/
Anon-heuristicmethodisonethatmaybeofgreatuseinshoringupoursensethatas Anon-heuristicmethodisonethatmaybeofgreatuseinshoringupoursensethatas

Anon-heuristicmethodisonethatmaybeofgreatuseinshoringupoursensethatas - PDF document

celsa-spraggs
celsa-spraggs . @celsa-spraggs
Follow
393 views
Uploaded On 2015-09-25

Anon-heuristicmethodisonethatmaybeofgreatuseinshoringupoursensethatas - PPT Presentation

LeonhardEuler170717831ReasoningfromConsequenceThisiscapturedbythemaximIfAimpliestruethingswegaincon denceinADependingupontheparticularwayitiscastitissometimesreferredtoasInductionorExperi ID: 140642

LeonhardEuler(1707-1783)1ReasoningfromConsequenceThisiscapturedbythemaxim:If(A)impliestruethingswegaincon dencein(A).Dependingupontheparticularwayitiscast itissometimesreferredtoasInduction orExperi

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Anon-heuristicmethodisonethatmaybeofgre..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Anon-heuristicmethodisonethatmaybeofgreatuseinshoringupoursensethatastatementisplausibleoncewehavethestatementinmind,butisnotparticularlygoodatdiscoveringsuchstatementsforus.Inwhatfollows,I'llbediscussingeachofthesemodesinturn,notingthatthisthree-partdistinctionissometimesblurredbythefactthatallthreecanworksurprisinglywelltogether.Amongotherthings,I'llbespeci callythinkingaboutwhatmighthavebeenthemotivationforLeonhardEulertohavecomeupwithacertaincuriousconjecture. LeonhardEuler(1707-1783)1ReasoningfromConsequenceThisiscapturedbythemaxim:If(A)impliestruethingswegaincon dencein(A).Dependingupontheparticularwayitiscast,itissometimesreferredtoasInduction,orExperimentalcon rmation,or\Inferentialfallacy."Hereistheexamplewe'llfocuson.3 PolyadiscussesthefollowingconjectureofEuler1:Anynumberoftheform3+8n(fornpositive)isthesumofasquareandthedoubleofaprime2:(A)3+8n=a2+2p:Thisisstilltodayjustaconjecture,neitherprovennordisproven.Howwouldyouhave rstdiscoveredsuchastatement,asbeingpotentiallytrue?Havingcomingupwiththestatement,howwouldyougarnerevidenceforitstruth?Howwouldyouaugmentordiminishitslevelplausibility?Thatis,withoutactuallyprovingit.Ofcourse,facedwithsuchaproblem,the rstthingonemight|perhapsshould|doistotestitnumerically:11=12+2519=32+2527=12+21335=12+217=32+213=52+25:::Now,Eulerbecameinterestedinthisconjecture|Polyaexplains|becausebyassumingit,Eulercouldprove:Anynumberisasumofthreetrigonalnumbers:(B)n=x(x+1) 2+y(y+1) 2+z(z+1) 2;aresulthebelievedtobetrueandhadbeenpreviouslyinterestedin3.ItisintriguingtofollowEuler's(strange,Ithink)trainofthought:whatgothimtothinkthatthe(A)hewasspeci callyinterestedinwouldbemademoreplausiblebyvirtueofitsimplyingthe(B)above?4Thislatterstatement,(B),isaspecialcaseofPierredeFermat'spolygonalnumber\theorem,"andeventhoughEulerbelieved(B)tobetrue,no(published)proofofitexistedatthetime;(B)was 1ThisisdiscussedasanexampleofVeri cationofaconsequence:page3ofVol.IIofMathematicsandPlausibleReasoning:Patternsofplausibleinference.Fortheoriginaltext,seetheAfterwordbelow.2Eulercouldincluden=0inhisassertion,sinceheallowed1tobeaprime|therebysidingwithmyfather,who,wheneverhewantedtogetmygoat,wouldplayfullyaskmetodefendmybizarrecontentionthatthe rstprimeis2.SinceIhaveremoved1asprime,fromtheinitialconjectureconceivedbyEulerIhaveever-so-slightlystrengthenedit.3Numbersoftheformn(n+1)=2arecalledtrigonalsincetheycanbethoughtofascountinganarrayofpointsintheplanethathaveintegralcoordinatesandform|i.e.,haveastheirconvexclosure|anisoscelesright-angletriangle.4AsketchofwhyAimplies(B)isgivenintheafterwordbelow.4 Inviewofthisdistinctionbetweenthetwomodesofthought,itishardlystrangethatmodi cationsofformulationswhichmaybeequivalenttoeachotherinthecalculusoflogic,maybecomequitealientoeachotherinthecalculusofplausibility.Afamousexampleofsuchamodi cationispassagetothecontrapositive,asinthephilosophicalconundrum,duelargelytoCarlGustavHempel.ThisissometimescalledHempel'sparadox,ortheravenparadox,andstartswiththeobservationthat\logicallyspeaking"thetwostatements:AllravensareblackandNonon-blackobjectisaravenaregenuinelyequivalent;andyetthenatural(reasoningfromconsequences)wayofcollectingem-piricalevidenceforthe rststatementisto ndravenafterravenandcheckwhetherornottheyareblack,whereasthecorrespondingstrategyforthesecondformulationistolookforobjectsthataren'tblack,andthencheckthattheyaren'travens.Nowthe rststrategytogaincon denceintheassertionseemsquixoticperhaps,butvaguelysanetous,whilethesecondisutterlyludicrous.(Theessenceofthis\paradox,"asfarasIunderstandit,isthateventhoughthetwostatementsaboveareequivalentfromthevantage-pointofthecalculusoflogic,theypresentquitedi erentnaturalstrategiesfor\reasoningfromconsequence.")AtypicalmathematicalanaloguetoHempel'sconundrum|whichshedssomelightontheinitialissue|mightbethecomparisonofthefollowingtwomodesofbuildingcon denceintheRiemannhypothesis,which|formulatedinthetraditionalway|asserts(stillconjecturally,ofcourse)thatallthezeroesoftheRiemannzeta-function,(s),eitherlieontherealline(inwhichcasetheyoccuratnegativeevenintegervaluesofs:thesearecalledthetrivialzeroesof(s)sincethequestionofvanishing|ornonvanishing|ofthezetafunctiononthereallineisknown)orelsethezeroeslieonthelineRe(s)=1=2inthecomplexplane.TheHempelconundrum,giventhisformulation,wouldbetonotethefactthatthenaturalreasoningfromconsequencemodeofcollectingevidenceforthehypothesisasstated,andofitscontrapositive,wouldbe|respectively:Finda(nontrivial)zerooftheRiemann-functionandcheckthatitactuallyliesonthelineRe(s)=1 2,or: ndapoints0inthecomplexplanethatis(notatrivialzeroand)iso thelineRe(s)=1 2,andcheckthat(s0)6=0.Thereareafewthingstodiscuss,evenwithregardtothissomewhatfrivolousexample.Asforthesecondstrategyabove,ifweweretochooseans0outsidethecriticalstrip,wewouldlearnabsolutelynothingwehadn'tknown|sincewealreadyknowthatallthetrivialzeroeslieinthecriticalstrip.Evenkeepingtothecriticalstrip,however,wedohavethepriorknowledgethatthesetofzeroesisdiscrete,sothechancesofhittingonazerobyarandomchoiceofapointis:::well...zero.Incontrast,thedelicacyofthe rststrategy|requiringsomethingtolieonagivenline|isaverydemandingtest.Inbrief,thisintricatenetworkof\priorassessments"controlthecalculusofplausibilityrelatedtothesestrategies.Whatmakesreasoningfromconsequencesomulti-strandedisillustratedbythisexampleoftheRiemannHypothesis,wheretherearemanyequivalentformulationsofthisverysamehypothesis,andeachformulationprovidesuswithyet6 theother,andtheyeachhavetheirownidiosyncraticrelationshipto\time."LetusreturnoncemoretoPolya'sexample{i.e.,Euler'sConjecturethatanynumberoftheform3+8nisasquareplustwiceaprime.Eventhough,aswe'vejustmentioned,Eulerachievedasenseofitsplausibilityfromwhatwe'recallingreasoningfromconsequence,thereisanotherplausibilityrouteforthissameconjecture.Onemightcometobelievethissameconjecture|oratleastsomethingqualitativelylikethatconjecture|viaaheuristicmethodthatproposesthatonceonetakesaccountofalltheknownconstraints,thedataisrandom.2ReasoningfromRandomnessAsmentionedabove,thismodeofreasoningcanbecapturedby,thefollowingsentiment:Weknowalltherelevantsystematicconstraintsinthephenomenathatwearecurrentlystudying,and:::therestisrandom5.Itisasomewhathubristictypeofreasoning,butitis|asI'msureyouagree|acommon,andperfectlynatural,wayofthinking;itisveryoftenapowerfulmethodthatleadstoformulatinghypothesesthat|ifnotalwaystrue|atleastoftenrepresent\currentbestguesses."Thismethod,incontrastto\reasoningbyconsequence,"isgenuinelyheuristic:whenitisapplicable,itdoesindeedpresentuswithfairlypreciseformulations.Hereisasimpleexampleofaproblemwhichwillillustratethepower,andtheessentiallimitationsofthishubristicmethod.Leta;b;cbeatripleofpositiveintegers.ConsiderthediophantineequationA+B=CwhereAisallowedtobeanypositiveintegerthatisaperfecta-thpower,Baperfectb-thpowerandCaperfectc-thpower.(So,forexample,ifa=b=c=2weareconsideringPythagoreantriples.)LetXbealargepositiveinteger,andN(X)bethenumberofsolutionsofourdiophantineequationwithCX.WhatcanwesayaboutthebehaviorofN(X)asafunctionoftheboundX?Andhereisaroughargumentthatmightleadyoutosomekindofconjectureregardingthisproblem.Itisinagenreofspeculationthatalmostallmathematiciansmusthaveengagedin,atonetimeoranother,inthevocabularyoftheir eldsofinterest.(ForsimplicityIwillignorepositiveconstantsindependentofXthatariseinourerrorestimateseitherasmultiplicativefactorsorsimplyasconstants.)Herearepossiblestepsinourdeliberation: 5Weformthe[measure]spacecomprisingthepossibleoutcomesweareinterestedin,subjecttoallconstraintsthatwehappentoknowof,andthenweputwhatweconsidertobesomekindof'even-handed'probabilitymeasureonthisspace.Thisissometimestaggedasanapplicationoftheprincipleofinsucientreason.8 shotsatthis.Sotheexpectednumberofsuccesseswillbe1 XtimesX1 a+1 b+1 c,or:X1 a+1 b+1 c�1:Toblurthingsabit,giventhatwehavebeenarguingquitenaively,wemightconjecture:When1 a+1 b+1 c�1;weshouldget:X1 a+1 b+1 c�1�No(X)X1 a+1 b+1 c�1+forany�0,andforX��0(withtheimpliedconstantin\��"dependingon).When1 a+1 b+1 c1;theaboveestimatewouldgiveusadecreasingnumberofhitsasXtendstoin nity;whichdoesn'tmakemuchsenseatall,butweinterpretitassuggestingConjecture1Fixingexponentsa;b;csatisfyingtheinequality1 a+1 b+1 c1;thereareonly nitelymanysolutionstothediophantineproblemUa+Vb=Wcwith(U;V;W)relativelyprimepositivenumbers.WeseetheclassicalLastTheoremofFermatasgivingagooddealmorepreciseinformationthantheaboveconjectureforthecasesa=b=c&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;3.Thisillustratesthestructuralshortcomingofthisprobabilisticheuristic:itisquintessentiallyprobabilistic,andcouldnotgetonetomakeaspreciseaconjectureasFermat'sLastTheorem,eventhoughitmighto er,asplausibleguess,somearmationofthequalitativeaspectofthatTheorem7.AsImentioned,everymathematicianmusthavesomefavoriteapplicationsofreasoningfromran-domness.Innumbertheory,mycurrentfavoriteistheCohen-Lenstraheuristicthatgiveusguessesfortheaveragevaluesofidealclassgroupsovervariousrangesofnumber elds.Thisisobtainedbyimaginingthethought-experimentoffabricatinganidealclassgroupbyarandomprocessintermsofitsgeneratorsandrelations,subjecttothepriorconstraintsthatre ecteverythingweknowaboutthemannerinwhichtheidealclassgroupappears.Sofar,theCohen-Lenstraheuristicsseemtocheckoutwithnumericalcomputations,andtheseheuristicsareregardedassucientlyplausible,thattheyhavea rmplaceinthetoolkitofconjecturesthatarehelpful|eventhoughnotyetproven|guidesforre ectionsandexperimentsinthatbranchofnumbertheory8. 7I'veleftoutoftheabovediscussionthecaseofequality1 a+1 b+1 c=1,whichinvolvesjustahandfulofpossibilities:(3;3;3);(2;3;6);(2;4;4)andtheirpermutations;eachofthemhaveinterestingstories.ThediscussionaboveinmoregeneralformatmotivatestheworkofMasserandOesterlewiththeirwonderful,sweeping,ABCconjecture;see[?]).8Morerecently,therehavebeenheuristics,somewhatinthespiritofCohen-Lenstra,thatpredictthedensitiesofgivenranksofp-Selmergroupsovertheclassofallellipticcurvesoveragivennumber eld;theseheuristicsareduetoBjornPoonenandEricRains.10 mathematicalthoughtissaturatedwith,andverymuchcoloredby,analogiesofallsorts.Here,then,aretwosomewhatdi erentbrandsofanalogies:Analogybyexpansioniswhereonehasaconcept,oraconstellationofconcepts,oratheory,andonewantstoexpandthereachoftheseconcepts,retainingtheirstructureassomesortoftemplate.Thisisoftenreferredtosimplyas\generalization"butthatterm|generalization|is,Ithink,moreusefulifitwereallowedtobealooserdescriptive,including,aswell,someoftheothertypesofanalogicaloperationsthatI'llbelisting.Analogybyexpansionmayhavetheappearance,afterthefact,ofbeingaperfectlynatural\analyticcontinuation,"sotospeak,ofaconcept|suchasthedevelopmentofzeroandnegativenumbersasanexpansionofwholenumbers,andfromthere:rationalnumbers,etc.BUT,theactitselfmaybe,atthetimeandevensomewhatafterwards,havetheshockvalueofafundamentalchange.EventhoughGrothendiecktopologiesarehalfacenturyold,andare(butonlyafteryou'velearnedthetheory!)anutterlydirectexpansionofthemoreclassicalnotionoftopology|anexpansionthatgetstotheessenceofthatclassicalconcept|thereisstillthethrillofitasprovidingaradicalre guringofwhatitmeanstobeatopology.Thereis,however,amoremodestversionofanalogybyexpansionthatweall,Ibelieve,constantlydo:startingfroma(B)thatweeitherknowtobetrue,oratleast rmlybelievetobetrue,welookaroundforimprovements(A)thatarejustabitmoregeneralthan(B),forwhichwecanshowthat(A)=)(B):Evenrelativelysmallimprovements,(A)'sthatarenomorethan(B)+,sotospeak,arefairgame.Subjecttonopalpablecounter-indication,theprovedimplicationconfersamodicumofbeliefin(B)+.ThisisinthestyleofAmazon'sIfyoulikeXyou'lllikeY,butheretakestheform:Ifyoubelieve(B)whydon'tyoubelieve(B)+?AsIhopewillbeclearfromtheAfterword(Section??)below,itisthisbelief-expansionattitudethat(Ithink)isalsoaplausibleaccountofhowEulercametohisConjecture.Analogyas'Rosettastone'iswhereonesubject,orbranchofasubject|withitsspeci cvocabulary|isperceivedasrepresentingsomethingofamodelusefultopredictwhatmightbehappeninginanothersubject,orbranch,thislattersubjectoftenhavingquitedi erentvocabulary,axioms,andgeneralset-up.HereisAndreWeil'sfamousparagraphonanalogy|expressingasentimentthatI rmlydisagreewith;neverthelessIkeepquotingandre-quotingit:Nothingismorefruitful|allmathematiciansknowit|thanthoseobscureanalogies,thosedisturbingre ectionsofonetheoryonanother;thosefurtivecaresses,thosein-explicablediscords;nothingalsogivesmorepleasuretotheresearcher.Thedaycomeswhenthisillusiondissolves:thepresentimentturnsintocertainty;theyokedtheoriesrevealtheircommonsourcebeforedisappearing.AstheGitateaches,oneachievesknowledgeandindi erenceatthesametime.WhatIbelievehasbeenshowntobetrue,timeaftertime,inthedevelopmentofmathematicsisthat\yokedtheoriesrevealtheircommonsource."Thatis,analogiesbetweentwodi erenttheories12 insupportofageneralassertionaretellingconsequences.Innumbertheory,forexample,therearegeneralconjecturesforwhichanimmenseamountofnumericaldatahasbeencollectedthatactuallydonot(atleastsigni cantly)supportthegeneralassertion,andinfactwouldnaivelysuggestadi erentqualitativeguess:::andyetwestill(atleastcurrently)believethegeneralconjectures.Foranexampleofthissee[?].Reasoningbyrandomnesshasthedangerthatwemaynotbetakingintoconsiderationallsystem-aticbehaviorrelevanttothephenomenawearestudying.Neverthelessithastwogreatadvantages:itisastartingposition,abestcurrentguess,worthcontemplatingtogetwhatmightbethelayoftheland,andevenifnotaccurate,itisoftenananalysisthatseparatesthesupposedrandomaspects(whichmayshowupas`errorterms")fromthemoreregularaspects(whichmayshowupas\dominantterms")ofthephenomena.Innumbertheory,thoseerrortermsmaythenalsohaveprofoundstructure(e.g.,See[?])).Butreasoningbyanalogyis,Ithink,thekeystone:itispresentinmuch(perhapsall)dailymathe-maticalthought,andisalsooftentheinspirationbehindsomeofthemajorlong-rangeprojectsinmathematics.And,AndreWeilwasrightwhenhesaid:\nothingalsogivesmorepleasuretotheresearcher."InnumbertheorytheLanglandsProgramisoneofthegrandanalogies|currentlybeingvigorouslypursued|connectingrepresentationtheory,algebraicgeometry,andarithmetic.Theanalogybetweennumber eldsandfunction- eldsofonevariableover nite eldsisamoreelementary,andolderexample.Thisanalogyviewsthetwotypeof eldswementionedasasingleentity(calledaglobal eld)thatistreatableinauni edway9.5Variantsof`plausible'InourdiscussionofEuler'sConjecture,IhopethatI'vemadeaconvincingargumentthatonecould(andEulermighthave)cometobelievehisconjecturefromamixofthethreebrandsofplausiblereasoningthatIhadlabeledasseparatecategoriesatthebeginningofmyessay(consequence,randomness,andanalogy).Myfeelingisthatifwethinkthroughthehistoryofanyofourpersonalinvolvementwithanymathematicalissuethatisimportanttous,allresourcesavailabletouswillbeplayingsomeroleintheproceedings.Thewaytheseresourcesinteractmaybecomplex,andmaybekey. 9But,aswithallgreatanalogies,itsimperfectionssparkle,raisingquestionsthatmayleadtofuturetheories,fardeeperthantheoneswecurrentlyareathomewith:Whatisthefullstorythatconnectsthe niteprimesofanumber eldtoitsarchimedeanprimes,its\primesatin nity"?Whatisthefullanalogueinthecontextofnumber eldsofthegenusofafunction eld(ofonevariable)overa nite eld?Isthereananalogue,inthecontextofnumber elds,oftheproductofthesmoothprojectivemodelsoffunction elds(ofonevariable)overa nite eld?14 6Afterword:Euler'sConjectureimpliesGauss's\EurekaTheo-rem."RecallthatwewanttoassumeEuler'sConjecturethatanyintegern0occursinanequation(A)withaanintegerandpaprimenumber,(A)3+8n=a2+2p;andprove(whatwilleventuallybeGauss'sTheorem;i.e.,)thatanyintegern0isexpressibleasasumofthreetrigonalnumbers.Theproofofthisisgiveninaseriesofstepsandhints.1.Foranyequationoftheform(A)above,thenumberaisodd,andpisoftheform4t+1.(Proof:worktheequation(A)modulo8.)2.Iftheprimepoccursinanequationoftheform(A)thenpisexpressibleasasumoftwosquares:p=u2+v2:(ThisisFermat'sTheorem.)3.Ifanynumbern0occursinanequationoftheform(A)thenanynumbern0occursinanequationoftheform(A0)3+8n=a2+b2+c2witha;b;coddintegers.(Proof:Ifp=u2+v2takeb:=u+v;andc:=u�v;thenworktheequation(A0)modulo8toshowoddnessofa;b;c.)Asusual,refertothepropositionthatassertstheabovefactforanyn0as\(A0)."4.Writea=2x+1;b=2y+1;c=2z+1;forx;y;zintegers;computetoget:(B)n=x(x+1) 2+y(y+1) 2+z(z+1) 2;andgoingtheotherway,showthat(B)=)(A0).5.Concludethat(A)=)(A0)()(B).WecannowspeculatemoreexactlyaboutEuler'splausibilitythinkinghere.Eulerbelieved(B),andsurelyknewthat(B)islogicallyequivalentto(A0).So,ofcourse,hebelieved(A0),andheknewthatthepassagefrom(A)to(A0)consistedinnothingmorethanreplacing,inthesecontexts,thesetofnumbersthatareoftheform2u2+2v2suchthatu2+v2isanoddprimenumberby16