/
IIntroduction IIntroduction

IIntroduction - PDF document

candy
candy . @candy
Follow
344 views
Uploaded On 2021-08-10

IIntroduction - PPT Presentation

34IIntroductionOrganometallic compounds are amongst the most often used reagents in organic The earliest organometallic compound was already discovered in the early 19th century Zeises salt a zincol ID: 861125

chem dry water extra dry chem extra water msolution compounds organolithium angew real organic butyllithium acros reaction rubber100ea org

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IIntroduction" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 3 I.Introduction . . . . . . . . . . . .
3 I.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II.Organolithium compounds, properties & structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5III.Reactions of organolithium compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6a.Metallation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6b.Ortho-metallation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7c.Nucleophilic addition and substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7d.Halogen-Metal exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8e.Transmetallation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9f.Anionic Polymerisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9IV.Named organic reactions with organolithium compounds . . . . . . . . . . . . . . . . . . . . . . . .10a.[1,2] and [2,3]-Wittig rearrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10b.Shapiro Olefination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10c.Peterson Olefination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10d.Rambe

2 rg-BŠcklund-Reaction . . . . . . . . . .
rg-BŠcklund-Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10e.Parham Cyclization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11V.Indicators for the titration of organolithium compounds . . . . . . . . . . . . . . . . . . . . . . . . .12VI.Organolithium compounds available at Acros Organics . . . . . . . . . . . . . . . . . . . . . . . . . .14Dry-solvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 4 I.IntroductionOrganometallic compounds are amongst the most often used reagents in organic The earliest organometallic compound was already discovered in the early 19th cen-tury (ÒZeiseÕs saltÓ; a zinc-olefin complex was first reported in 1827!) and first exam-ples of synthetic organometallic chemistry are the organozinc-compounds, discoveredby Edward Frankland in 1849, the organo-magnesium compounds discovered byVictor Grignard and his teacher Philippe Barbier in 1901 and the organolithium com-pounds, discovered by Wilhelm Schlenk in 1917But only since the 1950th, based on the pioneering work of Georg Wittig andHenry Gilman, organometallic reagents became a routinely used tool in the syn-theticorganic laboratory. A very early but still invaluable application of organometallic reagents is the olefin-polymerisation with the so-called Ziegler-Natta-catalyst (Invented in 1953, Nobel price¥Strong bases¥Nucleophiles¥Metal exchange¥Reducing agents¥Polymerisation

3 initiator/catalyst¥Catalysts for organi
initiator/catalyst¥Catalysts for organic reactions¥Material sciencesThe following brochure will give an overview of the properties and typical reactions of organolithium compounds in some fields of organic chemistry and the product rangeoffered by Acros Organics. 1A biography about Wilhelm Schlenk in Angew.Chem 2001,113,3432Karl Ziegler,Nobel lecture Dec.12th,1963Literature References: 5 II.Organolithium compounds,properties & structuresAlkyllithium compounds are widely used asvery strong bases, nucleophiles and reagentsshows, that alkanes and arenesare very weak acids, hence their correspondinglithium-derivatives are extremely strong bases. family are n-butyllithium, methyllithium andtert-butyllithium (for which 2-methylpropane isthe corresponding acid). Simple alkyllithium-compounds are soluble inhydrocarbon- and in ether-solvents (althoughthe more basic compounds can react with thelatter) forming aggregates of mostly dimeric,. The aggre-and, as a consequence, the reactivityof organolithiumcompounds can be stronglyStrong complexing agents like i.e. N,N,NÕ,NÕ-tetramethylethylendiamine are able to cleavethe aggregates to form monomeric alkyllithi-um-complexes which are then much morereactive.The mixture of n-butyllithium with potassium- 2-Methylpropane . . . . . . . . . . .53.0Ethane . . . . . . . . . . . . . . . . . . . .50.0 Methane . . . . . . . . . . . . . . . . . .48.0Ethene . . . . . . . . . . . . . . . . . . . .44.0Benzene . . . . . . . . . . . . . . . . . .43.0Ammonia . . . . . . . . . . . . . . . . .38.0Ethyne

4 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .25.0Ethanol . . . . . . . . . . . . . . . . . . .16.0Water . . . . . . . . . . . . . . . . . . . .15.7 CompoundSolventAggregation numberMeLi . . . . . . . . . . . . . . . . . . . . . . . . .THF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4MeLi . . . . . . . . . . . . . . . . . . . . . . . . .DEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4n-BuLi . . . . . . . . . . . . . . . . . . . . . . . .Cyclohexane . . . . . . . . . . . . . . . . . . . . . . . . .6n-BuLi . . . . . . . . . . . . . . . . . . . . . . . .THF . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 / 2sec-BuLi . . . . . . . . . . . . . . . . . . . . . .Cyclopentane . . . . . . . . . . . . . . . . . . . . . . . .4sec-BuLi . . . . . . . . . . . . . . . . . . . . . .THF . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 / 1tert-BuLi . . . . . . . . . . . . . . . . . . . . . .Hexane . . . . . . . . . . . . . . . . . . . . . . . . . . . .4tert-BuLi . . . . . . . . . . . . . . . . . . . . . .DEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2tert-BuLi . . . . . . . . . . . . . . . . . . . . . .THF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1MeLi = Methyllithium ¥ n-BuLi = n-Butyllithium ¥ sec- BuLi = sec-Butyllithium ¥ tert-BuLi tert.-Butyllithium ¥ DEE = Dietylether ¥ THF = Tetrahydrofuran Products available from Acros OrganicsTMEDA 99% N,N,NÕ,NÕ-Tetramethylethylendiamine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13845DMPU 97

5 % N,N-Dimethylpropylenurea . . . . . . .
% N,N-Dimethylpropylenurea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22464 DABCO 97% 1,4-Diazabicyclo[2,2,2]octane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11247Potassium-tert-butanolate 98+% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16888Potassium-tert-butanolate 20% in THF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36499 CompoundpKa 3F.Totter,P.Rittmeyer,Organolithium compounds Ð Industrial applications and Handling inOrganometallics in Synthesis,M.Schlosser (Ed.) John Wiley & Sons 4Ch.Lambert,P.von R.Schleyer,Angew.Chem.106,1187.5J.March,Advanced Organic Chemistry 4th ed.John Wiley&Sons,New York,,252.6E.Weiss,Angew.Chem.,105,1565.7H.GŸnther,D.Moskau,P.Bast,D.Schmalz,Angew.Chem 8M.Marsch,K.Harms,L.Lochmann,G.Boche,Angew.Chem.,102,334.9D.Seebach,R.Hassig,J.Gabriel,Helv.Chim.Acta ,66,308.P.West,R.Waack,J.Am.Chem.89 4395,W.Bauer,W.R.Winchester,P.vonR.Schleyer,Organolmetallics 10T.Kottke,D.Stalke,Angew.Chem.,105,619;M.A.Nichols,P.G.Williard,J.Am.Chem.Soc,115,1568;H.Kšster,D.Thšnnes,E.Weiss,J.Organometal.Chem.1978 160,111L.Lochmann,J.Popisil Tetrahedron Lett.53,76.12LiCKOR Superbases:M.Schlosser,Organoalkali Reagents in Organometallics in Synthesis,M.Schlosser (Ed.) John Wiley & Sons 13M.Marsch,K.Harms,L.Lochman,G.Boche,Angew.Chem.14M.Schlosser,Modern Synthetic methods 6,227.Literature References: 6 III.Reactions of organolithium compoundsMany hundreds of functionalis

6 ed organolithi-um compounds have been pr
ed organolithi-um compounds have been prepared by themetallation reaction with n-butyllithium (orThe metallation uses the fact that the strongbases like n-butyllithium are capable to depro-protons. Such ÒacidicÓ protons in organic molecules aremostly found at positions where a negativelytional group. Such molecules are i.e.:¥carbonylcompounds like aldehydes, ketones,¥sulfones, sulfoxides, sulfoximides¥nitriles¥terminal acetylenes¥nitro-compounds¥benzylic systemsgroups follows the order��� -C(O)-R -COOR -SOenced by mesomeric and inductive effects andThe resulting enolates, sulfonyl-carbanions are valuable intermedi-reactions.it is possible to deprotonate a prochiral sub-An example for the enantioselective deproto-Boc-pyrrolidine Products available from Acros Organicspentahydrate . . . . . . . . . . . . . . . . . . .21562solution in hexanes . . . . . . . . . . . . . . .18127 15J.March,Advanced Organic Chemistry 3rded.John Wiley&Sons,New York,,155.16E.Block,Reactions of Organosulfur Compounds,Academic Press New York 17P.D.Magnus Tetrahedron 33 (18G.SolladiŽ,Synthesis () 185,C.Mioskowski,G.SolladiŽ,Tetrahedron 36 () 227,S.G.Pyne,G.Boche,J.Org.Chem.54 (1989) 2663,S.G.Pyne,B.Dikic,J.Org.Chem 55 (19D.Hoppe,Th.Hense,Angew.Chem.,109,2376.20V.K.Aggarwal,Angew.Chem 106,185.21O.Zschage,J.R.Schwark,D.Hoppe,Angew.Chem.1990,102,336,P.Beak,A.Basu,D.J.Gallagher,Y.S.Park,S.Thayumanavan Acc.Chem.Res.29,552,D.J.Pippel,G.A.Weissenburger,S.R.Wilson,P.Beak,Angew.Chem.22S.T.Kerrick,P.Beak,J.Am.Chem.Soc.1991 113,9708Lite

7 rature References: 7 The metallation of
rature References: 7 The metallation of diisopropylamine with n-base lithium-diisopropylamide (LDA). LDA isstrong enough to deprotonate most organicmolecules, but due to its bulky, sterically hin-dered substituents, it is not nucleophil. LDA isthe preferred basefor the deprotonation ofsubstrates, where a nucleophilic attack is alsoMetallation of an aromatic ring near a sub-stituent, which acts as a ÒDirected MetallationGroupÓ, is called ÒOrtho-MetallationÓ. Severalgroups can function as DMGÕs, i.e. sulfones,and methoxy groups, they have in com-mon the ability to coordinate the approachingcation (= lithium-ion) and/or to increase theacidity of the ortho-hydrogen.The relative rate of directed metallation fol-lows the order, F, NRal-metallationÓ. In this reaction a benzylichydrogen is abstracted due to the higher acidi-ty compared with the ring-hydrogens. Besidesbutyllithium also lithium-diisopropylamide is auseful base for this reaction.lates and sulfonylcarbanions can react asbonyl-compounds in a wide range of reac-¥Alkylation of Alkylhalogenides¥Addition to Carbonylcompounds¥Alkylation of Allylhalogenides¥Epoxide-Ring Opening¥Conjugate Addition¥Addition to Carbondioxide Products available from Acros OrganicsDiisopropylamine, 99% . . . . . . . . . . . .159072 M in THF/Heptane . . . . . . . . . . . . . .26883cyclohexane/hexane (92/8) . . . . . . . . . .18754 23For Lithiumdiethylamide Fieser & Fieser Reagents for Organic Synthesis 611;for LDA:24For a review of ortho-metallation,see:V.Snieckus,Chem.Rev.,90,879.25Organic Sy

8 ntheses,CV 6,478;A.He§ler,K.W.Kottsieper
ntheses,CV 6,478;A.He§ler,K.W.Kottsieper,S.Schenk,M.Tepper,and O.Stelzer,Z.Naturforsch.56 b,347Ð353 (26Directed ortholithiation of an aromatic ring by an amide functional group,Angew.Chem.Int.Ed.Engl.,,40,1238.27Alan C.Spivey,Tomasz Fekner,Sharon E.Spey,and Harry Adams,J.Org.Chem.,64,28HanVinhHuynh,W.W.Seidel,Th.LŸgger,R.Fršhlich,B.Wibbeling,and F.E.Hahn,Z.Naturforsch.57 b,1401Ð1408 (29D.W.Slocum,C.A.Jennings,J.Org.Chem.30For Alkyllithium-compounds like Butyllithium and Methyllithium the corresponding cuprates31Addition to Tosylhydrazione:A.G.Myers and M.Movassaghi,J.Am.Chem.Soc.,120,32R.C.Larock,Comprehensive Organic Transformations VCH,New York .p 512.33R.C.Larock,Comprehensive Organic Transformations VCH,New York .p 792.34Leads with excess of RLi to ketones:T.M.Bare,H.O.House,Org.Synth.49 (Literature References: 8 Simple, non-stabilized, alkyllithium reagentscan react in the same way, but often they haveto be transferred to more nucleophilic and lessbasic reagents like dialkyllithiumcupratesavoid deprotonation as a side reaction.The addition to prochiral carbonyl-compoundsThe Halogen metal-exchange reaction was dis-covered in the late 1930th by GilmanWittig. The reaction is often used to preparevinyl- and aryl-lithium compounds from themore reactive alkyl-lithium speciesstannylation - Stille coupling reactions withreaction is most often an equilibrium:and also side reactions like eliminations, cou--metallations are possible. Usefulhalogen-metal-exchange reactions betweening the equilibrium to the product side. Heret

9 ert-butyllithium plays a prominent role
ert-butyllithium plays a prominent role asreagent. By addition of a second equivalenttert-butyllithium the resulting tert-butyliodideis removed instantly from the equilibrium 35B.Goldfuss,M.Steigelmann,F.Romiger,Angew.Chem.112 4299 and Lit.1936D.Seebach and A.Hidber,Organic Syntheses,Coll.Vol.,44737H.Gilman,W.Langham,A.L.Jacoby,J.Am.Chem.Soc.,61,106.38G.Wittig,U.Pockels,Chem.Ber.,71,1903.39F.Leroux,M.Schlosser,Angew.Chem.114,4447.40U.S.Schubert,Ch.Eschbaumer,Org.Lett.41W.F.Bailey,E.R.Punzalan,J.Org.Chem.55 5404 ( Literature References: 9 The halogen-metal exchange is preferably donewith iodides or bromides, while chlorides are lesscommon. Addition of an ethereal solvent helpsto remove excess of tert-butyllithium because itreacts with this solvent at higher temperatur.e. TransmetallationThe organolithium compounds are very oftenused to prepare other metallorganic com-pounds through the transmetallation reaction:R-Li + M-X This reaction has been used to prepare thee theR2CuLi + LiX(B) R-Li + TiCl4 been synthesized recently by halogen-metalexchange of sterically hindered alkylhalo-An example of transmetallation to preparecomplex and sensitive organolithium reagentsis the following reaction, which gives the-lithio-styreneoxide,whereas the direct metal-, isoprene and styrene. 42E.Erdik ,40,641;J.Lindley,Tetrahedron ,40,1433;B.H.Lipshutz,Sengupta,S.Org.React.,41,135;Y.Yamamoto,Angew.Chem.Int.Ed.,25,947;B.H.Lipshutz,325;Marshall,J.A.Chem.Rev.,89,1503;E.Nakamura,Synlett 539;Ibuka,T.;Yamamoto,Y.Synlett ,769;Wipf,P.Synthesis ,5

10 37;Krause,N.;Gerold,A.Angew.Chem.Int.Ed.
37;Krause,N.;Gerold,A.Angew.Chem.Int.Ed.Engl.,36,187-204.43B.H.Lipshutz,Synthetic Procedures Involving Organocopper Reagents,Organometallics inSynthesis,M.Schlosser (Ed.) John Wiley & Sons 44J.F.Normant,Synthesis 45M.T.Reetz,Titanium in Organic Synthesis in Organometallics in Synthesis,M.Schlosser (Ed.)John Wiley & Sons 46Manganese:Organic Syntheses,CV 9,328;Organic Syntheses,Vol.76,239;Zinc:OrganicSyntheses,CV 8,430;Cerium:T.Imamoto,Pure&Appl.Chem.747;V .Nair,J.Mathew,Chem.Soc.Rev.,26,127.47C.Piazza,P.Knochel,Angew.Chem.Int.Ed.,41,3263.48P.Lohse,H.Lohner,P.Acklin,F.Sternefeld,A.Pfaltz,Tetrahedron Lett.32 (49J.J.Eisch,J.E.Galle,J.Am.Chem.Soc,98 (50H.L.Hsieh,J.Polym.Sci.A3,153. Products available from Acros Organicsanhydrous . . . . . . . . . . . . . . . . .36975CuI, 99,995% . . . . . . . . . . . . . . . . . . . .20150CuI 98% . . . . . . . . . . . . . . . . . . . . . . .19490CuCN 99% . . . . . . . . . . . . . . . . . . . . . .20208TiCl99,9% . . . . . . . . . . . . . . . . . . . . .19723Ti(OiPr)98% . . . . . . . . . . . . . . . . . . .194700,5M in THF . . . . . . . . . . . . . . . .370061M in EtO . . . . . . . . . . . . . . . .37005 Products available from Acros Organicstert-butyllithium 1,5 M in Pentane . . .18128 Literature References: 10 51G.Wittig,L.Lšhmann,Ann.550,260 (52G.Wittig,Angew.Chem.53U.Schšllkopf,K.Fellenberger,Chem.Ber.698,80 (54R.H.Shapiro,M.J.Heath,J.Am.Chem.Soc.89,5734 (55D.J.Peterson,J.Org.Chem.33,780 (56L.A.Paquette,Accts.Chem.Res.1,209-216 ( IV.Named organic reactions with organolithium compoundsa.

11 [1,2] and [2,3]-Wittig The [1,2] Wittig-
[1,2] and [2,3]-Wittig The [1,2] Wittig-rearrangement of ethers withearrangement of ethers withshift51. Usually a strong base like phenyllithiumis used. The groups Rthe or����der allyl benzyl ethyl methyl The [2,3]-Wittig rearrangementtropicrear-deprotonatedallylether.The Shapiro Olefination is a decomposition ofstrong base (usually methyllithium). The reac-tion is used to produce the olefins or vinyllithi-The Peterson Olefination is the addition of aIn this reaction is a -Halogensulfone is treatedwith a strong base to give an olefine. Products available from Acros Organicsp-Toluenesulfonylhydrazine . . . . . . . .15786 Products available from Acros Organics(Trimethylsilyl)methyllithium, 1 M in Pentane . . . . . . . . . . . . . . . . .37745(Trimethylsilyl)methylmagnesiumbromide, 1 M in Diethylether . . . . . . .37746 Literature References: 11 halogen-metal exchange on an aromatic ringfollowed by a ring-closure reaction with theelectrophile as part of a side chain.-Br, CH 57W.E.Parham et al.,J.Org.Chem.40,2394 (Literature References: Natural or Silicon rubber sleeve septum stoppersSpecial design for air-tight sealing of tubes, bottle necks and Natural Rubber 145821000Septum 7mm (7.1mm real) natural rubber100EA 145831000Septum 10mm (10.2mm real) natural rubber100EA 145841000Septum 13mm (12.7mm real) natural rubber100EA 145851000Septum 15mm (14.9mm real) natural rubber100EA 145861000Septum 16mm (15.9mm real) natural rubber100EA 145871000Septum 20mm (19.4mm real) natural rubber100EA 14588050

12 0Septum 25mm (23.7mm real) natural rubbe
0Septum 25mm (23.7mm real) natural rubber50EA 145890500Septum 30mm (30.7mm real) natural rubber50EA Silicone Rubber 145911000Septum 7mm (7.1mm real),silicone rubber100EA 145921000Septum 10mm (10.2mm real),silicone rubber100EA 145931000Septum 13mm (12.7mm real),silicone rubber100EA 145941000Septum 15mm (14.9mm real) silicone rubber100EA 145951000Septum 16mm (15.9mm real),silicone rubber100EA 145961000Septum 20mm (19.4mm real),silicone rubber100EA 145970500Septum 25mm (23.7mm real),silicone rubber50EA 145980500Septum 30mm (30.7mm real),silicone rubber50EA 12 VI.Indicators for the titration of organolithium compoundsOrganolithium reagents are used almostof reagent in the solvent is crucial for an exactdosage of the reagent.produced if oxygen comes in contact with theorganolithium product. ties unaffected. The reaction mixture is hydrol-ysed and titrated with a hydrochloric acid stan-dard solution to a methyl-orange-xylene-cyanolend point. The result represents the amount ofthe basic impurities, which are not organo-is hydrolysed and titrated to give the totalWatson-Eastham methodthat organolithium compounds form coloured,indicators like 1,10-phenanthroline (green-yellow-CT-complex) or 2,2Õ-biquinoline (red-brown CT complex) in dry toluene solution.titrant. The CT complex is only destroyed whenall unreacted organolithium compound isalready reacted with the alcohol, then at theSubstances, which form coloured mono-anions with organolithium compounds, canbe used also as indicators. The metallorganicbase is added to an excess

13 of the indicator,which forms the coloure
of the indicator,which forms the coloured anion. Titrationwith an alcohol in a dry solvent until thecolour disappears shows the end point. An-Methylstyrene, which forms ared adduct with n-Butyllithium, which can beOne very common, simple and fast methoddeeply coloured di-anions after double depro-tonation with organolithium compounds.and dissolved in dry THF. Then the organolithi-um-solution is added directly by a syringe until 58H.Gilman,A.H.Haubein,J.AmChem.Soc.66 ( Products available from Acros OrganicsBenzylchloride, 99,5+% . . . . . . . . . . .18085solution in Water . . . . . . . . . . . . . . . .41467Hydrochloric acid, 1 N standard solution . . . . . . . . . . . . . . . .12421Hydrochloric acid, 0.1 N standard solution . . . . . . . . . . . . . . . .12420 Products available from Acros Organics1,10-phenanthroline . . . . . . . . . . . . . .157532,2Õ-biquinoline . . . . . . . . . . . . . . . . . .10630Toluene, extra dry . . . . . . . . . . . . . . . .326982-Butanol, p.a. . . . . . . . . . . . . . . . . . .22029 Products available from Acros Organics-Methylstyrene . . . . . . . . . . . . . . . . .12771 Literature References: 13 equivalent of base is used to deprotonate H1,the resulting carboxylate-ion is colourless.Only when H2 is also deprotonated the inten-Similar reagents are N-Pivaloyl-O-toluidinetalline, non-hygroscopic and stable com- 59J.Suffert,J.Org.Chem.54 ( Products available from Acros OrganicsDiphenylacetic acid . . . . . . . . . . . . . .11715N-Pivaloyl-O-toluidine . . . . . . . . . . . . .34673N-Pival

14 oyl-O-benzylaniline . . . . . . . . .346
oyl-O-benzylaniline . . . . . . . . .34674 Literature References: V.Organolithium compounds available at Acros Organics ORGANOMETALLICSFORMULATIONPRODUCT NOAVAILABLE PACKSIZEn-Butyllithium1.6 Msolution in hexanes18127100ml800mln-Butyllithium2.5 Msolution in hexanes21335100ml800mln-Butyllithium2.2 Msolution in cyclohexane37749100ml800mln-Butyllithium2.6 Msolution in toluene 37893100ml800mliso-Butyllithium1.6 Msolution in heptane37759100ml800mlsec-Butyllithium1.3 Msolution in cyclohexane/hexane (92/8)18754100ml800mltert-Butyllithium1.5 Msolution in pentane18128100ml800mlEthyllithium1.7 Msolution in dibutyl ether37757100ml800mln-Hexyllithium2.3 Msolution in n-hexane30165100ml800mlLithium acetylide,ethylenediamine complexpowder 85%1812550g100gLithium amidepowder 95%199865g100g500gLithium bis(trimethylsilyl)amidepowder 95%3381410gLithium bis(trimethylsilyl)amide1.0 Msolution in THF34770100ml800mlLithium bis(trimethylsilyl)amide1.0 Msolution in methyl tert-butyl ether34567100ml800mlLithium bis(trimethylsilyl)amide1.3 Msolution in toluene/ethylbenzene 37748100ml800mlLithium bis(trimethylsilyl)amide1.3 Msolution in hexanes/ethylbenzene37747100ml800mlLithium tert-butoxidepowder 95%30122available soonLithium tert-butoxide1.0 Msolution in hexanes38015available soonLithium tert-butoxide2.2 Msolution in THF38016available soonLithium cyclopentadienidepowder 97%316585gLithium diisopropylamide2.0 Msolution in heptane/THF/ethylbenzene26883100ml800mlLithium ethoxide1.0 Msolution in ethanol38017available soonLithium ethoxide1.0 Msolution

15 in THF38018available soonLithium hydrid
in THF38018available soonLithium hydridepowder 98%1911910g100g500gLithium isopropoxidepowder 95%30124available soonLithium isopropoxide2.0 Msolution in THF38019available soonLithium isopropoxide1.0 Msolution in hexanes38020available soonLithium methoxidepowder 98%30123available soonLithium methoxide2.0 Msolution in methanol33675100ml800mlLithium pentamethylcyclopentadienidepowder 98%353241g5gMethyllithium1.6 Msolution in diethyl ether18875100ml800mlas complex with lithium bromide2.2 Msolution in diethyl ether18129100ml800mlPhenyllithium2.0 Msolution in dibutyl ether36515100ml500ml(Trimethylsilylmethyl)lithium1.0 Msolution in hexanes37745available soonFor the latest product additions, prices and availability, see www .acr os.com The AcroSeal Highest Quality extra dry solvents (down to 10 ppm water content),  ltered over 0.2 micron PFTE  lter for the demanding chemist. Quality dry solvents (down to 50 ppm water content), stored over 3 Å molecular sieve for QUALITY DRY SOLVENTS (DOWN TO 50 PPM WATER), STORED OVER 3 Ä MOLECULAR SIEVE Product name Code 100mlCode 1lCode 2.5lAcetonitrile, extra dry 364311000364310010Chloroform, extra dry 364321000364320010Dichloromethane, extra dry, water 348461000348460010348460025N,N,-Dimethylformamide, extra dry, water 3484310003484300103484300251,4-Dioxane, extra dry 364341000364340010Ether, extra dry 364331000364330010Ethyl acetate, extra dry 364351000364350010n-Heptane, extra dry 364361000364360010n-Hexane, extra dry 364371000364370010Isopropanol, extra dry 364401000364400010Meth

16 yl alcohol, extra dry 364391000364390010
yl alcohol, extra dry 3643910003643900101-Methyl-2-pyrrolidinone, extra dry 364381000364380010Methylsulfoxide, extra dry, water 348441000348440010348440025Pyridine, extra dry 364421000364420010Tetrahydrofuran, extra dry, water 348451000348450010348450025Toluene, extra dry 364411000364410010 HIGHEST QUALITY EXTRA DRY SOLVENTS (DOWN TO 10 PPM WATER), FILTERED OVER 0.2 MICRON PFTE FILTER Product name Code 100mlCode 1lCode 2.5lAcetone, extra dry, water 326801000326800010Acetonitrile, extra dry, water 326811000326810010Chloroform, extra dry, water 326821000326820010Cyclohexane, extra dry, water 3268310001,2-Dichloroethane, extra dry, water 326841000326840010Dichloromethane, extra dry, water 326851000326850010326850025Dimethylformamide, extra dry, water 3268710003268700103268700251,4-Dioxane, extra dry, water 326891000326890010Ether, extra dry, water 326861000326860010Ethyl acetate, extra dry, water 326901000n-Heptane, extra dry, water 326911000n-Hexane, extra dry, water 326921000326920010Isopropanol, extra dry, water 326961000326960010Methyl alcohol, extra dry, water 3269510003269500101-Methyl-2-pyrrolidinone, extra dry, water 326931000326930010Methyl sulfoxide, extra dry, water 326881000326880010Pyridine, extra dry, water 339421000339420010Tetrahydrofuran, extra dry, water 326971000326970010326970025Toluene, extra dry, water 3269810003269800102,2,4-Trimethylpentane, extra dry, water 326941000 Clearly marked label identi es product, assay, water content, and White graduations on amber bottle provide a useful way to track s