/
CS880ApproximationsAlgorithmsScribeMattElderLecturerShuchiChawlaTop CS880ApproximationsAlgorithmsScribeMattElderLecturerShuchiChawlaTop

CS880ApproximationsAlgorithmsScribeMattElderLecturerShuchiChawlaTop - PDF document

cappi
cappi . @cappi
Follow
343 views
Uploaded On 2021-06-07

CS880ApproximationsAlgorithmsScribeMattElderLecturerShuchiChawlaTop - PPT Presentation

171MulticutFirstconsiderthemulticutproblemGivenagraphGVEKpairsofterminalverticesfsitigandacostfunctionontheedgescERthemulticutproblemasksforaminimumcostcutofGthatseparatessiandtiforalli ID: 837398

ymax logk commodity row logk ymax row commodity summulti rowproblem approximation logklogd pcede priyi jsjj lemma17 approximationforthisproblem isasfollows concurrentmulticommodity

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "CS880ApproximationsAlgorithmsScribeMattE..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 CS880:ApproximationsAlgorithmsScribe:Mat
CS880:ApproximationsAlgorithmsScribe:MattElderLecturer:ShuchiChawlaTopic:SparsestCutandBalancedCutDate:3/20/07 17.1MulticutFirst,considerthemulticutproblem.GivenagraphG=(V;E),Kpairsofterminalverticesfsi;tig,andacostfunctionontheedgesc:E!R,themulticutproblemasksforaminimum-costcutofGthatseparatessiandtiforalli.Lasttime,wegaveaO(logk)approximationforthisproblem.The(relaxed)linearprogramforthisproblemisasfollows;callit\Primal1".minimizeXe2Ecedewhered(si;ti)18idisametricWecanrewriteasfollows:minimizeXe2EcedewherePi=fAllpathsfromsitotigXe2Pde18i8P2Pide08eThedualofthisLP,whichwe'llcall\Dual1",isasfollows:maximizeXiXP2Pifi;PwherePi=fAllpathsfromsitotigXiXP2PiP3efi;Pce8efi;P0Dual1solvesthemax-summulti-commodity\rowproblem:cerepresentsthecapacityofanedge,andfi;Pistheamountof\rowdirectedfromsitotialongthepathP.TheLPtriestomaximizethetotalamountofcommodity\row.Lemma17.1.1Multicutisalwayslargerthanthecorrespondingmax-summulti-commodity\row.Lemma17.1.2MulticutisatmostO(logK)timesthecorrespondingmax-summulti-commodity\row.Theorem17.1.3Whenk=2,multicutequalsmax-summulti-commodity\row.1 17.2MaximumConcurrentMulticommodityFlowAsolutiontoDual1maystarvesomecommoditieswhileroutingothers.Incontrast,max-concurrentmulticommodity\rowroutesequalfractionsofallcommoditieswhilerespectingca-pacities.Thus,wedevisethefollowingLPformax-concurrentmulticommodity\row,whichwecallDual2:maximizetwhereXiXP2PiP3efi;Pce8eXP2Pifi;Prit8ifi;P08i;8P2PIntuitively,thedi erencebetweenDual1andDual2isthatDual1seekstomaxim

2 izethetotal\rowacrossindependentcommodit
izethetotal\rowacrossindependentcommodities,whileDual2seekstomaximizetheminimumofasetofweighted\rows.Thisisthemaximumconcurrentmulticommodity\rowproblem.Primal2,thedualofthemaximumconcurrentmulticommodity\rowproblem,isasfollows:minimizeXedecewhereXe2Pdeyi8i;8P2PiXiriyi1de08eyi08iThecostsceareconstantsoftheprobleminstance,soPrimal2willseektominimizethevaluesforde.Thus,theywillbenolargerthantheyareconstrainedtobe,soyi=d(si;ti),theshortestdistancefromsitotiwhereeachedgeehaslengthde.So,wecandevisethefollowinglinearprogram,equivalenttoPrimal2:minimizeXecedewhereXirid(si;ti)1disametricUptoscalingd,thisisthesameasthefollowingprogram:minimizePecede Pirid(si;ti)wheredisametric,2 whichwilltiedirectlytothesparsestcutproblem.17.3SparsestCutLetG=(E;V)besomegraph.LetT,thesetofterminals,beasetofpairsofvertices.ForanycutS,asubsetofV,let (S)denotethesparsityofS,with (S)= E(S;S) (SS)\T :Thus, (S)isthesizeofthecutSdividedbythenumberofterminalsthatSseparates.ThesparsestcutproblemtakesGandT,and ndsthecutSthatminimizes (S).Wecangeneralizethisfurther,byintroducingacostcontheedgesandaweightriforeachterminali.Then,ourmoregeneral (S)lookslikethis: (S)=c(E(S;S)) Pfijsi2S,ti=2Sgri:Considertheuniformversionofsparsestcut,whereweletthesetofterminalsbeallpossiblepairs.Thatis,weletT=VVandru;v=1forallu=v.Then,thesparsityis (S)=c(E(S;S)) jSjjSj;whichisquitesimilartotheexpansionofaset,fromthecontextofexpandergraphs.Here,wegiveaO(logKlogD)-approximationforthisproblem,whereD=PiriandK=jTj.Nexttime,we'

3 ll ndaO(logK)-approximation.Thebestknown
ll ndaO(logK)-approximation.ThebestknownecientapproximationisaO(p logKloglogK)-approximation.SupposewesolvePrimal2,yieldingthemetricd.Letyidef=d(si;ti).WeknowthatPiriyi1andthat8e;de1.Weneedtorounddintoacutmetric|ametricwithonlyonesandzeroes|withoutmuchincreasingthesparsity.Considerthespecialcasewhere8i;yi1 2ymax.Letymaxdef=maxiyi,d0def=d=ymin,andy0idef=d0(si;ti)foralli.Then,8i;y01,andd0isafeasiblesolutiontothemulticutLP.So,wecanfeedd0tothemulticutapproximationalgorithmwesawlastlecture.ThatalgorithmwillyieldacutofvalueO(logK)Peced0e.Wededuce:O(logK)Xeced0eO(logK)1 yminXecedeO(logK)1 ymaxXecede:ThedemandthisseparatesisthusPiri(1=ymax)Piriyi.So,thesparsityofthisalgorithm,inthisspecialcase,isatmostO(logK)Pcede Priyi:3 So,nowconsiderthegeneralcase,withanarbitrarilylargeratiobetweenymaxandymin.De neIx,thesetofallyiinaconveniently-de nedinterval,as:Ix=nijyi2ymax 2x+1;ymax 2xio:Whenxisconstrainedtotheintegers,it'sclearthateveryyiiscontainedinexactlyoneIx.ForeachIx,ouralgorithmwillconstructamulticutinstanceasinthespecialcase,butitwillscaledby2x+1=ymaxinsteadof1=ymax.Thesparsityforeachoftheseinstancesisnottoolarge: (Ix)O(logK)Pecede Pi2Ixriyi:Ifthereexistsaconstant andanxsuchthatPi2Ixriyi 1Piriyi,thenthesparsityofthisinstanceisatleastO(logK) Pcede=(Priyi).Weclaimthatwecanignoreallisuchthatyiymax=D2.Again,DisthetotaldemandPri.De nethesetWcontainingweevaluesofyi,W=ijyiymax=D2 .IgnoringWcanresultinthelossofatmostPi2WriyiPi2Wriymax=D2ymax=D1=Dfromthedenominatorofouralgorithm'sspa

4 rsity.AssumingD2,ignoringWhasonlyasmall
rsity.AssumingD2,ignoringWhasonlyasmallconstantapproximationcost.(IfD2,thisisaneasyboundarycase,whichwecane ecientlyhandleinanad-hocway.)Thus,weneedtoconsideronlythoseIxwhere2xD2.Thereareatmost2logDsuchsets,so 1=(2logD).ThisyieldsaO(logKlogD)-approximation.17.4BalancedCutGivenagraphG=(V;E),thebalancedcutproblemdemandsthemin-costcutsuchthateachsidehasatleast nnodes,forsomeconstantvalueof 1 2.Itisknownthatthisproblemisinapproximableton2=OPTifP=NP.Thisisanabsurdlypoorapproximation.So,weconsiderinsteadapseudo-approximationalgorithm,inwhichweapproximateboththeobjectivefunctionoftheoptimalsolutionandtheparametersofitsinstance.So,inthiscase,whenaskedforacutwithabalanceof ,weinsteadoutputacutwithabalance 0,suchthat 0 and 01=3.Iftheoptimalcutofbalance hascostC ,ourcutwillhavecostnogreaterthanO(logn)C =( 0).Noticethat,thoughwehaveareasonableboundontheratiobetweenthesizeofourcutandC ,theratiobetweenthesizeofourcutandC0 maybeunbounded.Thealgorithmemploysadirectreductiontothesparsestcutproblem,lettingT=VVandri=1.Then,thesparsityofacutSis,asbefore,c(E(S;S))=(jSjjSj).Wediscussfurtherdetailsnexttime.Eventhoughthisalgorithmisfarfromoptimal,itisactuallyuseful.Thispseudo-approximationhasapplicationsindivide-and-conqueralgorithmsongraphs.Itensuresthatwecanalwaysdivideagraphintotwopieces,eachwithsizeroughlylinearinthesizeoftheoriginalgraph,suchthatthecutbetweenthepiecesisn'ttoolarge.Thisyieldslog-depthrecursion,whichdivide-and-conqueralgorithmsdemand,whileboundingthecostofrecombiningpieces.

Related Contents


Next Show more