/
Lecture   Faithfully Flat Descent October    Descent o Lecture   Faithfully Flat Descent October    Descent o

Lecture Faithfully Flat Descent October Descent o - PDF document

celsa-spraggs
celsa-spraggs . @celsa-spraggs
Follow
520 views
Uploaded On 2015-06-16

Lecture Faithfully Flat Descent October Descent o - PPT Presentation

As this is best illustrated by example we begin by studying descent of morphisms Consider a scheme and an open covering of Now for any scheme to give a morphism it is equivalent to give morphisms which agree on intersections which is to say that ID: 87162

this best

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Lecture Faithfully Flat Descent Octobe..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Proof.Sinceisinjective,weconsiderAasasubsetofB.Weproceedinthreestages:1.Supposethatthereexistsasectiong:B!AsuchthatgjA=IdA.ThenwecanwriteB=AIwhereI=kergisaB-module.ThenB AB=(A AA)(A AI)(I AA)(I AI)andfori2Iwehaved0(i)=i 1�1 i.Now,sinced0allofAinitskernel,itfollowsthatA=kerd0,asdesired.Alternativeproof:Considerthemaph:=g id:B AB!B.Thend0(b)=0impliesthat0=hd0(b)=b�g(b),whichshowsb=g(b)2A.2.SupposethatA!Cisafaithfully atextension.Then(B AB) AC=(B AC) C(B AC):Thus,ifwetensor(*)withCoverA,weobtain0// C// B ACd0// (B AC) C(B AC):SinceCisfaithfully at,itsucestoprovethatthislattersequenceisexact.Thus,wecanreplacethepair(A;B)with(C;B AC).3.Finally,consideranarbitraryA!B.NowweapplythepreviousreductionwithC=B.ThenwegetthepairorringsB,!B AB;b!b 1;andwecanconstructasectionbysettingg(b b0)=bb0.Butthisputsusincase(1),whichcompletestheproof. Infact,usingthesameproofmethod,onecanprovethefollowingfairlyvastgeneralizationofthepreviouslemma:Lemma1.3.Let:A!Bbeafaithfuly atmapofrings,andletMbeanyA�module.Then0// M// M ABd0// M AB 2// dr�2// M AB r2 Z0beananeopenneighborhoodofz,letY0=h�1(Z0)andconsider(h�1(Z0))X.Thisisopen,asisanopenmap,soletX0beananeopenneighborhoodcontainedwithinit.NowaswecanworklocallyonX,replaceX;Y;ZbyX0;Y0;Z0.ThuswecanreducetothecasewhereX;Zareane.3.WriteY=[i2IViwhereViisaneopen.SinceXisaneandquasi-compact,thereisa nitesubsetKIsuchthatX=[k2K(Vk):LetJbeany nitesubsetofIcontainingK,andwriteYJ:=tj2JVj.Thisisane,sowecanwriteYJ=SpecB.Likewise,letX=SpecAandZ=SpecC.Now,thesequenceHom(X;Z)!Hom(YJ;Z)Hom(YJXYJ;Z)canberewrittenhom(C;A)!hom(C;B)hom(C;B AB):Sincethehomfunctorisalwaysleft-exact,thatthissequenceisexactfollowsfromlemma1.2.Thus,thereexistsauniquemapg:X!Zinducingh:YJ!Z.SinceJwasanarbitrary nitesubsetandgisunique,itfollowsthatg=h,asdesired. Excercise1.4.LetX;Zbeschemes.ProvethatFZ(U):=hom(U;Z)isasheafonXfl.2DescentofModulesandAneSchemesLetA!Bbeafaithfully atmorphismofrings,andletMbeanA-module.ThenM0:=M ABisaB-module.Moreover,wecande netwoB ABmodules,givenbyM0 ABandB AM0.Notethatwhiletheunderlyingsetsofthesetwomodulesareclearlythesame,theactionsofB ABareverydi erent.Nontheless,inthiscasewehaveanisomorphismM:B AM0=M0 ABgivenbyM(b (m b0))=(m b) b0:4 where (m)=m 1and (m)=(1 m).Thecocycleconditionimpliesthatthediagramcommuteswitheitherthetoporbottomarrows,hencetheleftdownwardmapidenti estheirkernels.SinceBisfaithfully atoverA,theupperkernelisB Mandbylemma1.3thebottomkernelisM0.Thisprovestheclaim. Wearenowreadytoproveadescenttheoremforschemes:Theorem2.2.LetY!Xbefaithfully at.SupposeZ0!Yisananescheme,and:YXZ0!Z0XYisanisomorphismofYXYschemes,suchthat1;3and2;31;2inducethesameisomorphismYXYXZ0!Z0XYXY:Thenuptoisomorphism,thereexistsauniquepair(Z; )consistingofananeX-schemeZ!Xandanisomorphism :ZXY!YofY-schemes,suchthatundertheidenti cation ,themaponYXZXYbecomesthenaturalmap(y1;z;y2)!(z;y1;y2).Proof.Bytheuniquenessclaim,wemayworklocallyonXandY,wlogX=SpecA;Y=SpecB;Z0=SpecC.Butthenthetheoremfollowsimmediatelyfromlemma2.1ifweletM0betheB-moduleC. Excercise2.3.Let:Z!Xbeamorphism,and :Y!Xbeafaithfully atmorphism,andY:ZXY!Xthebasechangeofalong .ForeachofthefollowingpropertiesP,provethatisamorphismoftypePi Yis:OpenImmersionUnrami edFiniteTypeFiniteFlatEtaleFaithfullyFlatClosedImmersion6 ofFto(YXY)Ecanbethusidenti edwitheitherFZ0XYorFYXZ0,sowegetanisomorphismofYXY-scheme:YXZ0!Z0XY.Moreover,restrictingtoYXYXYshowsthat1;3=2;31;2.Thusbytheorem2.2wegetaschemeZ!Xandanidenti cation :ZXY!Z0whichmakesintothenatural` iptheco-ordinates'map.Nowtheorem1.1togetherwiththesheafconditionforFgivesusanidenti cationF=FZ.Finally,thatZisitselfetalefollowsfromexcercise2.3. Asanimmediatecorollarytotheorem3.2togetherwiththeequivalenceofcategoriesbetween niteetalecoversand1(X)setsproveninlecture6,wehavethefollowingCorollary3.3.Let xbeageometricpointofX.Thecategoryoflocallyconstantsheavesofsets(resp.abeliangroups)isnaturallyisomorphictothecategoryof1(X;x)-sets(resp.modules).8