhittinBas¸erandAbdullahHarmanciCorollary14.[8,Theorem1.2]isacommutativering.Thenisap.p.-ringifandonlyififx]isap.p.Corollary15.[1,TheoremA]beareducedring.Thenisap.p.ifandonlyififx]isap.p.Corollary16.16.x]]R[[x]]isap.q.-Baermodule,thensoisProof.Thisresultfollowsfrom[4,Proposition2.5]andaproofsimilartothatusedinTheorem11. Corollary17.[4,Proposition3.5.]3.5.]x]]isarightp.q.-Baerring,thensoWewouldliketothankProfessorYiqiangZhoufromMemorialUniversityofNewfoundlandforhisvaluablesuggestionsandcommentsduringhisvisittotheModuleTheoryGroup,HacettepeUniversity,Ankara.WealsothanktoTurkishScientificandResearchCouncilforsupportZhou’svisit.1.E.P.Armendariz,AnoteonextensionsofBaerandp.p.J.AustralianMath.(1974),470-473.2.G.F.Birkenmeier,IdempotentsandCompletelySemiprimeIdeals,Comm.Algebra(1983),567-580.3.G.F.Birkenmeier,J.Y.Kim,J.K.Park,Onextensionsofquasi-Baerandprincipallyquasi-Baerrings,Preprint.4.G.F.Birkenmeier,J.Y.Kim,J.K.Park,OnPolynomialextensionsofprincipallyquasi-Baerrings,KyungpookMath.J.(2000),247-253.5.A.W.Chatters,C.R.Hajarnavis,RingswithChainConditions,Pitman,Boston,6.W.E.Clark,Twistedmatrixunitssemigroupalgebras,DukeMath.J.7.C.Y.Hong,N.K.KimandT.K.Kwak,OreExtensionsofBaerandp.p.PureAppl.Algebra(2000),215-226.8.S.Jøndrup,p.p.-Ringsandfinitelygeneratedflatideals,Proc.Amer.Math.Soc.(1971),431-435. Reducedandp.q.-BaerModules9.N.K.Kim,Y.Lee,ArmendarizRingsandReducedRings,J.Algebra10.M.T.Kos¸an,M.Bas¸erandA.Harmanci,Quasi-ArmendarizModulesandRings,11.T.Y.Lam,LecturesonModulesandRings,Springer-Verlag,NewYork,1999.12.T.K.LeeandY.Zhou,ReducedModules,Rings,modules,algebrasandabeliangroups,365-377,LectureNotesinPureandAppl.Math.,236,Dekker,Newyork,13.T.K.LeeandY.Zhou,ArmendarizandReducedRings,Comm.Alg.MuhittinBas¸erDepartmentofMathematics,FacultyofScienceandArts,KocatepeUniversity,ANSCampusTR-03200,Afyon-TurkeyE-mail:mbaser@aku.edu.trAbdullahHarmanciDepartmentofMathematics,HacettepeUniversity,Ankara-TurkeyE-mail:harmanci@hacettepe.edu.tr