PPT-Machine Learning & Data Mining

Author : celsa-spraggs | Published Date : 2019-03-12

CSCNSEE 155 Lecture 5 Sequence Prediction amp HMMs 1 Announcements Homework 1 Due Today 5pm Via Moodle Homework 2 to be Released Soon Due Feb 3 rd via Moodle 2 weeks

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Machine Learning & Data Mining" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Machine Learning & Data Mining: Transcript


CSCNSEE 155 Lecture 5 Sequence Prediction amp HMMs 1 Announcements Homework 1 Due Today 5pm Via Moodle Homework 2 to be Released Soon Due Feb 3 rd via Moodle 2 weeks Mostly Coding. Chapter 1. Kirk Scott. Iris . virginica. 2. Iris . versicolor. 3. Iris . setosa. 4. 1.1 Data Mining and Machine Learning. 5. Definition of Data Mining. The process of discovering patterns in data.. (The patterns discovered must be meaningful in that they lead to some advantage, usually an economic one.). Chapter 1. Kirk Scott. Iris . virginica. 2. Iris . versicolor. 3. Iris . setosa. 4. 1.1 Data Mining and Machine Learning. 5. Definition of Data Mining. The process of discovering patterns in data.. (The patterns discovered must be meaningful in that they lead to some advantage, usually an economic one.). Chong Ho Yu. What is data mining?. Data mining (DM) is a cluster of techniques, including decision trees, artificial neural networks, and clustering, which has been employed in the field Business Intelligence (BI) for years.. Another Introduction to Data Mining. Course Information. 2. Knowledge Discovery in Data [and Data Mining] (KDD). Let us find something interesting!. Definition. := . “KDD is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data” . OPPORTUNITIES AND PITFALLS. What I’m going to talk about. Extremely broad topic – will keep it high level. Why and how you might use ML. Common pitfalls – not ‘classic’ data science. Some example applications and algorithms that I like. Iris . virginica. 2. Iris . versicolor. 3. Iris . setosa. 4. 1.1 Data Mining and Machine Learning. 5. Definition of Data Mining. The process of discovering patterns in data.. (The patterns discovered must be meaningful in that they lead to some advantage, usually an economic one.). Iris . virginica. 2. Iris . versicolor. 3. Iris . setosa. 4. 1.1 Data Mining and Machine Learning. 5. Definition of Data Mining. The process of discovering patterns in data.. (The patterns discovered must be meaningful in that they lead to some advantage, usually an economic one.). Dr. . Kalpakis. , Fall 2017. 1. What is Data Science?. Data scientists, ". The Sexiest Job of the 21st Century. " (Davenport and . Patil. , Harvard Business Review, 2012). M. uch . of the data science explosion is coming from the tech-world. markovz@ccsu.edu Ingrid Russell University of Hartford irussell@hartford.edu Data Mining"Drowning in Data yet Starving for Knowledge" ???"Computers have promised us a fountain of wisdom but delivered WEKA WEKA By Susan L. Miertschin 1 Data Mining Data Mining Task Types Numerous Algorithms Task Types Numerous Algorithms Classification Clustering C4.5 Decision Tree K Means Clustering Clustering Disc Paper Submissions Due: May 18, 2012Acceptance Notification: July 27, 2012CameraReady Papers Due: Aug 10, 2012Poster Abstracts Due: Aug 10, 2012Poster Decision Notification: Aug 24, 2012 General Chairs markovzccsueduIngrid Russell University of HartfordirussellhartfordeduData MiningDrowning in Data yet Starving for Knowledge Computers have promised us a fountain of wisdom but delivered aflood of dat for. Jianlin Cheng, PhD. Computer Science Department, University of Missouri, Columbia. Center. Importance of Machine Learning and Data Mining. Computer Science . (AI, database, robotics, vision, image processing, . Discover the incredible world of machine learning with this amazing guide.Do you want to understand machine learning but it all looks too daunting and complex? Afraid to open the quotPandora8217s boxquot and waste hours searching for answers? Then keep reading.Written with the beginner in mind this powerful guide breaks down everything you need to know about machine learning and Python in a simple easy-to-understand way. So many other books make machine learning look impossible to understand and even harder to master - but now you can familiarize yourself with this incredible technology like never beforeWith a detailed and concise overview of the fundamentals along with the challenges and limitations currently being tackled by the pros inside this comprehensive guide you willLearn the fundamentals of machine learning which are being developed and advanced with PythonMaster the nuances of 12 of the most popular and widely-used machine learning algorithms in a language that requires no prior background in PythonDiscover the details of the supervised unsupervised and reinforcement algorithms which serve as the skeleton of hundreds of machine learning algorithms being developed every dayBecome familiar with data science technology an umbrella term used for the cutting-edge technologies of todayDive into the functioning of scikit-learn library and develop machine learning models with a detailed walk-through and open source database using illustrations and actual Python codeUnderstand the entire process of creating neural network models on TensorFlow using open source data sets and real Python codeUncover the secrets of the most critical aspect of developing a machine learning model - data pre-processing and training/testing subsetsAnd so much moreWith a wealth of tips and tricks along with invaluable advice guaranteed to help you with your machine learning journey this audiobook is a powerful and revolutionary tool for creating developing and using machine learning. From understanding the Python language to creating data sets and building neural networks now you can become the master of machine learning with this incredible guideSo what are you waiting for? Listen now and join the millions of people using machine learning today

Download Document

Here is the link to download the presentation.
"Machine Learning & Data Mining"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents