/
3.3Maintypesoftwin-begettingrelatorsW(A;B)........223.4Basicexamples.. 3.3Maintypesoftwin-begettingrelatorsW(A;B)........223.4Basicexamples..

3.3Maintypesoftwin-begettingrelatorsW(A;B)........223.4Basicexamples.. - PDF document

celsa-spraggs
celsa-spraggs . @celsa-spraggs
Follow
359 views
Uploaded On 2016-04-30

3.3Maintypesoftwin-begettingrelatorsW(A;B)........223.4Basicexamples.. - PPT Presentation

InordertogenerateaboundgroupintheabovesensefandgmustofcourseverifysomecompositionrelationWfgidwith11Wfgfm1gn1fmrgnrmini2Zr2NThepointhoweveristhatmostrelationsWforcefandg ID: 299829

Inordertogenerateaboundgroupintheabovesense fandgmustofcourseverifysomecompositionrelation:W(f;g)=idwith(1.1)W(f;g)=fm1gn1fmrgnr(mi;ni2Z;r2N)Thepoint however isthatmostrelationsWforcefandg

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "3.3Maintypesoftwin-begettingrelatorsW(A;..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

3.3Maintypesoftwin-begettingrelatorsW(A;B)........223.4Basicexamples...........................223.5Exampleswithbuilt-insymmetries...............343.6Furtherexamples.........................434SomeLietheory.Active/passivesubalgebras.Divisorsanduniversalkernels.464.1Theactive/passive ltrationofLie[a;b].............464.2Dimensions.............................524.3Universalconstraints........................534.4Lagrangianconstraints.......................544.5Powerconstraints..........................564.6Proofs................................585Generic,low-complexityidentity-tangenttwins.605.1Finiteco-dimension.Thegeneralpicture.............605.2Fixedratiop=qandnocontinuousparameter..........615.3Fixedratiop=qandonecontinuousparameter..........625.4Freeratiop=qandonecontinuousparameter..........636Nonidentity-tangenttwins.656.1Twinsoftangency(0;q)......................656.2Simpleexamples..........................666.3Twinsoftangency(0;0)......................686.4Simpleexamples..........................686.5Pre-identity-tangent`twins':type(0;0)............686.6Simpleexamples..........................696.7Siblings...............................696.8Simpleexamples..........................717Analyticnatureoftwins.727.1Multiplierjaj6=1:convergence..................727.2Multiplierjaj=1:divergence...................747.3Pre-identity-tangent`twins':convergence.............757.4Identity-tangenttwins:thegeneralpicture...........757.5Identity-tangenttwins:autonomousdi erential-di erenceequa-tionsanddoubleresurgence....................767.6Identity-tangenttwins:canonicalaccelero-summability.....802 Inordertogenerateaboundgroupintheabovesense,fandgmustofcourseverifysomecompositionrelation:W(f;g)=idwith(1.1)W(f;g)=fm1gn1fmrgnr(mi;ni2Z;r2N)Thepoint,however,isthatmostrelationsWforcefandgtocommuteor\nearly-commute",i.e.tobesimultaneouslyconjugatetohomographies.Infact,asweshallsee,only nelyhonedandfairlyintricaterelationsWcanleadtosuitablesolutions(f;g)andgiverisetoboundgroupsGff;gg.1.2Motivations.(i)Originally,thequestionastotheexistenceofboundgroups(speci cally,foranalytic,identity-tangentlocalself-mappingsofC)wasraisedintheearly90sbyD.Cerveau,R.Moussuandothersinconnectionwiththeclassi cationoflocalanalyticfoliationsonC2andtheholonomyoflocaldi erentialequations(see[Ce]).Theexpectation,itseems,wasthatsuchgroupsdidn'texist.In1995,however,oneofuscameupwitha rstseriesofexamples,namelythoselistedinthemid-partofx3(mainlyx3.3).Butthenthesubjectwasprovisionallylaidtorest,andonlyrecentlytakenupanewforsystematicinvestigation(ii)Anotherwayoflookingatthesamequestion([Ce])isbytryingtoextendtheso-calledTitsalternative.Initsclassicalformulation,theTitsalternativeappliestosubgroupsGGl(n;C)ofthelineargroup,anditstatesthat{eitherGisvirtuallysolvable,ieitcontainsa nitesolvablesubgroupof niteindex{oritcontainsafree2-generatorsubgroup,whichisZariskidense.Soanaturalandimportantquestionis:doesasimilaralternativeholdforDiff(C;0)anditsformalcounterpart?Forthelatter,weshallshowthattheanswerisno.Fortheformeralso,theanswerisno,buttheidentity-tangentsub-caseisstillopen.(iii)Actually,boundgroupsofmappingsarebasicandnaturalobjectsintheirownrightandtheirstudyrequiresnoelaborateapology.Indeed,intheone-operation-onlycontextofgrouptheory,\beingintertwined"isforapairofmappings(f;g)theclosestequivalentonecouldthink4 Di eos(1.2)witha\multiplier"a=1aresaidtobeidentity-tangent.Whenais6=1butaunitroot,fissaidtobepre-identitytangent(sinceasuitableiterateisidentitytangent).Whenneitheristhecase,fisdeclarednon-identitytangent.Iffisidentity-tangent,thesubstitutionoperatorFistriangularwithrespecttothenaturalbasisfxngofC[[x]].Moreover,F�1istriangularwithazero-diagonal,andsoisF:=logF,butwhereasFisanautomorphismofthealgebraC[[x]]:F(': )F('):F( )(8'; 2C[[x]])(1.4)itslogarithmFisaderivationandthusoftheform:F=f(x)@withf(x)=Xn1anxn+1and@=@x:(1.5)Thetangencyorderp(2)ofanidentity-tangentdi eofistheindexofthe rstnonzerocoecientanin(1.2)oranin(1.5),whichamountstothesame,sincetheleadingcoecientscoincideinbothseries(ap=ap).Iffhastangencyorderp,thenundersome(formal,unrami ed)changeofcoordinateitcanbebroughttothenormalform:fnor(x)xf1�1 pxp+(1 21+p p2�  p)x2p+g(1.6)Fnorexp(Fnor)postcompositionbyfnor(1.7)Fnor�1 pxp+1(1+ xp)�1@(1.8)withawell-de nediterationresidue 2C.Asaconsequence,afurther(rami ed)changeofcoordinate:x7�!z:=x�p+ log(x�p)(1.9)willturnfintotheplainunitshiftz7�!z+1withthe xedpointmovingfromx=0toz=1.Iffispre-identity-tangent,itsmultiplierhasaprimitiveunitroota=exp(2p p)ofsomeorderp.Sotheiteratefpisidentity-tangent,andfitselfcanbenormalisedto:Fnor=R:exp(�1 pxp+1(1+ xp)�1)@)(1.10)6 andlog(Gr(A;B))asasubsetof Lie(a;b),where Aland LiedenotethenaturalcompletionofAlandLieobtainedbyallowingin nitesums.ApolynomialfunctiononGr(A;B)isa(scalar-valued)functionPoftheform:P(Am1Bn1:::AmrBnr)P(rkm1;n1;:::;mr;nr)(1.12)withr2N;mi;ni2Z)withpolynomialdependenceonthevariablesmiandniandthenaturalconnectioncondition:P(rk:::;mj;0;mj+1;:::)P(r�1k:::;mj+mj+1;:::)(1.13)P(rk:::;nj;0;nj+1;:::)P(r�1k:::;nj+nj+1;:::)(1.14)AsubsetHofGr(A;B)issaidtobeof(polynomial)codimensiondifitisthezerolocusofdindependentpolynomialfunctionsonGr(A;B):H=fW2Gr(A;B);P1(W)=P2(W)=Pd(W)=0g(1.15)If,foreachmonomialc=a1b1asbsinAl(a;b)andeachelementW(A;B)=Am1Bn1AmsBnsinGr(A;B),wede nePc(W)asthe(rational)coecientofcinthenaturalexpansionofW(ea;eb)thentheaggregateofallthesePcclearlyconstitutesacompletebutnon-freesetofpolynomialfunctionsonGr(A;B).Butifwelet runthroughsomeba-sis(egLyndonbasis)ofLie(a;b)andde neP (W)asthecoecientoflog(W(ea;eb)alongthebasisvector ,thentheseP yieldasetofpoly-nomialfunctionsonGr(A;B)thatisstillcompletebutfreeaswell.1.5Campbell-Hausdor typeformulae.Weshallmakeconstantuseofthenotations: ba:=[b;a]:=ba�ab(1.16) BA:=fB;Ag:=B�1A�1BA(1.17)WeshallalsorequiretheCampbell-Hausdor formula:log(ebea)=b+a+1 2[b;a]+1 12[b;[b;a]]+1 12[a;[a;b]]+:::(1.18)8 i.e.thosewithlowest(polynomial)codimensionorwithotherlow\complex-ityindices".Wethensketchanaturalgeneralisation:boundgroupswithmorethantwogenerators(\siblings".)1Inthenextsection(x7)weinvestigatetheanalyticnatureofthetwinsconstructedthusfar.Sincethesolutions(F;G)ofanyequationW(F;G)=1arede neduptoasimultaneousconjugacy:(F;G)7�!(H�1FH;H�1GH)(1.21)thepertinentquestionisnot,ofcourse,whetherthegeneralsolutioncon-verges,butrather:howsimplecanthepair(F;G)bemadeinasuitablechart?Oragain:howsimpledoesF(resp.G)becomeafteritstwinG(resp.F)hasbeennormalised?Fornon-identitytangenttwins,itisrathereasy(byapplyingthetheoryoftheso-called\sandwichequation")toshowthegenericanalycityofwell-chosenrepresentatives(F;G).Foridentity-tangenttwins,thepositionisexactlythereverse:weestablishtheirgenericdiver-genceandresurgence.Itwouldevenseemthatidentity-tangenttwinsarealwaysdivergentandalwaysresurgent,butaregularproof(especiallyoftheformer)appearstobealongwayo .Thelast,verysketchysection(x8)discussestwinsinthelargersettingoftransseriesandanalysablefunctions(asopposedtopowerseriesandanalyticorresurgentgerms)andbroachesanumberofside-issues,suchastheorderingoffreegroups.22Somegrouptheory.Alternatorsandwordfactorisation.Periodicautomorphisms.Throughoutthissection,GrandLiewillstandforGr(A;B)andLie(a;b),i.e.willdenotethetwo-generatorfreegroupresp.Liealgebra. 1Asectiondevotedtoyetanothergeneralisation{boundgroupsconsistingofhigher-dimensionaldi eos{wasscrappedforlackofspace.2anothersuchside-issue,originallymeantforinclusioninthispaper,hasbeenremovedforlackofspaceandredirectedto[EV2].Itasks:whatisthe\proper"andmost\com-prehensive"notionofanalyticityonfreealgebras(Lieorassociative)?Werephrasethequestionsoastogiveitaclear-cutmeaning.Thenwesolveitandcomeupwithastartling,quitecounter-intuitiveanswer.10 becausetheCampbell-Hausdor formula(1.19)forbracketsinvolves,onitsright-handside,onlytermsofdegree1inaandb.Thenwehaveasecondde nition(provisionnallydistinguishedbydoublebraces)accordingtowhichGrffdgg(resp.Grffd1;d2gg)isthesubgroupgen-eratedbyallmulticommutatorsofalternanced(resp.(d1;d2)).Wespeakhereof\alternance"ratherthan\degree"toprecludeanyconfusionwiththe\degree"ofawordW(A;B).Amulticommutatorofalternancedisofcourseonewithexactlydarguments(whichwemaytaketobeA1orB1)andamulticommutatorofalternance(d1;d2)isonewithexactlyd1argumentsAmi(orA1)andd2argumentsBni(orB1).Thereasonwhywemayassumeallexponentsmiandnitobe1isthatbyrepeateduseoftheWitt-Hallidentities:fA;BgfB;Ag=1(2.8)fA;BCg=fA;CgfA;BgffA;Bg;Cg(2.9)fAB;Cg=fA;CgffA;Cg;BgfB;Cg(2.10)wemaybreakupanymulticommutatorintoaproductofmulticommutatorswithequal(orgreater)alternance,butwithargumentsoftheformA1orB1.Clearly,theGrffdggandGrffd1;d2ggde neanew ltrationonGr,i.e.theinclusions(2.7)extendtothedouble-bracedGrffgg.Butinfact:Proposition2.1Thetwonatural ltrationsonGrcoincide:Grfdg=Grffdgg(2.11)Grfd1;d2g=Grffd1;d2gg(2.12)Corollary2.1Thequotients:Gr[d]:=Grfdg=Grfd+1g(2.13)Gr[d1;d2]:=Grffd1;d2gg=(Grffd1+1;d2gg:Grffd1;d2+1gg)(2.14)makesense(sincethegroupsrightoftheslasharedistinguishedsubgroupsofthoseleftoftheslash)andde neabeliangroupsGr[d]andGr[d1;d2]thatareisomorphictoLie[d]andLie[d1;d2](orrathertotheiradditivesubmodulesspannedbymulticommutators).12 2.2Finitecriteriaforalternance(d1;d2).EachsubgroupGrfdghas nitecodimensioninGr(seex1.4).Infact,itscodimensionisexactlylie(2)++lie(d�1).But,savefor(d1;d2)=(1;1),eachsubgroupGrfd1;d2ghasin nitecodimension.Indeed,ifwegobythe( rst)de nitionofGrfd1;d2g,checkingthatagivenwordW(A;B)isinGrfd1;d2gimpliescheckingin nitelymany\polynomial"identitiesP(W)=0oftype(1.12).Fortunately,thereexistcriteriainvolvinga nitenumberofsteps.First,observethatanyW(A;B)inGrf1;1gmaybewritteninauniquewayas niteproductsoffactorsAn:=BnAB�norBm:=AmBA�m:W(A;B)=W1(An1;An2;:::;Ans1)(ni2IZ)(2.17)W(A;B)=W2(Bm1;Bm2;:::;Bms1)(mi2JZ)(2.18)Lemma2.2W(A;B)isinGrfd1;d2g�(d1;d2)�(1;1)ifandonlyif:logW1(ean1;:::;eans1)=O(ad1)(2.19)logW2(ebm1;:::;ebms2)=O(bd2)(2.20)ThesymbolOmeansthattheright-handsidesareoftotaldegreed1(ord2)intheani(orbmj)regardedasfreeindependentvariables.Thelemmadirectlyfollowsfromthefactthatwithinthealgebra Liefa;bg(i.e.inthe`closure'derivedfromLiefa;bgbyallowingin nitesums),thesub-algebrasLiefan1;:::;ans1gorLiefbm1;:::;bms2g nitelygeneratedbya nitenumberofdistinctelementsanorbm:an:=enbae�nb=(exp(n b))a(n2Z)(2.21)bm:=emabe�ma=(exp(m a))b(m2Z)(2.22)arethemselvesfree.So,checkingthatW(A;B)hasalternance(d1;d2)involvesonlya nitenumberofstepswhich,however,steeplyincreaseswiths1ands2.14 (iii)thevariancevar(W)(resp.varA(W)orvarB(W)),de nedasthenumberofdistinctpairs(mi;ni)(resp.asthenumberofdistinctvaluesassumedseparatelybymiorni)wherebymj:=m1+mjandnj:=n1+nj(iii)thealternancealt(W)(resp.(altA(W);altB(W)))de nedasthesmall-estd(resp.(d1;d2))suchthatWbeinGrfdg(resp.Grfd1;d2g).Intheusualgraphicalrepresentationofwords,the rstthreecomplexityindicesareimmediatetodetect,butnotsothealternance,whichdoesn't`meettheeye',atleastwhend1+d23.2.4PeriodicautomorphismsofGrLetAut(Gr)denotethegroupofallautomorphismsofGr.Itisknown(Nielsen'stheorem)tobegeneratedbythreeelementaryautomorphisms:(A;B)7�!(B;A);(A;B)7�!(A�1;B);(A;B)7�!(AB;A)(2.27)Forthesequel,weneedtoknow,uptoconjugacy,allthe nitesubgroupsofAut(Gr)andinparticularalltheperiodic(unipotent)elementsofAut(Gr).Lemma2.3PeriodicautomorphismsofGr:Theynecessarilyhaveor-der1,2,3,4,thenumberofdistinctconjugacyclassesbeingrespectively1,4,1,1.Eachinvolution(order2)isconjugateeitherto(A;B)7�!(B;A)or(A;B)7�!(A�1;B)or(A;B)7�!(A�1;B�1)or(A;B)7�!(B�1;A�1).Eachautomorphismoforder3isconjugateto(A;B)7�!(B�1;AB�1).Eachautomorphismoforder4isconjugateto(A;B)7�!(B�1;A).Foraproof,see[L.S.],prop.4.6,p25,andthereferencesthereafter.Nowthatwehavethelistofallperiodicautomorphisms,itisaneasymattertoconstructallnon-cyclic nitesubgroupsofAut(Gr).Therearefourofthem(uptoconjugacy),namelythetwoabeliangroupsoforder4:Aut1fI;I1;I2;I3g(twogenerators)(2.28)Aut2fI;S1;S2;I3g(twogenerators)(2.29)16 correspondingwordsW(A;B)neverrangingoversubsetsof nitecodimen-sioninGrfA;Bg.Fortrulygenericexamplesand nitecodimensions,weshallhavetowaitforx5.Asinmostofthispaper,weshallhavetoworksimultaneouslyinthefourstructures:8:W(A;B)2GrfA;Bg�!~G03F##"w(a;b)2 Liefa;bg�!~L03F(3.1)~G0isthegroupofformal,identity-tangentdi eosf:x7�!xf1+Panxng,usuallydenotedbythecorrespondingsubstitutionoperatorsF.~L0istheLiealgebraof~G0,withitsnaturalbasiselements:ln:=xn+1@:=xn+1@=@x(n=1;2;:::)(3.2)ThemapF7�!F:=logFfrom~G0into~L0isone-to-one,buttheinjec-tivemapW(A;B)7�!w(a;b)=logW(ea;eb)fromGrfA;Bginto Liefa;bgisofcoursefarfromsurjective.Amongthemapsfrom Liefa;bginto~L0,deservingofspecialattentionarethegradedmorphisms(iewhichrespectthenaturalgraduationofbothalgebras)andarenecessarilyoftheform:(a;b)7�!(lp;lq)(p;q2N)(3.3)Perhapsthequickestwaytoproducetwinsin~G0istoconsidermulticom-mutatorsW(A;B)(withalternance(d1;d2)�(1;1))whosecornercompo-nentw0(a;b)(de nedasthehomogeneouscomponentofw(a;b)thatliesinLie[d1;d2])hasthefollowingthreeproperties:(i)w0(a;b)6=0.(ii)Itisacollapsor,i.e.itbelongstothekernelofsome(orall)graduedmorphismsof Lieinto~L0:w0(lp;lq)=0forsome(resp:all)p;qinNN(3.4)(iii)ItsdivisorDis6=0foralltinN.ThedivisorD(t)D(p;q;t)isapolynomialintcharacterised(forallp;qsuchthatw0(lp;lq)=0)bytheidentity:w0(lp+1lp+t;lq+2lq+t)(1(q�t)�2(p�t))D(t)lpd1+qd2+t+o(1;2)(3.5)18 exibilitytheya ord.Andsincethesepairsarede neduptoacommoncon-jugacy,weshallpriviledge\normal-conormalforms",whichnormaliseoneofthetwinstoFnor(resp.Gnor)whiletheotherassumesarigidly xedconor-malformGconor(resp.Fconor).Actually,forcompleterigiditywehavetodemandthatFconorandGconorshouldcontainnotermoftheformlp+qifFstartswithlpandGwithlq.Inthemosttypicalexamples,thesenamelywithexactlyoneparameter(otherthantheratiop=q,whichisdiscrete),weshall ndthat:Fnor=fnor(x)@=(1� xp)�1( px1+p@)(3.9)Gconor=gconor(x)@=(1+ xq+Xm;n0;m+n2 (m;n) m nxmp+nq)( qx1+q@)(3.10)Fconor=fconor(x)@=(1+ xp+Xm;n0;m+n2 (m;n) m nxmp+nq)( px1+p@)(3.11)Gnor=gnor(x)@=(1� xq)�1( qx1+q@)(3.12)withacountablein nityofinvariants:( ; );( ; );(p;q);f (m;n);m;n2Ngorf (m;n);m;n2Ng(3.13)Anotherobjectofcentralimportance,onaccountbothofitsinvarianceand(anti)symmetryin(F;G),istheconnectorHnor=expHnorwhichconjugatesthenormaltotheconormalforms:Fconor=HnorFnor(Hnor)�1(3.14)Gconor=(Hnor)�1GnorHnor(3.15)butwhichmayalsobeconstructeddirectlyfromanysolution(F;G)bysetting:F=H1FnorH�11;G=H2GnorH�12(3.16)Hnor=H�12H1(3.17)20 3.3Maintypesoftwin-begettingrelatorsW(A;B).Our rstseriesofexamples(1through6)illustratestwobasicdichotomies:{thetwins(F;G)verifyingagivenrelationW(F;G)=1mayhavea xedorfreetangencyratiop=q{oragain,theircontinuousparameterc(constructedfromtheleadingcoef- cients:see(3.22))maybe xedorfree.Thesecondseriesofexamples(7through17)imposesadditionalsymme-triesontwins.Moreprecisely,foreachofthe10basic nitegroupsAutiofautomorphismsofGrfA;Bg,weconstructrelationsW(F;G)1whosesetofnon-trivialsolutions(F;G)isgloballyinvariantunderAuti.Ourthirdseriesofexamples(18through20)dealswithmoreexceptionalsituations,e.g.withrelationsW(F;G)=1whosegeneralsolution(F;G)dependsonseveralcontinuousparameterswith xedorvariablepositions(i.e.parametersmakingtheir\ rstappearance"insidecoecientsof xedorvariabledeptht).Theyalsoillustraterelatedquestionssuchastheglueingorsplittingofrelators.3.4Basicexamples.Example1.Fixedratiop=q,nocontinuousparameter.IfwesetW:=UPVQwithP;Q2ZandU=U(A;B):= A3B=fAfAfA;Bggg(3.23)V=V(A;B):= B2A=fBfB;Aggg(3.24)thenforeachs2N,W(F;G)=1hasaunique(uptoconjugacy)twinsolution(F;G)withtangencyorders(p;q)=(s;2s)and xedinvariantsc; ; .Proof:Letuslookforasolution(F;G)withtangencyordersp6=q.Wemaywritethein nitesimalgenerators(F;G)intheform:F=(1+X1t txt)( pxp@)with 6=0(3.25)G=(1+X1t txt)( qxq@)with 6=0(3.26)22 whichrigidly xestheinvariantc:c:= 2 �1=�p2 qQ Pu0 v0=+pQ (p+q)P=+Q 3P(3.40)Asforthecurrentcoecients( t; t),their rstoccurenceinWtakesplaceatdeptht.Moreprecisely:W=(X1twtxt)( 4 3 p4q3x1+5s)(3.41)withwt=wt t+wt t+earlierterms(3.42)wt=P 3 p3qut+Q 2 pq2vt(3.43)wt=P 3 p3qut+Q 2 pq2vt(3.44)Butdueto(3.29)wemayfactorouttheterm:R=�Pu0 3 p3q=�Qv0 2 pq2(3.45)Eventually,afterexplicitingu0,v0etc...andrecallingthat(p;q)=(s;2s),we ndwt=R(�ut u0+vt v0)=R1 6(6+t+t2)(t�q)(3.46)wt=R(�ut u0+vt v0)=1 6R(6+t+t2)(t�p)(3.47)Thepresenceofacommonfactor(6+t+t2)alongsidetheindividualfactors(t�q)and(t�p)isnoaccident,butaconsequenceoftheidentities:(t�p)ut+(t�q)ut=t�M(3.48)(t�p)vt+(t�q)vt=t�N(3.49)whicharebutspecialcasesof(3.8).Thusintheendwehave:wtR(1=6)(6+t+t2)[(t�q) t�(t�p) t]+earlierterms(3.50)24 withM=p(1+q0)+q;N=q(1+p0)+p(3.55)Theinitialcoecientsare:u0=Tq;p[1+q0](3.56)v0=Tp;q[1+p0](3.57)whereofcoursem[n]denotesthesequence(m;:::;m)oflengthn.Thesub-sequentcoecientsut,vtretaintheirearlierexpression(3.33)(3.34)butwith:ut=XTq;p[q1];p+t;p[q2](forq1;q20;q1+q2=q0)(3.58)ut=Tq+t;p[1+q0](3.59)vt=Tp+t;q[1+p0](3.60)vt=XTp;q[p1];q+t;q[p2](forp1;p20;p1+p2=p0)(3.61)Buttheearlieridentities(3.48)(3.49)remaininforce(beingasimpleconse-quenceof(3.8))andleadtoadrasticsimpli cationofutandvt:ut=t�M t�p�t�q t�pTq+t;p[1+q0](3.62)vt=t�N t�q�t�p t�qTp+t;q[1+p0](3.63)Heretoo,WmayvanishonlyifM=N,whichinviewof(3.55)imposesp=q=p0=q0.Sowemaywrite:(p;q)=(sp;sq);(p0;q0)=(s0p;s0q)(3.64)withs;s0inNandp;qcoprime.TheargumentthenproceedsasinEx-ample1,exceptthat(3.39)nowbecomes:Pu0( pq)( p)s0p+Qv0( pq)( q)s0q=0(3.65)sothattheinvariantc:= q �pisnowconstrainedonlyby:cs0=�Qv0 Pu0ps0p qs0q(3.66)26 Then,usingtheasymptoticpropertiesofthegammafunction,itisastraight-forwardexercisetocheckthat,forany xedpair(p;q)andfor(p0;q0)=(p;q)thedivisor(t)is�0forallt�0andalllargeenough.Thus,foranygiventangencyorders(p;q),wecanpointtoanexplicitrelationW(F;G)=1thatadmitstwins(F;G)withthattangencyorder.Example3.Fixedratiop=q,onecontinuousparameter.IfwesetW(A;B):=fU(A;B);V(A;B)gwithU,VasinExample1,thentherelationW(F;G)=1hastwinsolutionsforthetangencyratiosp=q=1=2.Thesetwinsstillhavethesameiterationresidues =15=8and =�7=12asinExample1,buttheynowdependonafreecontinuousparameterc:= 2 �1Proof:Startingfromanypairs(p;q)and( ; ),wetake(F;G)asinExample1andgetthesameexpressionfor(U;V).TheexpressionforW,however,doeschange:W=(X0twtxt)( pq)( p)2( q)(x1+M+N@)(3.72)withaninitialcoecientw0thatvanishesi M=N.ThusW=0impliesp=q=1=2asbeforebutleaves( ; )andthusc:= 2 �1completelyfree.Asforthecurrentcoecientwt,itisnowoftheform:wt=D(t)((t�q) t�(t�p) t)+earlierterms(3.73)withthesamedivisorD(t)asinExample1,uptothetrivialfactoru0v0=R:D(t)=u0v0t1 6(6+t+t2)withu0=Tq;p;p;v0=Tp;q;q(3.74)Sotheonlychangeistheappearanceofthecontinuousparameterc(invariantundergeneralconjugacies)orthepair( ; )(invariantunderidentity-tangentconjugacies)insteadoftherigidityinExample1.Asforthevalues( ; ),theyarespecialcasesof(3.76),(3.77)below.Example4.Fixedratiop=q=p0=q0,onecontinuousparameter.IfwesetW(A;B):=fU(A;B);V(A;B)gwithU,VasinExample2(i.e.U:=( A)1+q0BandV:=( B)1+p0A)thentherelationW(F;G)=1hastwinsolutionsforthetangencyratiosp=q=p0=q0.Thesetwinsstillpos-sessthesameiterationresidues( ; )asinExample2(see(3.81)below),buttheynowdependonafreeparameterc:= q �p28 withasummationextendingtoallqi0suchthatq1+q2=q0(resp.toallpi0suchthatp1+p2=p0.Thusweget:( ; )=(30=29;�7=12)for(p0;q0)=(1;2)(3.82)( ; )=(50=27;�8=45)for(p0;q0)=(1;3)(3.83)( ; )=(413=132;�625=564)for(p0;q0)=(2;3)(3.84)( ; )=(1785=856;�69=1120)for(p0;q0)=(1;4)(3.85)Example5.Freeratiop=qonecontinuousparameter.IfwesetW(A;B):=fU(A;B);V(A;B)gwithU=U(A;B):= A B B BA=fAfBfBfB;Agggg(3.86)V=V(A;B):= B A B AB=fBfAfBfA;Bgggg(3.87)thentherelationW(F;G)=1hasatwinsolutionforeachp6=qandeach( ; ).Thatsolutionisunique(uptoidentity-tangentconjugacies),withit-erationresidues: =q(4p2+5pq+3q2) p2(p+7q); =3p2(p+q) q2(3p+q)(3.88)Proof:InthefreestructuresGrfA;BgandLiefa;bg,theelementsU,V,Whavealternance(2,3),(2,3),(4,6)andtheirLieimagesu,v,whavecornercom-ponents:u0= a b b ba;v0= b a b ab;w0=[u0;v0](3.89)Goingovertotheboundstructures~G0and~L0andde ningU,V,WandU,V,Wintheusualway,we nd:U=(Xt0utxt)( p)2( q)3(x1+M@)(3.90)V=(Xt0vtxt)( p)2( q)3(x1+M@)(3.91)W=(Xt0wtxt)( p)4( q)6(x1+M+N@)(3.92)30 Asimplecalculationthenyields:D(t)=pq(p�q)2t2(t2+qt+6pq)(3.106)sothatthedivisorD(t)isalways6=0forpositiveintegers(p;q;t)(p6=q).Theupshotisthat,giveninitialdata(p;q)and( ; )(p6=q; 6=0),theinductiveresolutionoffwt=0gispossible,leadingto`intrinsicalseries'forFconor,Gconor,Hnorthathaveexactlytheform(3.10),(3.11),(3.18)andcarryonlycoecientsofdepthtinpN+qN.To ndtheexactvaluesoftheiterationresidues( ; ),wemust rstapply(1.20)tocalculatethetermsofdegree(2+1;3)and(2;3+1)inu(a;b):=logU(ea;eb)andv(a;b):=logV(ea;eb);thenplugthisintow(a;b):=logW(ea;eb);andlastlyreplace(a;b)by(lp;lq).We nd: =�1 21 p�q(u0v00�v0u00) D(p)=�1 2pdetu0v0u00v00 detu0v0upvp(3.107) =�1 21 p�q(u0v000�v0u000) D(q)=�1 2qdetu0v0u000v000 detu0v0uqvq(3.108)withu0;v0;D(t)asaboveand:u00=Tp;q;p;q;q;p+Tp;q;q;q;p;p(3.109)u000=3Tp;q;q;q;q;p(3.110)v00=Tq;p;p;q;p;q+Tq;p;q;p;p;q(3.111)v000=2Tq;p;q;q;p;q+Tq;p;q;p;q;q(3.112)Whicheventuallyleadstothevalues ; mentionedin(3.85).Remark1:Weobservethat ; ,asindeedallthesecondaryinvariants (m;n); (m;n); (m;n)carriedbythe\intrinsicseries"(3.10),(3.11),(3.18),arehomogeneousfunctionsofdegree0in(p;q).Remark2:Forthetimebeing,wehavesetasidethecaseoftwinswith32 Similarly,for(d1;d2)=(2;4)=(even;even)wemaytake:U=U(A;B):= A B4A;V=V(A;B):= B3 A2B(3.117)sinceinthiscase:D(t)=4pq(p�q)2(p+q)6pq+qt+t22q+2p+t(3.118)againwithpositivecoecientsonly.Hereagainwe nd: 6=0; 6=0.Weskiptheproofs,sincetheyfollowaxactlythesamelinesasinExample5.Ofcourse,theaboveRemarks1and2stillapply.3.5Exampleswithbuilt-insymmetriesToagiventwin-generatingrelationW(F;G)=1,onemaynotaddanyindependentrelationW1(F;G)=1withoutforcingFandGtocommute(whichbyourde nitiontwinsareforbiddentodo).Onemaywell,however,imposeadditionalsymmetries.Moreprecisely,givenanyoneoftheten(uptoconjugacy) nitesubgroups4ofAutGrfA;Bg,onemaylookforrelationsR(A;B)=1thatgeneratetwinswhilebeinginvariantundertheactionofthesubgroupAutjinquestion:RT(A;B)=QT(A;B)(R(A;B))T(QT(A;B))�1(3.119)(8T2Autj;T=1)(HeretheexponentThastobeanintegerandaunitroot.SoT=1).Ineachofthesetencases,weshallrestrictourselvestorelationsR(F;G)1whosegeneraltwinsolution(F;G)dependsonlyonafreeratiop=q(6=1unlessstatedotherwise)andafreecontinuousparameterc= q �p(likeinExamples5or6).Andasalwaysinthissection,weshallstrivetopickthoseexampleswhichareeasiesttoconstruct,ratherthanthosewiththelowestwordcomplexity.Webeginwiththesixcyclicgroupsofautomorphisms. 4Theirlistwasgivenattheendofx2,alongwiththenotationfortheirelements.Werecallthatamongthese10 nitesubgroups6arecyclic;2abeliannon-cyclic;and2non-abelian.34 ThecornercomponentandthedivisorofR(resp.R1)aretwicethoseofW(resp.W1).ThedivisorD(p;q;t)ofW,inturn,beingthesameasinExample5or6,doesnotvanishforp6=qandp;q;t2N.NeitherdoesthedivisorD1(p;q;t)ofW1since:w10(a;b)=[w0(a;b);a](3.124)HenceD1(p;q;t)=((d1�1)p+d2q+t)D(p;q;t)(3.125)Thesimplerinvariancerelation(3.120)(boughtatthecostofamorecomplexW1)impliesthattheLieimager1(a;b)ofR(A,B)carriesonlycomponentsofodd(global)degreein(a,b).Thecomponentoflowestdegreeisthecornercomponentw10(a;b),withdegreeexactly2d+1.Butthenexttwocompo-nents(ofdegree2d+2)vanish,andsodotheinvariants ; whichstemfromthesecomponents.ThesameconclusionalsoholdsforthesolutionsoftherelationR1,buttheproofisslightlylessdirect.First,wenotethat(3.119)implies:r(�a;�b)=e� w(a;b)r(a;b)(3.126)So,ifweset:r2(a;b)=r(a;b)+r(�a;�b)(3.127)wehave:r2(a;b)=(1+e� w(a;b))r(a;b)(3.128)Since1+exp(� w),asanoperatoron Lie(a;b)isclearlyinvertible,theidentityr(a;b)0isequivalenttor2(a;b)=0(thoughr2(a;b)isnottheLieimageofanywordR2(A;B)).Now,inviewofitsde nition(3.125),r2(a;b)carriesonlycomponentsofeven(global)degreein(a;b).Sohereagainthetwocomponentsofr2(a;b)immediatelysuperior(indegree)tothecornercomponentnecessarilyvanish,sothat = =0.Example10.InvarianceunderI1:(A;B)7!(A�1;B)LetW:=fU;Vgbeatwin-generatingrelationofalternance(d1;d2)in(A,B),withd1even(asinExample5)orodd(asinthesameExample,butwithAandBexchanged).Thenifweset:R:=WWI1(ford1even)(3.129)R1:=W(WI1)�1(ford1odd)(3.130)36 Thenon-proportionalityofu0;v0iseasilycheckedbyspecialising(a,b)to(lp;lq).Theinvariance(mod[a;b])under(3.136)isimmediate.Asforthedi-visorassociatedwithw0=[u0;v0],atediousbutstraightforwardcalculationyields:D(p;q;t)=12p2q2t(p�q)2(t+6p+6q)(t+p�q)(t�p+q)(3.139)sothatD(p;q;t)6=0forp6=qandt2pN+qN(p;q;t�0).Thesameholdsforthedivisorofr0,whichissimplythreetimesthatofw0.ThatleavesonlytheJ-invariance,whichasusualistheeasiestparttocheck.Indeed,from(3.135)weget:RJ=W�1RW(3.140)Remark:Althoughwehavepostponeddealingwithtwinswithequaltan-gencyorders(p=q)untilthe\systematic"investigationofx5,itmaybenotedthatintheaboveExample11(asalsoinExample15below)theactionofJandJ2exchangesbothtypesoftwins(i.e.p6=qandp=q).Example12.InvarianceunderK1:(A;B)7!(B�1;A).Ifwesetsuccessively:W:=f B2 A3B; A2 B3Ag(3.141)Q:=f A3B; B3Ag(3.142)W1:=fQ;Wg(3.143)R:=W1;WK11WK211WK311(3.144)thentheK1-invariantrelationR(F;G)1hasageneraltwin-solutionthatdependsonp=qandc.Proof:SinceK41=1,(3.144)givesRK1W�11RW1whichtakescaresoftheinvariance.Uptotheinnocuousfactor:T6p+6q+t;4p+4qTp;q;q;qTq;p;p;p�(2p+2q+t)pq(p�q)2(p+q)2(3.145)thedivisorassociatedwithW1coincideswiththedivisorofW,whichweal-readyencounteredinExample6andfound(see(3.114))tobenon-vanishing.ThereasonforbracketingWwithQisofcourseaquestionofparity:whereasWandWK1haveoppositecornercomponents(sincetheseareof38 Moreover,sinceWhasaneven(global)alternance2(d1+d2)=4d1=4d2,thetwofactorsWandWI0whichmakeupRcontributethesamecornercomponentandthesame(non-vanishing)divisor{namely(3.114)ifwetakeUasin(3.113).Example15.InvarianceunderAut3=fI;J;J2;S1;S1J;JS1g.WetakethesamewordWofalternance(10;10)asinExample11,butthistimeweset:W1=ffA;Bg;Wg(3.152)W2=W1(W1S1)�1=ffA;Bg;WgfWS1;fB;Agg(3.153)R=W2WJ2WJ22(3.154)ThentheAut3-invariantrelationR=1hasageneraltwin-solutionthatdependsonp=qandc.Proof:ThewholepointofbracketingWwithfA;BgisofcoursetogetawordW1withthesamedivisorasW(uptothetrivialfactorTq;pT10p+10q+t;p+q)butsuchthatW1and(W1S1)�1havethesamecornercomponents(ratherthanoppositeonesasinthecaseofW).ThisyieldsaW2verifyingWS12=W�12andwithtwicethecornercomponentofW1.MoreoversincethecornercomponentsoffA;BgandWareinvariantundertheaction(3.136)ofJ,sotooarethoseofW1andW2.TheupshotisthatthecornercomponentanddivisorofRareexactlysixtimesthoseofW1,whichinturnareessentiallythesameasthoseofW.Asfortheinvariance,itisenoughtocheckitfortwogeneratorsofAut3,e.g.JandS1.DuetoWS12=W�12,thede nitionofRyields:RJ=W�12RW2;RS1=W�12R�1W2(3.155)Example16.InvarianceunderAut4=fI;I0;I1;I2;S1;S2;K1;K2g.IfwetakeawordW=W(A;B)suchthat:(*)Wbetwin-generating(**)WS1=W�1(***)Wbeofalternance(d1;d2)in(A,B)withd1=d2=odd40 Despiteitsforbiddingcomplexity,thisexampleisthe`simplestofitskind',atleastaslongasweinsistonworkingwithmulticommutatorsanddemandacertainsymmetryinAandB.Butifwedroptheserequirements,wemayproduceaslightlysimplerexample:Example17.InvarianceunderAut4:simplerexample.Ifweset:U:=f( A3Bf( AB);B�1gg(3.165)V:=f( A2Bf( A2B); A(B2)gg(3.166)W1:=UV(3.167)W2:= B2W1(3.168)W:=W2(WS12)�1(3.169)R:=WWK1WI0WK2(3.170)thentheAut4-invariantrelationR=1hasageneraltwinsolutionthatdependsonp=qandc.Proof:ItisenoughtocheckthatthenewWstillmeetsallthreeconditions(*)(**)(***)ofExample16.Clearly,ifwesetbn:= anb,we ndforthecornercomponentsofU,V,W1,W2:u0=� b3 b2b;v0=2 b2 b2b1(3.171)w10=u0+v0;w20= b b(u0+v0)(3.172)Next,wecheckthatw10(andsow20)vanishunderallrealisations(a;b)7!(lp;lq).ThenwecalculatethedivisorattachedtoW1:D1(p;q;t)=�(p�q)2qt2(t�p+q)(3.173)andtheoneattachedtoW2:D2(p;q;t)T3p+5q+t;q;qD1(p;q;t)(t+3p+4q)(t+3p+5q)D1(p;q;t)(3.174)42 Proof:ThedivisorDl(p;q;t)ofRlisequaltothedivisorD(p;q;t)ofWmultiplied:(i)bythetrivial(i.e.t-independent)factorsTp;q(nj);p(mj�1)contributedbythewordsWj(j=1;;l).(ii)bytheelementary(i.e.t-ane)factors(t�jp�jq)(j=1;;l)whichweintroducedbybracketingRj�1withWj.ThereforeDl(p;q;tj)0fortj:=jp+jq(j=1;;l).Undernormalcircumstances,thisshouldpreventtheexistenceoftwin-solutions,buthereithastheoppositee ectofenlargingtheirnumber,byintroducinglnewfreeparameterscj.Indeed,foranyinitialconditions(p;q)and( ; ),therelationRl(F;G)1isequivalenttothesystem:logRj�1cjlogWj(mod:termsofdepthtj+1)(j=1;;l)(3.180)which,foranygivenchoice(c1;;cl)inCl,clearlyadmits(uptoconjugacy)auniquesolution(F;G).ThecoecientsofF;Gwithdepthtt1arecalculatedinductivelyex-actlyasifweweredealingwiththesolerelationR0(F;G):=W(F;G)=1.Thenthecoecientswithdeptht1tt2arecalculatedfromlogR0=c1logW1;thosewithdeptht2tt3fromlogR1=c2logW2;etc...;andlastlythoseofdepthtltfromlogRl�1=cllogWl.Actually,theconclusionwouldremainunchangedifthe(j;j),insteadofforminganincreasingsequence,werepairwisedistinctandcomparable(forthenaturalorderonN2),whileofcourseremainingpositive.Fornon-comparablepairs,however,therewouldoccursomeslightchanges,sincetheorderofthesequenceformedbythezerostjofthedivisor's`elementaryfactors'woulddependonthetangencyratiop=q.Example19.Onemovableparameter:LetR1andR2betwotwin-generatingrelationsofthetypeencounteredinExample9(see(3.120-121)),withinvarianceunderI0:Rj(A�1;B�1)=(Rj(A;B))�1(j=1;2)(3.181)Thenifweset:R(A;B):=R2(A;R1(AB))(3.182)44 withr i(a;b)denotingthelowest-degreehomogeneouscomponentinthese-riesri(a;b):=logRi(ea;eb)andwitha='@;b= @for,say,'givenand unknown.Heretoo,each`factor'r i(a;b)contributesitsownparame-ters,butthemultibracketontheright-handsideof(3.188)introducesr�1additionalparameterswhichhavethee ectofconnecting(undercontinuousdeformations)theseparatesolutions.Thus,whereasthesolutionsofdi erentialequationsmaybeseamlessly`welded'together,thesolutionsofcompositionequationscanonlybe`glued'5.Thisre ectsaverybasicdi erencebetweenthetwoclassesofproblems.Norisitduetothefactthatwearesolvingour(di erentialorcomposition)equationsinringsofpowersseries:thedi erencepersists,undiminished,whenwegoovertotransserialsolutions(seex8infra).4SomeLietheory.Active/passivesubalge-bras.Divisorsanduniversalkernels.4.1Theactive/passive ltrationofLie[a;b].Thetwentyexamplesoftwinsreviewedintheprevioussectionareeasytoconstructbutsomewhatatypicalinsofarasallofthemverifyrelationsmadeupofsuitablyarrangedmulti-commutators.Beforeturningtothedescrip-tionoftruly`generic'twins,wemustinsertasectiondevotedtothenatural ltrationsthatariseonfreealgebraswhentheygetrepresentedasone-variabledi erentialalgebras.Letusforsimplicitydealwiththetwo-generatoralgebraLie[a;b].Itadmitsanaturalsequenceofdecreasingideals6:Lie[a;b]=Uker0Uker1Uker2:::Uker1=Pass(4.187)[Ukeri;Ukerj]Ukeri+j8i;j(0i;j1)(4.188)Thek-thidealUkerkisde nedasconsistingofallw(a;b)2Lie[a;b]whichvanishuptoorderk:fw2Ukerkg()fw(F;G)=O(k)8p;q;'; g(4.189) 5withonlyaweakinteractionstemmingfromtheperturbationR0.6withUkerstandingforuniversalkernel.46 tooneanotherandtoPass,withrespecttothenaturalscalarproductonLie[a;b]9.Thisagainwouldleadtoworthwhiledevelopmentswhich,how-ever,wouldbeadistractionfromourpresentinvestigation.Nextcomesthequestionofthedimensions,whichmakessenseonlyinsidespeci edhomogeneouscomponentsLie[a;b](d1;d2).Foranygivendegree(d1;d2),thecomponentsUker(d1;d2)iclearlybecomestationaryafteracertaincriticali:=icrit(d1;d2).Thisstationaryidealcom-ponentcoincideswithUker(d1;d2)1.OfcoursethecorrespondingcomponentsAct(d1;d2)ioftheactivealgebraturnempty.Foranygivenindexi,thedimensionsdim(Uker(d1;d2)i)andalso,lessob-viously,dim(Act(d1;d2)i),arenon-decreasing(butnon-convex)functionsofd1andd2.Remark3:Thespaces[Uker(d01;d02)i0;Uker(d001;d002)i00]areclearly(strict)sub-spacesofUker(d01+d001;d02+d002)i0+i00.Takingintoaccountthecorrespondingquo-tients10Act(d01;d001);(d02;d002)(i0;i00)wouldleadtoaconsiderablere nementofourac-tive/passive ltration,butweneednotgointothathere.Beforeestablishingtheexactformulasforthemaindimensions,weadducetwotables.The rsttableextendstoalldegrees(d1;d2)(15;15)anditsentriesarethree-numbercolumns:top: =dim(Act0(d1;d2))middle: =dim(Act(d1;d2))bottom: =dim(Pass0(d1;d2))WhenAct(d1;d2)doesn'treducetoits rstcomponentAct1(d1;d2),thenum-ber isenteredas .Thesecondtableextendstoalldegrees(4;4)(d1;d2)(14;14)and 9ietheoneinducedbythenaturalscalarproductontheenveloppingfreeassociativealgebraAss(a;b)10whichmaybejoinedtoformLiealgebras.48 12345678910111111111110000000000000000000021122334455000000000000000000003123445667800012346790000112345412456678990012581215212600013611172535513467889101100259152231405200139193659931376135689101011120038152336496786001619438615325539971467810111212130041222365274100132002113686182343603999814689101213141400615314974103142186003175915334368412742224915791011121415160072140671001421922570042593255603127424934589101589111213141617009265286132186257339005351373999992224458988691116810121314151618001133651111682433324450074819660415863720805016333121691112141516171800133982137214306426568008622708752423596613552287861317101213151617181900154899172265387535721001080364124135959286220574900214171012141517181920001856120208328477668897001210047817095192140253484380769151811131516181920210020671422543995898221116001412461823137335207105363512961350 4.2Dimensions.Throughoutthissection,weshallusethefollowingnotations:p(n):=nbofpartitionsofnwithpositivesummands(4.193)p(n):=1+p(1)+p(2)++p(n)(4.194)p(n;m):=nbofpartitionsofnwithmnon-negativesummands(4.195):=nbofpartitionsofnwithatmostmpositivesummands(4.196)P(n;m):=nbofpartitionsofnwithmpositivesummands(4.197)Clearly,p(;)andP(;)areexpressibleintermsofeachother;p(n;m)P(n+m;m);P(n;m)p(n;m)�p(n;m�1)(4.198)Letus rstgetallthemainstatementsandformulasoutoftheway(Prop.4.1through4.4)andthenproceedwiththeproofs.Proposition4.1Fullalgebra:ThedimensionsL(d1;d2):=dimLie[a;b](d1;d2)aregivenbytheclassicalfor-mula:L(d1;d2)=1 d1+d2Xjd1;jd2()((d1+d2)=)! (d1=d)!(d2=d)!(4.199)with(:)astheMobiusfunction.Proposition4.2Fullactivealgebra:ThedimensionsD(d1;d2):=dimAct(d1;d2)=codimUker(d1;d2)1aregivenby:D(d1;d2)=p(d1+d2�1;d1)+p(d1+d2�1;d2)�p(d1+d2�1)(4.200)=P(2d1+d2�1;d1)+P(d1+2d2�1;d2)�p(d1+d2�1)(4.201)=p(d1+d2�1;d1)�p(d1�1)(ifd2�d1�3)(4.202)=p(d1+d2�1;d2)�p(d2�1)(ifd1�d2�3)(4.203)Proposition4.3Leadingactivealgebra:ThedimensionsD(d1;d2)0:=dimAct(d1;d2)0=codimUker(d1;d2)0aregivenby:D(d1;d2)0=1+E((d1�1)(d2�1)) d1)+E((d1�1)(d2�1)) d2)(4.204)whereE(x)denotestheentirepartoftherealnumberx.52 Insymmetricfashion,itisalsoisomorphictothesubspaceofHd1+d2�1d1thatisorthogonaltotheconstraintsLag orPow withindicesoftheform =; oroftheform =(n1;:::;ns) withXnid2�2ands+Xnid1+d2�1(4.208)Bylinearity,theconstraintsLag andPow arewhollydeterminedbythe`constrainttensors'Lag  andPow  suchthat:Lag ; �=Lag  (4.209)Pow ; �=Pow  (4.210)4.4Lagrangianconstraints.Proposition4.6Tensorof`Lagrangianconstraints':Itisexplicitelygivenby:Lag  =Lag (m1;:::;mr)(n1;:::;ns) (4.211)X =1 r lag1 (m1):::lagr (mr)(4.212)withasumextendingtoalldecompositions =1 r of intorsub-partitionsi (someofwhichmaybeempty)andwithintegerslagi (mi)de nedby:lag; (m):=1(8m2N)(4.213)andfornon-emptypartitions bymeansoftheidentity:(�1)m (m)(y):='�1(x)('0(x))m+X1s;1ni(4.214)lag(n1;:::;ns) (m)'knk�1('0(x))m+s�knkY1is(')(1+ni)(x)thatconnectsthesuccessivederivativesoftwofunctions'(x)and (y)linkedbythereciprocityrelation:fy=Zxdx1 '(x1)g()fx=Zydy1 (y1)g(4.215)54 Remark4:Letuswritedowntheexponentialsumslag (m)forthe rstsevenpartitions,iefork k3:lag(;) (m)=1lag(1) (m)=(1�m)lag(2) (m)=(3 4�1 2m)+(�1)m1 4lag(1;1) (m)=(7 4�2m+1 2m2)+(�1)m1 4lag(3) (m)=(11 36�1 6m)+(�1)m1 4+(�2)m(�1 18)lag(2;1) (m)=(�23 9+29 12m�1 2m2)+(�1)m(�1+1 4m)+(�2)m(1 18)lag(1;1;1) (m)=(+13 4�49 12m+3 2m2�1 6m3)+(�1)m(3 4�3 4m)Form=0wemustpositlag (0):=0,butforsmall,positivevaluesofm(iesmallerthans�1+kk)theaboveformulas,oftheirown,yield0.4.5Powerconstraints.Proposition4.7Tensorof`powerconstraints':ItisexplicitelygivenbyPow ; =1andfornon-emptypartitionsby:Pow  =Pow (m1;:::;mr)(n1;:::;ns) (4.221)(ifrs)=0(4.222)(if1sr)=Xj(1�n1)mj(1)(1�n2)mj(2):::(1�ns)mj(s)(4.223)withasumrangingoverallr!=(r�s)!injectionsjofthesetf1;:::;sgintothesetf1;:::;rgandwithnmde nedintheusualwayforvanishingarguments.13Proofs:derivationofthepowerconstraints. 13ie00:=1;n0:=1(8n1);0n:=0(8n1)56 holdtruewhenever:rs+2;tk2f1;0;�1;�2;�3;:::g;X(1�tk)r�2whichestablishestheanalyticexpressionofthe`powerconstraints'.4.6Proofs.DerivationoftheLagrangianconstraints:Themodelweusedfor:Act:=Lie[a;b]=Uker1(4.233)wasobtainedbyspecialising(a;b)as(@y; (y)@y).Withequalright,wemighthavespecialised(a;b)as('(x)@x;@x).Ifwenowconsiderthechangeofvariablewhichtakesusfromthe rsttothesecondspecialisation,we nd:x7!y=h(x);(@y; (y)@y)7!('(x)@x;@x)(4.234)'(x)=1=h0(x); h(x)=h0(x)=1(4.235)whichisreadilyseentoimply,foranypositivem: (m)@7!'(m)h h0@(4.236)=(�1)m('0)m+(�1)mXlag (m)'k k('0)m�s�k k'(1+ )withthesamecoecientslagasin(4.214).Moregenerally,wehave: ( )@7!(�1)k k('0)k k(4.237)+(�1)k kXLag  (m)'k k+1�r('0)k k�k k�s'(1+ )withtheusualnotations: := (m1;:::;mr); ( ):= (m1)::: (mr)(4.238) :=(n1;:::;ns) ; (1+ ):= (1+n1)::: (1+ns)(4.239)58 constraintsareexhaustive.To llthisonelastgape,weintroduceonHthe ltrationH=[Hp,whereHpdenotesthesubspaceofHgeneratedbyproductsofpLieelements,andwecheckthat,iftheexhaustivenesshypothesisisvalidforallcomponentssuchthatd1+d2d�1,thenthenextcomponentd1+d2=dhascodimension:codimHd1;d2p=Xnd1�2n+sd1+d2�pP(n;s)8p1(4.244)ButthisleavesnoscopeforHd1;d2(=Actd1;d2)tohaveadimensionsmallerthanDd1;d2,whichbyinductionestablishesthevalidityoftheexpressionforDd1;d2.Butsincethepowerconstraintsarealsomutuallyindependentand,ifexhaustive,alsoleadtothesameexpressionforDd1;d2,itmeansthatthey,too,mustbeexhaustive.Thiscompletestheproof.5Generic,low-complexityidentity-tangenttwins.5.1Finiteco-dimension.Thegeneralpicture.Thebasictoolsforinvestigatingtwin-begettingrelationsW(A;B)=1isnotthewordW(A;B)itself14butitsimagew(a;b)inthenaturalclosureofLie(a;b),de nedintheusualway:w(a;b):=logW(eaeb)=Xm1;n1wm;n(a;b)2 Lie(a;b)(5.245)Wealsorequirepreciseinformationaboutthenatureofthehomogeneouscomponentswm;n(a;b)andtheirexactpositionwithrespecttotheUker- ltrationofLie(a;b).Soitisnaturaltoset:ActW:=f(m;n)2N2jwm;n(a;b)2Uker0nUker1gActiW:=f(m;n)2N2jwm;n(a;b)2UkerinUkeri+1g(0i)ActW=Act0W[Act1W[Act2W[:::(5.246)Let ActW, Act0W, Act1W...denotetheconvexhullsofthesesetsandletdActW,dAct0W,dAct1W...bethecorresponding( nite)setsofextremalpointsor`summits'. 14atanyrate,ifweareinterestedinpowerseriessolutionsonly.Butwhensearchingforgeneraltransserialtwins(seex8),thewordW(A;B)returnstotheforefront.60 for(m;n)=(3;2)andW(A;B):=Ac1BAc2B�1Ac3BAc1B�1Ac2BAc3B�1(5.247)w2;3(a;b)=1 2c1c2c3[[a;b];[a[a;b]]](5.248)withc1;c2;c32Z;c1+c2+c3=0(5.249)Supposelastlythattheedgelinkingthetwosummitshasslope�p0 q0:=�n1�n2 m1�m26=�1.Thesimplestinstanceofthissituationis:W(A;B):=AB3AB�3ABA�3B�1(5.250)w(a;b)=[a[a[a;b]]]+3[b[b;a]]+=logW(ea;eb)(5.251)HHHHHHHHHH123411122311111111p q=1 2 - 6codim=45.3Fixedratiop=qandonecontinuousparameter.LetusnowexaminethegenericcounterpartofExamples3and4inx3.4.SupposedActWhasasummit(m0;n0)whichisalsoindAct0W.Supposefurtherthatthehomogeneouspolynomialwm0;n0(p;q)hasoneorseveralpos-itiverationalrootsp=q(otherthanp=q=1)suchthatthelineDofslope�p=qdrawntroughthesummit(m0;n0)liesoutsidetheconvexhull ActW.Thismayoccurwithany(m0;n0)(2;2)and6=(2;2).Thesimplestin-stanceofthissituationcorrespondsto(m0;n0)=(3;2)and:w(a;b)=+c1[b[a[a[a;b]]]]�c2[a[a[b[a;b]]]]+:::(5.252)withc1 c2=2 3p+2q p+q(5.253)Exercise: ndthesimplestwordsW(A;B)correspondingtothesimplestvaluesofp=q.62 HHHHHHHHHHHHHHHHHHHHQQQQQQQQQQQQQQQQQ@@@@@@@@@@@@@@146427121113531686815191342165379981519124152165368671211123414215316426637748951122334455111111111111p q=1p q=2 3;p q=1 2; - 6ABABA:codim=31B:codim=31Drawingalineofslopep=qthroughthesummit(4;3)withineitheroftheangulardomainsA;Bandcountingthedimensions ofthecellsbelowthatline,thenadding4,whichisthedimensionofAct04;3,one ndsthesame`codimension'withAandB,namely31.Exercise: ndthesimplestwordsW(A;B)thatinduceanextremalw4;3(a;b)asaboveandforwhichallcomponentslyingbelowthebissectrixofA(orB)vanish.Remark1:additionalsymmetries.Theaboveconstructionsinx5.2,x5.3,x5.4providegenericanaloguestothetypicalsituationsexempli edinx3,inEx1-2,3-4,5-6respectively.Asfortheothersituationsreviewedinx3(Ex7through20)andwhichmostlyinvolvetwinswithextrasymmetriesorinvarianceproperties,theytoohavetheirgenericcounterparts.Moreprecisely,thereadermaysatisfyhimselfbygoingseriatimthroughthese16examplesthateachachievablesetofsymmetriescanalsobeachievedin nite`codimension'.Remark2:precautionswiththedivisors.Theconstructionsofthissection,asindeedtheearlierconstructionsofx3,doworkprovidedthecorrespondingdivisorD(t)doesn'tvanishonN.Sim-plecalculationscon rmthatthisisindeedthecasewithallthreelowest-complexityexamplesproducedinx5.2,x5.3,x5.4.Thereexist,however,ex-ceptionalcasesinwhichthepolynomialD(t)mayhavekrootsonN.Even64 Then,dependingonwhethertheresonancekis1,2,3et...,ourequation(6.256),whichmayberewrittenas:Gm1n1:::Gmrn?r=1withGmn:=FnGmF�n(6.258)admitsageneral1,2,3...-parametertwinsolutionoftheform:G=G1 ]TJ;&#x/F30;&#x 5.9;ݶ ;&#xTf 1;�.20; -1;&#x.107;&#x Td ;&#x[000;:=Hb1q1(b12C;q12N)(6.259)G=G1;b2 ]TJ;&#x/F30;&#x 5.9;ݶ ;&#xTf 1;�.20; -1;&#x.106;&#x Td ;&#x[000;:=Hb1q1Hb2q2K1;b2 ]TJ;&#x/F30;&#x 5.9;ݶ ;&#xTf 1;�.20; -1;&#x.107;&#x Td ;&#x[000;(bi2C;qi2N)(6.260)G=G1;b2;b3 ]TJ;&#x/F30;&#x 5.9;ݶ ;&#xTf 1;�.20; -1;&#x.107;&#x Td ;&#x[000;:=Hb1q1Hb2q2Hb3q3K1;b2;b3 ]TJ;&#x/F30;&#x 5.9;ݶ ;&#xTf 1;�.21;&#x -1.;ć ;&#xTd [;(bi2C;qi2N)(6.261)etc:::withoperatorsHbqandKcorrespondingtopost-compositionbymappingsoftheform:hbiqi:x7!x(1+bixqi)�1=qi(bi2C;qi2N)(6.262)k1;b2 ]TJ;&#x/F30;&#x 5.9;ݶ ;&#xTf 1;�.20; -1;&#x.107;&#x Td ;&#x[000;:x7!x(1+O(xq1+q2))(6.263)k1;b2;b3 ]TJ;&#x/F30;&#x 5.9;ݶ ;&#xTf 1;�.20; -1;&#x.107;&#x Td ;&#x[000;:x7!x(1+O(xq1+q2))ifq1q2q3(6.264)etc:::provided(fork3)thattheqi'sverifynodependencerelationoftheform:qi=Xj6=imjqjwithmj2NandXmj&#x-278;012(6.265)Fork=1thesolution(6.259)isofthetypewhichwehavedismissedas`elementary'inx1.1.Fork2,however,thesolutions(6.260),(6.261)etcaregenuinetwinsassoonastwoofthefreecomplexparametersbiarechosen6=0.Proof:Straightforward:applyCampbell-Hausdor torephraseequation(6.258)intermsofthein nitesimalgeneratorsGmnofthefactorsGmnandobservethat,wheneverallparametersbibutonevanish,the`correctivefac-tor'H1;b2 ]TJ;&#x/F30;&#x 5.9;ݶ ;&#xTf 1;�.20; -1;&#x.107;&#x Td ;&#x[000;;H1;b2;b3 ]TJ;&#x/F30;&#x 5.9;ݶ ;&#xTf 1;�.20; -1;&#x.107;&#x Td ;&#x[000;:::reducestotheidentityoperator.6.2Simpleexamples.Thesimplestpossible`resonant'divisoris:W():=(�aq1)(�aq2)=m0+m1+m22(6.266)a2N;1q1q2;m0=aq1+q2;m1=�aq1�aq2;m2=1(6.267)e:g:a=2;q1=1;q2=2;m0=8;m1=�6;m2=1(6.268)66 Hereagain,W6,unlikeW5,forcesare ection-symmetryoftype(6.274).Fromtheformalviewpoint,thevalueofadoesn'tmatter,aslongaisnotaunitroot,butfromtheviewpointofanalysis,asweshallseeinamoment,thepicturechangescompletelydependingonwhetheralieson,oroutside,theunitcircle.6.3Twinsoftangency(0;0).PickanywordW(A;B)leadingtotwinsoftangencyorder(0;q).Thentheword:W(A;B):=W(A;fA;Bg)(6.285)admitsageneraltwinsolutionoftangencyorder(0;0).Toseethis,normaliseFbysettingf(x):=axfortherightvalueofa.20Next,solveW(F;G0)=1withrespecttoG0asabove.ThenendbysolvingG0=fF;GgwithrespecttoG,whichisalways(uniquely)possibleforanychoiceofb:=g0(0),providedbisnotaunitroot.6.4Simpleexamples.WiththewordWasin(6.285)andanyoneofthewordsWinx6.2.6.5Pre-identity-tangent`twins':type(0;0).Letpbeprime5andlete1;e2betwodistinctunitroots:ep1=ep2=1;e16=1;e26=1;e1e26=1Thenthesystemf:=x7!e1x+O(x2)(6.286)g:=x7!e2x+O(x2)(6.287)Fp=Gp=(FG)p=1(6.288)iseasilyseentopossessageneralnon-elementary21solutionthatinherently22dependsonin nitelymanyparameters.Similarresultsholdfornon-prime 20iefora`resonant'rootofthedivisorW().21intheusualsenseofnotbeingreducible,evenunderajointrami edchangeofco-ordinates,toapairofhomographies.22ieafternormalisingF;Gunderajointchangeofco-ordinates.68 operatorslt:=x1+t@x:p:=Lie(a)!Z;w7!p:w(6.290)pi:=Lie(a)!Z[t];w7!pi:w(1ir)(6.291)withp:w:=w(lp1;:::;lpr):x x1+p1++pr(6.292)pi:w:=@w(lp1;:::;lpi+lt+pi:::;lpr):xjj=0 x1+t+p1++pr(6.293)Ifw2Lie(a)ishomogeneousofdegreed1ina1,d2ina2,...,thenitsp-degreeissimplyde nedasp-deg(w):=Ppidi.Clearly,ifwisofp-degreeP,thesetwoidentitieshold:(t�P)p:w=rX1(t�pi)pi:w(6.294)pi:w=dip:w+O(t)ast!0(6.295)Now, xamulti-integerp:=(p1;:::;pr)andashorter(oneelementless!)sequencew:=(w1;:::;wr�1)ofhomogeneouselementsofLie(a),ofvariousoridenticalp-degrees,itdoesn'stmatter,butallsubjecttotheorthogonalitycondition:p:w1=p:w2==p:wr�1=0(6.296)Inviewof(6.294),(6.295)therelation:D(t):=(�1)i (t�pi)det[p1:w;:::;[pi:w;:::;pr:w](6.297)de nesafunctionD(t)=Dw(t;p)thatisnotonlyindependentofi24butalsopolynomialint.Thisfunctionistheexactgeneralisationforsiblingsofthe`divisors'whichwecameupagainstwhendiscussingtwins.Proposition6.1Siblings.Considerasystemoftype(6.289)and xamulti-integerp.Assumethat 24theterm[pi:wisomittedin(6.297)andofcoursepj:wstandsfor[pj:w1;:::;pj:wr�1]70 wouldamountstoimposingthreeindependentrelations.However,whendealingwithidentity-tangentmappingsFi,imposingthepair-wisecommu-tationofthethreewords:V1:=V(F1;F2;F3);V2:=V(F2;F3;F1);V3:=V(F3;F1;F2)(6.305)amountstoimposingonlytwoindependentrelations,e.g.:W12(F1;F2;F3):=fV1;V2g=1(6.306)W23(F1;F2;F3):=fV2;V3g=1(6.307)This`transitiveness'propertyofcommutationforidentity-tangentmappingsissimplyduetothefactthatF;GdocommuteifandonlyiftheirlogarithmsF:=log(F)=f@x;G=log(G)=g@xcoincide,asoperators,uptomultiplicationbyaconstant.Thuswehaveoursystemof2relations(6.326),(6.307)withthreeun-knownsFi,andwecaneasilyseethanitadmitsageneralsiblingsolutionwithfreetangencyorders(p1;p2;p3)byobservingthat:logV(F1;F2;F3)=�2p1p1(p1�p2)(p2�p3)(p3�p1)x1+2p1+2p2+2p3@x+termsofhigherdegreeandthenreasoningasinx3.4,Example5or6.7Analyticnatureoftwins.7.1Multiplierjaj6=1:convergence.Letusstartwiththecasewhich,fromtheanalyticviewpoint,issimplest:thatofamultiplierjaj6=1.We rstrequireanauxiliarylemma.The`sandwichequation':Considertheequation:Hm1K1Hm2K2:::Hmr�1Kr�1HmrKr=1(7.308)h(x)unknownax(7.309)ki(x)givenbixandanalytic(7.310)m1++mr6=0mi2Z(7.311)am1++mrb1:::br=1(7.312)72 smalloforder(l+1)ln0 n0kwith :=infj ij1fori=1::landwithk&#x]TJ/;༗ ;.9;Ւ ;&#xTf 1;.54; 0 ;&#xTd [;1denotingthelowesttangencyorderforthenewunknownhandthenewdatabi.ButifwechooseH analyticandcloseenough(ietangenttoahighenoughorder)toaformalsolutionofH0,wecanmakekaslargeaswewishandinparticularensurethatjl kj1.Fixingsuchak,weseethattheanalyticoperatorsPn(1)convergenormallytoananalyticoperatorP1(1)whichnecessarilycoincideswithH0.WhichmeansthattheformalH0wasanalyticinthe rstplace.QED.Applicationtotwins:TheschemeclearlyappliestoallfourexamplesW1(A;B):::W4(A;B)abovesincem2=1.Itwouldapplyequallywelltoanyexampleconstructedfromamonicpolynomial26W()withatleastone`resonant'rootjaj&#x]TJ/;༗ ;.9;Ւ ;&#xTf 1;.62; 0 ;&#xTd [;1.Itap-plies,infact,withminoradaptations,tomostsituationsinvolvingmultipliersjaj6=1.Aninterestingasideisthis:oncefhasbeennormalisedtof(x)=ax,whatcanbesaidofganditsnaturalRiemannsurface?Thelatterappearstopossess,foralmostallvaluesoftheparametersbi,ahighlyfractalboundary.7.2Multiplierjaj=1:divergence.Whenaisontheunitcirclebutnotaunitroot,weshouldexpectgenericdivergenceoftheformaltwinssince,inasuitablez-chart(z1),solvingthetwinequationreducestosolvinganin nitesequenceofaneequations:P'n= nwithP'(z):=Xck'(akz+bk)andz1(7.321)where,atthen-thinductivestep, nisknownand'nunknown27.Now,evenforananalytic28input n,thesolution'nisgenericallydivergentandnon-summable.Ofcourse,compensationwithintheseriesP'ncannotberuledouto hand,butwhenthesolutiondependsonacontinuousparameter,asimpleargumentshowsthatwemusthavedivergenceforalmostallvaluesofthatparameter. 26ieapolynomialwithintegercoecientsandaleadingtermwithunitcoecient.27ThesumPinthede nitionofPis nitebutitneverreducestoasingleterm.28atin nity.74 R+isfreeofsingularitiesineitheroftheBorelplanesf1gandf2gconju-gatetothemultiplicativeplanefz1gandfz2g.Asaconsequencethereexistsaprivilegedrealaccelero-summation.30P4:Theprivilegedsumthusobtainedcoincideswiththeoneproducedbythe`geometric'methodsketchedinx8.4.P5:Theinvariantsassociatedwiththez1-andz2-resurgenceregroupnat-urallytoformageometricobject,the\shadowtwins",consistingoftwoformalseries31alsoconnectedbyonerelation.These\shadowtwins"carryalltheobstructionstotheanalyticityoftheoriginaltwins(f;g).P6:Whenevertwinsdependononeorseveralcontinuousparameters,theintrinsictwinfunctionsareguaranteedtobenon-analytic(iestrictlyresur-gent)except(atmost)foradiscretesetofparametervalues.P7:Itwouldseemreasonabletoconjecturethenon-analyticityofallgen-uine32identity-tangenttwins.7.5Identity-tangenttwins:autonomousdi erential-di erenceequationsanddoubleresurgence.Thephenomenonofdoubleresurgenceinthe`intrinsictwinfunctions'issimplesttounderstandincaseswithafreeratiop=qandafreecontinuousparameter = = ,likeinEx5andEx6ofx3.4.Tofurthersimplify,weimposesymmetriesthatmaketheiterativeresidues ; ofF;Gvanish33sothatFandGmaybeseparatelynormalisedto:Fnor=exp(� xp+1@x)Gnor=exp(� xq+1@x)( := = )(7.322) 30consistingincalculatingonR+boththeaccelerationintegralinthe1-planeandtheLaplaceintegralinthe2-plane.31theyarenotpowerseries,though,and,unliketheoriginaltwins,theycarrytranscen-dentalratherthanrationalcoecients32ienon-elementary,inthesenseofx1.133see(1.19).76 withandF:=logF=(x)@xFn:=logFn=n(x)@x=gn(x) @xgn(x)@xm;n:=[m;n]:=m0n�0mnSwitchingovertothe`criticalvariable'z2:=x�qthatnormalisesGweget:G:=logG=@z2)g(z2):=z2+1F:=logF='(z2)@z2Fn:=logFn='n(z2)@z2='(z2+n)@z2'm;n:=['m;'n]='(z2+m)'0(z2+n)�'0(z2+m)'(z2+n)Freezingto =1theparameterassociatedwithGandexpandingeverythinginpowersoftheparameter associatedwithF,we nd:'(z2)= '1&#x]TJ/;༩ ;.97; T; 6.;ֆ ;� Td;&#x [00;(z2)+ 2'2&#x]TJ/;༩ ;.97; T; 6.;ֆ ;� Td;&#x [00;(z2)+:::withP2'1&#x]TJ/;༩ ;.97; T; 6.;և ;� Td;&#x [00;=0(7.327)P2'&#xk-27;=earlierterms(k=2;3:::)(7.328)withabilineardi erence-di erentialoperatorP2oftheform:P2'(z2):=Xmcm;n['(z2+m);'(z2+n)]andandcoecientscm;nanein:=p=qandeasilycalculablefromthelineari-sations(7.325),(7.326):c�2;0=c0;2=�1 2(�1)c�1;0=c0;1=2(2+1)c�1;1=�3(+1)Secondlinearisation:IfwenowlineariseinBi.e.inG,thepictureremainsmuchthesame,with(F;;'; ;z2;;P2)and(G; ; ; ;z1;�1;P1)exchangingplaces,butwith78 withadi erence-di erentialoperatorP2oftheform( nitesum):P1 (z1):=Xn1;n2;n3cn1;n2;n3[ (z1+n1)[ (z1+n2); (z1+n3)]]whosecoecientscn1;n2;n3areanein:=p=qandeasilydeduciblefromthelinearisations(7.329),(7.330):cn1;n2;n32(2+1)cn1;n2;n3+(�1)cn1;n2;n3Singularautonomousdi erence-di erentialoperatorsP:Thehomogeneousequations(7.327)or(7.331)whichstarttheinductioncaneasilybeshowntoadmitauniqueformalsolutionoftheform:'1&#x]TJ/;༩ ;.97; T; 6.;ֆ ;� Td;&#x [00;(z2)=z1�2(1+X 2n()z�2n2)(:=p=q)(7.333) 1&#x]TJ/;༩ ;.97; T; 6.;ֆ ;� Td;&#x [00;(z1)=z1�1 1(1+X2n()z�2n1)(�1:=q=p)(7.334)thatisdivergent-resurgentinitssingle\criticalvariable",z2orz1,andalwayspossessesacountablein nityofnon-zeroalienderivatives.Thesameholdsforthenon-homogeneousequations(7.328)or(7.332)thatcontinuetheinduction,aslongastheirright-handsidesarethemselvesresurgent.Here,the`invariants'or`resurgencecoecients'or`Stokesconstants'whichentertheresurgenceequationsastheironlytranscendentalingredi-ent,areparticularlyinterestingentirefunctionsof,ofso-calledautarkictype34.7.6Identity-tangenttwins:canonicalaccelero-summability.Thus,thingsarefairlyunproblematicaslongasweexpandour`intrinsictwin-relatedfunctions'inpowersofthefreeparameterandconsidereachcontribution'&#xk-27;or &#xk-27;inisolation.Butthemomentweattempttosumallthesecontributions,asharpdissymmetrymakesitselffeltbetweenthe 34iewithanasymptoticscompletelyde nedbya nitesetof{equallyautarkic{entirefunctions.Actually,theclassofautonomousdi erence-di erentialequationsandtheirinvariantswouldwarrantaspecialinvestigation,butthereisnoroomforthathere.80 allorders,andcombinestheoriginal,resurgence-bearingvariablezwithacountablein nityofso-calledpseudo-variablesZ!1;:::;!r.Therestrictionisobtainedtherefrombyjettisoningthetruevariableandretainingonlythepseudo-variables.Fordetails,seeforinstance[E9],x2.4.Applyingthistoapairoftwins(f;g)39linkedbyarelation(7.336),weget rstamixedobject(7.337),andthena`pure'one,the`shadowtwins',linkedbyarelation(7.338)formallyidenticalto(7.336),andwhichconcentratesalltheobstructionstotheanalyticityof(f;g).twins:1=W(f;g)=)(7.336)1=W(display(f);display(g))=)(7.337)shadowtwins:1=W(restrict(f);restrict(g))(7.338)8Transserialtwins.8.1Remindersabouttransseries.Thissectionissomethingofanaside,andweshallbeextremelysketchy.Letz+1.TheformaltrigebraTorR[[[z]]]consists,veryroughly,ofthenaturalcompletionofR[[z�1]]underthebasicoperationsf+;;;@gandtheirinverses.Itselements,theso-calledtransseries,mayinvolveextremelyintricateconcatenationsofexponentialsandlogarithms,butalwaysadmita(unique)distinguishedor`canonical'representationobtainedby{expellingallin nitesimalsfrominsidetheexponentials{expellingallsumsfrominsidethelogarithms40Thereisanatural,totalorderonthetrigebraoftransseries.Inparticular,inthedistinguishedrepresentation,eachtransseriesappearsintheguiseofatrans nite,well-orderedsumoftransmonomialswhich,despitetheir`atom-icity',maycarryin nitelymanycoecients,withacomplexarborescentstructureonthem.Somuchfortheformaltransseries.ThegeometriccounterpartisthetrigebraRfffzgggofso-calledanalysablegermsat+1.Theseareinone-to-onecorrespondancewithasmall(orhuge,dependingonhowyoulookat 39expressedinanychartthatmakesthemsimultaneouslyresurgent.40usinginbothcasesthefunctionalequationsandTaylorexpansionsofexpandlog.82 essentiallyone,ieisomorphicunderthefullstruxturef+;;;@;g.Thisisthegoodnews,orthe`positiveside'oftheindiscernibilitytheorem.Thetrigebrasoftransseriesandanalysablefunctionswereintroducedinthelate90stosolvetheso-calledDulacproblemaboutthe nitenessoflimit-cycles.See[E5],[E6],[E7],[E8].Theemphasistherewassquarelyontheanalyticside,anddevelopmentsabouttheformalconstruction{iethetrigebraoftransseries{werekepttoaminimum.AfarmoresophisticatedtheoryofformaltransserieswassubsequentlydevelopedbyvanderHoeven(see[H1],[H2],[H3]),withspecialattentiontothealgorithmicresolutionofdi erential,functionaletcequations.Thepresentsectionx8,incidentally,bene tedfromexchangeswehadwithvanderHoeven.Lastly,forcomple-mentsabouttheindiscernibilitytheorem,thefast/slowfunctions(suchasthetrans-orultra-exponentialsandtheirreciprocals)andthewholesubjectof`universalfast/slowasymptotics',wereferto[E5],chap.7-10.8.2Transserialtwinsofexponentialortransexponen-tialtype.Switchingfrompowerseriestotransseries,especiallyofthetransexponentialsort,bringssigni cantchangestothetypologyoftwins.Thereappearsawholenewclassoftwin-begettingrelationswhichmaybebecalled`regular'or`orderly'andwhichhadnotrueequivalentinthemorerestrictivesettingofpowerseries.Considerforinstancethefollowingseriesof(F;G)-relations,whereFhasbeennormalisedtotheunitshiftT.Theyconsistofaprincipal,highly-alternate,(1+k)-shrinking42factorfT;Tn1::Tnk:Ggandaperturba-tive,evenmorealternate,(2+k)-shrinkingfactor.Wk(T;G).twinrelationnatureofGpar:nb:1=W0(T;G)fT;Ggtranslations1param.1=W1(T;G)fT;Tn1:Ggdilatations2param.1=W2(T;G)fT;Tn1:Tn2:Ggexponentials3param.1=W3(T;G)fT;Tn1:Tn2:Tn3:Ggtransexp.ofstr.14param.:::::::::::::::::::::::::::::::::::::::::::::1=Wk(T;G)fT;Tn1::Tnk:Ggtransexp.ofstr.k�2kparam. 42anoperatorG7!P(G)isk-shrinkingif,8m�0,it`shrinks'anytransexponentialofstrengthm+ktosomethingthatliesinthetransexponentialgrowthrangeofstrengthm.84 onthesegraphsandappearinginthepropersuccession.44hi:=kiik11(8.343)Z1:=(h0(z);h1(z))=(z;h1(z))Z2:=(h1(z);h2(z)):::Zr�1:=(hr�2(z);hr�1(z))Zr:=(hr�1(z);hr(z))=(hr�1(z);z)Functionalcontinuationandperiodicadjustment:Forany(~f0;~g0)wemayalwaysconstructsuchasquarewithanapproximate( f0:=T; g0),with f0:=Tand g0smooth,evenanalytic,exceptpossiblyattheextremalpointsz=aandz=b.Provided g0iscloseenoughtoaleadingsectionof~g0(itselftakenlargeenoughtodetermineallthe nitelymany,discreteorcontinuousparametersonwhichthegeneraltwinsolution(f;g)depends)thereclearlyexistsauniquefunctionalcontinuationof g0(thatof f0istrivial)overthewholeinterval[b;+1[,with g0everywheresmooth(oranalytic)exceptpossiblyatasequencesof`images'z3;z4;z5:::ofz1;z2andwiththeconsecutiveimagesoftherpointsZiretainingtheirproperorderinsidethesuccesiveimagesofthe`fundamentalsquare'.Anasymptoticanalysisof g0at+1willrevealanoscillatorypartin-terferingwiththepropertransserialpart.Buttheseparasiticaloscillationsmayalwaysbeuniquelycorrectedbyconjugation g07!g0=h�1 g0hwithasuitable1-periodicmappingh,ieonethatcommuteswiththeunitshiftT.Andnotonlydoesthisuniqueh-conjugationspiritawaytheparasiticaloscillations;italsohastheautomatice ectofrestoringsmoothnessatthepointsz1;z2;z3:::.Thepair(f0;g0)thusobtainedmayberegardedastheexactgeometriccounterpart,or`sum',oftheformalpair(~f0;~g0).Thereexits,however,asigni cantdi erencedependingonwhethertheformalpair( f0; g0)doesordoesnotinvolvetransexponentialsEn.Ifitdoesn't,then(f0;g0)isdeterminedabsolutelyandreal-analyticon[:::;+1[,thoughofcourseusuallynotat+1. 44thatorderisalwaysunambiguouslydeterminedbytheformaltwin(~f0;~g0),duetothefullorderthatexistsontransseries.86 structureaswellasthenaturaltopology.Embedding-inducedordersonfreegroups:AnyisomorphismAi7!fiofther-generatorfreegroupGr(A)intoasub-groupofthegroupITendowedwithitsnaturalorderorsomeexoticI;,clearlyinducesatotalgrouporder(withleft-andright-stability)onGr(A).Similarly,foranysystemffigoftransserialstwinsorsiblings,suchanimbeddinginducesatotalorderonasuitablequotientGr(A)=fW(A)g.Whilethereprobablyexist,onthefreeGr(A)orits`bound'quotients,othergroupordersthanthoseobtainableintheabovemanner,thishugeclassofembedding-inducedgroupordersisnonethelessquiteinteresting,ifonlybecauseitpointstothreeratherstrangedichotomies:{ rst,thedichotomybetweennatural/exoticorders,dependingonwhethertheunderlyingembeddingisintofIT;gorfIT;I;g.{second,thedichotomybetweenconvergent/divergentorders,dependingonwhetherallffigcan/cannotbechosensimultaneouslyconvergent.{third,thedichotomybetweensummable/non-summableorders,dependingonwhetherallffigcan/cannotbechosensimultaneouslysummable45.Ultraexponentialarbitration:Inthecaseoftwinsorsiblingsffig,theskilfuladditiontothemofin nites-imaltermsoftype1=E1,iesmallbeyondalltransexponentialorders,canalwaysrestoreindependence,andinduceonGr(A)grouporderswhichsome-timescanbeobtainedinnootherway.Thus,theorderonthetwo-generatorgroupGr(A1;A2)correspondingtotheindependentpairff1(z):=E1(z);f2(z):=z+1gor,whatamountstothesame46,tothepairff1(z):=z+1;f2(z):=z+1=E1(z)g,isspeci ctothat(very)particularembedding,andcapableofaremarkablecombinatorialinterpretation. 45thisthirddichotomyisquitedistinctfromthesecondone!46indeed,bothpairsff1;f2gandff1;f2gareconjugateundera\superfast"E1.Note,however,thatreplacingE1byE1intheaboveembeddingwouldmakenodi erencetotheorderinducedonGr(A1;A2).Indeed,althoughE1andE1are\distinguishable"whenusedjointlyinthesamerelation{thelatterismuchfastergrowingthantheformerandallits niteiterates{theyarenonetheless\undistinguishable"whenoccuringinisolation!88 Areidentity-tangenttwinsalwaysdivergent?Whatisthearithmeticnature47oftheirresurgenceinvariants?Whatautarkyrelationsdotheseverify48?Doalltransserialformaltwinspossessareal-analytic(asopposedtomerelycohesive)geometricrealisation?Someavenuesforexploration:ExtendtheUker- ltrationtothecaseofr-generatorfreealgebrasandhigherdimensionaldi erentialrepresentations.Calculatethedimensionsthatgowiththese ltrations.Investigatethehigher-dimensionalanalogueoftwinsandsiblings.Explorethepotential49ofrepresentationsoffreeor`nearlyfree'groupsintogroupsof(oneormanydimensional)germmappings.REFERENCES.[Ce]D.Cerveau,Unelistedeproblemes,inEcuacionesDiferenciales,pp455-460,Univ.Valladolid,1997[Co]S.D.Cohen,Thegroupoftranslationsandrationalpowersisfree,Ph.D.thesis,BowlingGreenStateuniversity,19[E1]J.Ecalle,Lesfonctionsresurgentes,Vol.1,Algebresdefonctionsresurgentes.Publ.Math.Orsay(1981).[E2]J.Ecalle,Lesfonctionsresurgentes,Vol.2,Lesfonctionsresurgentesappliqueesal'iteration.Publ.Math.Orsay(1981).[E3]J.Ecalle,Lesfonctionsresurgentes,Vol.3,L'equationdupontetlaclassi cationanalytiquedesobjetslocaux.Publ.Math.Orsay(1985).[E4]J.Ecalle,Theaccelerationoperatorsandtheirapplications.Proc.In-ternat.Cong.Math.,Kyoto,1990,vol.2,Springer,Tokyo,1991,p1249-1258.[E5]J.Ecalle,IntroductionauxfonctionsanalysablesetpreuveconstructivedelaconjecturedeDulac.Actual.Math.,Hermann,Paris,1992. 47presumablytranscendental48whentherearefreecontinuousparameters.49forthe\wordproblem",thedescriptionofallpossiblegrouporders,etc90

Related Contents


Next Show more