/
Part II Diluted Magnetic Semiconductors  FirstPrinciples Study of the Magnetism of Diluted Part II Diluted Magnetic Semiconductors  FirstPrinciples Study of the Magnetism of Diluted

Part II Diluted Magnetic Semiconductors FirstPrinciples Study of the Magnetism of Diluted - PDF document

celsa-spraggs
celsa-spraggs . @celsa-spraggs
Follow
535 views
Uploaded On 2014-12-14

Part II Diluted Magnetic Semiconductors FirstPrinciples Study of the Magnetism of Diluted - PPT Presentation

M Sandratskii and P Bruno MaxPlanck Institut f ur Mikrostrukturphysik Weinberg 2 D06120 Halle Germany lsandrmpihallede brunompihallede Abstract We report the densityfunctionaltheory calculations of the exchange interactions and Curie temperature for ID: 23767

Sandratskii and Bruno

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Part II Diluted Magnetic Semiconductors ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

First-PrinciplesStudyoftheMagnetismofDMS115istheroleoftheCoulombcorrelationsofthe3delectrons.Theso-calledLDA+Umethodintroducesexplicitlytheon-siteCoulombinteraction(Hub-)andleadstoabetterdescriptionofmanysystemswithstrongCoulombcorrelations[].However,thesuperiorityoftheLDA+Umethodisnotuniversal.Fornumeroussystemswith3datomstheLDAgivesbetteragreementwithexperiment.Inthepaper,wereportbothLDAandLDA+UcalculationsforanumberofDMS.Thein”uenceofHubbardonvariouselectronpropertiesofthesystemsisanalyzed.Wherepossibletheresultsofbothcalculationsarecom-paredwithexperimenttoestablishwhichoftwoapproachesprovidesbetterdescriptionoftheDMSstudied.2CalculationalTechniqueThecalculationalschemeisdiscussedin[]towhichthereaderisreferredformoredetails.TheschemeisbasedonDFTcalculationsforsupercellsofsemiconductorcrystalswithonecationatomreplacedbyaMnatom.ThesizeofthesupercelldeterminestheMnconcentration.Mostofthecalculationsareperformedforthezinc-blendecrystalstructureofthesemiconductormatrix.Tocalculatetheinteratomicexchangeinteractionsweusethefrozen-magnontechniqueandmaptheresultsofcalculationofthetotalenergyofthehelicalmagneticcon“gurations=(cos()sin)sin)(1)ontoaclassicalHeisenbergHamiltonianeffisanexchangeinteractionbetweentwoMnsites(i,j)andistheunitvectorpointinginthedirectionofthemagneticmomentatsitearethelatticevectors,isthewavevectorofthehelix,polaranglegivesthedeviationofthemomentsfromtheAdeviationoftheatomicmomentsfromtheparalleldirectionscausesachangeoftheatomicexchange-correlationpotentials[]whichleadstoaperturbationoftheelectronstates.Thevalueoftheperturbationofagivenstatedependsonotherstatesofthesystem,bothoccupiedandempty,sincethesestatesenterthesecularmatrixoftheproblem.WithintheHeisenbergmodel()theenergyoffrozen-magnoncon“gura-tionscanberepresentedintheform)(3) First-PrinciplesStudyoftheMagnetismofDMS117Theeigenvaluesofthematrix()havetheform )(8) 4(HŠŠH+)2Š1 2 (HŠŠH+ 4 2)1 andareillustratedinFig. -0.4-0.200.20.4 01234energy (abit. units) magnon q Fig.1.Theenergybands(thicksolidline)ofthespiralstructurewith=2,and=45).Thelatticeparameterisassumedtobeunity.Thethinsolidlinesshowthebandsofaferromagneticcon“guration.ThebrokenlinesgivetheferromagneticbandsshiftedinthereciprocalspaceaccordingtothegivenForcompletely“lledbandsthetotalenergy (Š(k)++(k)]= )(9)doesnotdependonmagneticcon“guration.[isthevolumeoftheBril-louinzone(BZ)].Thismeansthatthekineticexchangetakenintoaccountby()doesnotcontributeintoeectiveintersiteexchangeinteractioninthecaseofcompletely“lledbands.Foralmostemptyandalmost“lledbandstheminimumofthetotalen-ergyalwayscorrespondstotheferromagneticcon“guration.Foradetailedproofofthisstatementthereaderisreferredto[].Figureillustratesthatunderthein”uenceofthefrozenmagnonthebandsbecomenarrower:Theminimalelectronenergyoftheferromagnetislowerthantheminimalelec-tronenergyofthespiralandthemaximalelectronenergyoftheferromagnetishigherthanthemaximalenergyofthespiral.Incombinationwith()thisissucienttoprovethatsmallnumberofelectronsorsmallnumberofholesleadtotheferromagneticgroundstate. 118L.M.SandratskiiandP.BrunoThuswithinthemodelofasinglespin-degeneratedbandinafrozen-magnonexchange“eldthepresenceofholesmakestheferromagneticstruc-turefavorable.Inthefollowingsectionsweshowthattheimportanceoftheholesforestablishingferromagneticorderispreservedinthefull…scaleDFT4Resultsfor(GaMn)As,(GaCr)As,(GaFe)AsNextweconsidercalculationsforthreeIII-VDMS:(GaMn)As,(GaMn)Asand(GaFe)As.FigurepresentstheDOSofthesystemsfortheimpurityconcentrationof3.125%.ForcomparisontheGaAsDOSisshown.Inthecaseof(GaMn)AsthereplacementofoneGaatominthesupercellofGaAsbyaMnatomdoesnotchangethenumberofspin-downstatesinthevalenceband.Inthespin-upchanelthereare,however,“veadditionalenergybandswhicharerelatedtotheMn3dstates.Sincethereare“veextraenergybandsandonlyfourextravalenceelectrons(theatomiccon“gurationsofGaandMnare4sand3d)thevalencebandisnot“lledandthereappearunoccupied(hole)statesatthetopofthevalenceband.ThereisexactlyoneholeperMnatom.In(GaCr)As,theCr3dstatesassumeahigherenergypositionrelativetothesemiconductor-matrixstatesthantheMn3dstatesin(GaMn)As.Asaresult,thespin-upimpuritybandisseparatedfromthevalencebandandliesinthesemiconductinggapofGaAs.Thisimpuritybandcontainsthreeenergybands.SinceCrhasoneelectronlessthanMn,onlyonethirdoftheimpuritybandisoccupied:theoccupiedpartcontainsoneelectronperCratomandthereisplaceforfurthertwoelectrons. -0.4-0.20 -20020DOS(states/Ry) -0.4-0.20 -0.4-0.20 -0.4-0.20 1e/Cr GaAs (GaFe)As Fig.2.Thespin-resolvedDOSfor(GaMn)As,(GaCr)As,(GaFe)As.Forcompar-isontheDOSofGaAsisshown.TheconcentrationofMnis3.125%.Upperpartofthegraphshowsspin-upDOS.TheinsertszoomtheimportantenergyregionsabouttheFermilevel.In(GaMn)AsthereisoneholeperMnatom.In(GaCr)AsthereisoneelectronperCratomintheimpurityband 120L.M.SandratskiiandP.Bruno -101 -400-2000200400Curie Temperature (K) -101 -101 3.125%6.25%(GaFe)As3.125%6.25%12.5%6.25%3.125% Fig.4.TheCurietemperatureasafunctionoftheelectronnumber.isthenum-beroftheexcesselectrons(ormissingelectronsfornegativevalues)permagneticimpurityatom.Thenominalelectronnumbercorrespondsto=0.Inallcasesofcompletely“lledelectronbands(kinksonthecurves)theprevailingexchangeinteractionsareantiferromagnetic 00.10.2 -1000100200300500Curie Temperature (K) n=-0.4n=0.0n=0.2n=0.4n=0.6n=0.8*experiment Fig.5.TheCurietemperatureof(GaMn)AsasafunctionofMnconcentrationfordierentnumbersofholes.Theexperimentalvaluesaretakenfrom[InFig.weshowtheCurietemperatureasafunctionofMnconcentrationfordierentnumbersofholesperMnatom.Forthecaseof6(thatis0.4holeperMnatom)thecalculatedCurietemperaturesareclosetotheexperimentalvalues.In(GaCr)Asthesituationisdierent.BecauseofadecreasednumberofvalenceelectronstheimpuritybandcanaccepttwofurtherelectronsperCratomandisfarfromthefulloccupation.Asaresultthedonordefectsdonot First-PrinciplesStudyoftheMagnetismofDMS123 DelocalizationPolarizationOrdering Fig.8.Bothdelocalizationoftheholesandtheexchangeinteractionhole-impurityarecrucialforestablishingferromagneticorder.Theupperlineshowsschematicallytheholeslocalizedabouttheimpurityatoms.Theholesarestronglyspin-polarizedbutdonotmediatetheexchangeinteractionbetweenimpurities.Inthesecondline,theholesarenotdisturbedbytheimpuritiesandarecompletelydelocalized.They,however,arenotspin-polarizedbytheimpuritiesandalsocannotmediatetheexchangeinteraction.Thethirdlinepresentsanintermediatesituation:Theholestatesaredisturbedbytheimpurities.Theyare,however,notcompletelylocalizedabouttheimpurity.Combinationofthedelocalizationandspin-polarizationallowstomediateexchangeinteractionbetweenMnatomswhichappearsasaconsequenceoftheinteractionofthesestateswithMn3delectrons.In(istheaverageatomicspinmomentsofthemagneticistheimpurityconcentration.However,theapplicabilityofthemean-“eldapproachisnotself-evidentandneedstobeinvestigated.TheanalysisoftheexperimentaldatashowsthatforII-VIDMSthevalueiswellestablished[].ForIII-Vsystemsthesituationisdierent.Forinstance,theexperimentalestimationsofmadefor(GaMn)Asonthebasisofdierentexperimentaltechniquesvarystronglyfromlargevaluesof3eV[]and5eV[]toamuchsmallervalueof2eV[].(Negativecorrespondstoantiparalleldirectionsofthespinsofthedandpstates.)InFig.wepresentthecalculatedexchangesplittingatthetopofthevalencebandin(ZnMn)Se.ForlowMnconcentrationsthissystemisparamagneticuptoverylowtemperatures.Itshows,however,agiantZeemansplittinginexternalmagnetic“eld.ThegiantZeemansplittingrevealsstrongp…dexchangeinteraction.TwoDFTapproachesareused:LDAandLDA+U(Fig.).TheLDA+Uexchangesplittingsarewelldescribedbythemean-“eldformula()thatassumesproportionalitybetweenthesplittingandtheMnconcentration.Thecoecientproportionalitygivesthevalueof3eVinverygoodagreementwithexperiment.Ontheotherhand,theLDAresultsde-viatestronglyfromthemean-“eldbehavior.TheLDAcalculationsdoesnotgivetheproportionalitybetweensplittingandconcentration.Correspond-ingly,theratiobetweenthesplittingandtheconcentrationvarieswiththe First-PrinciplesStudyoftheMagnetismofDMS125bandtheaccountforHubbardresultsinastrongdecreaseoftheMn3dcontributioninthisenergyregion.Thefailureofthemean-“eldtreatmenttodescribetheLDAsplittingsisdirectlyrelatedtothestrongadmixtureoftheMn3dstates.SincetheatomicMnmomentin(ZnMn)SedoesnotdependsubstantiallyontheMnconcentrationtheexchangesplittingoftheMn3dstatescannotbedescribedwithinamean-“eldapproximation.Summarizingweformulatesomeconclusions:First,inthecaseofsub-stantialadmixtureoftheimpurity3dstatestothestatesatthetopofthevalencebandthemean-“eldapproachtothecharacterizationofthep…dinter-actiondoesnotapply.Second,inthecaseof(ZnMn)SetheapplicationoftheLDA+UschemeleadstotheshiftoftheMn3dspin-upstatesfromthetopofthevalencebandtolowerenergiesmakingthemean-“eldapproximationapplicable.Third,for(ZnMn)SetheLDA+UgivesbetteroverallagreementwithexperimentthanLDA[7ComparativeStudyof(GaMn)Asand(GaMn)NInthissectionwecomparethemagnetismoftwoprototypesystems,(GaMn)Asand(GaMn)N,focusingagainonthepropertiesoftheholes.Tocircumventthedicultyoftheestimationoftheparameterwewillchar-acterizethestrengthofthep…dinteractionbythevalueoftheadmixtureofthe3dstatestothehole.Thisquantityisdiculttomeasurebutitiseasilyaccessibletheoretically.Thissectionisbasedonthepaper[InFigs.,wepresenttheDOSof(GaMn)Asand(GaMn)Nfor5%.ThemainfeaturesoftheDOSdiscussedbelowarevalidalsoforotherMnconcentrations.Wefoundthat(GaMn)Asand(GaMn)NdierstronglyinbothLDAandLDA+Ucalculations.InLDA,thespin-upimpuritybandof(GaMn)Asmergeswiththevalenceband.Ontheotherhand,in(GaMn)Ntheimpuritybandliesinthesemiconductinggap.(Weperformedcalculationsforbothzinc-blendeandwurzitecrystalstructuresof(GaMn)N.Themainpartoftheresultsisqualitativelysimilarforbothcrystalstructures.)Forbothsys-temstheLDAcalculationsgivelargeMn3dcontributionintoimpuritybandIntheLDA+Ucalculations,theimpuritybandof(GaMn)Asdisappearsfromtheenergyregionatthetopofthevalenceband.Incontrast,(GaMn)Nstillpossessesimpuritybandwhichliesnowclosertothevalenceband.TheMn3dcontributiontotheimpuritybanddecreasescomparedwiththeLDA-DOSbutisstilllarge(Fig.Nowweturntothediscussionofthepropertiesoftheholes.WeagainpresenttheresultsforoneMnconcentration.FromFig.andTableseethatforthecalculationsperformedwithinthesamecalculationalschemetheholesin(GaMn)NaremuchstrongerlocalizedabouttheMnatomthan 128L.M.SandratskiiandP.Bruno -2 -101 0 -1012 (GaMn)N 3.125% Fig.14.asafunctionoftheelectronnumberfor=0correspondstothenominalelectronnumber(oneholeperMnatom)thecontributionoftheAndersonssuperexchange.Bothcontributionsplayanimportantrole(Fig.).Thusthe“nalvalueoftheCurietemperaturecanbeinterpretedasaresultofthecompetitionbetweenantiferromagneticsuperexchangethroughthe“lledbandsandferromagnetickineticexchangemediatedbytheholes.ItisremarkablethatHubbardproducesoppositetrendsinthevariationofTin(GaMn)Asand(GaMn)N(Fig.).Takingthenominalnumberofelectrons(=0)wegetastrongdecreaseoftheCurietemperaturein(GaMn)Asandasubstantialincreasein(GaMn)N.Thereforein(GaMn)Asthestrongdropofthep…dinteractionprevailsoverthedelocalizationoftheholes.Ontheotherhand,in(GaMn)Ntheincreaseddelocalizationoftheholesprevailsoverdecreasedp…dinteraction.ThecomparisonoftheroleoffordierentMnconcentrations(Fig.showsthatin(GaMn)NthesametrendtoincreasingCurietemperatureisobtainedforthewholeintervalofconcentrationsstudied.In(GaMn)As 600 C, LDA 00.10.2 0600K( erutarepmet eiruC C, L+U (GaMn)As Fig.15.asafunctionoftheMnconcentrationfornominalelectronnumber