/
Proceedings of the International Congress of Mathemati Proceedings of the International Congress of Mathemati

Proceedings of the International Congress of Mathemati - PDF document

celsa-spraggs
celsa-spraggs . @celsa-spraggs
Follow
425 views
Uploaded On 2015-04-08

Proceedings of the International Congress of Mathemati - PPT Presentation

The axioms ZFC do not provide a concise conception of the Universe of Sets This claim has been well documented in the 50 years since Paul Cohen established that the problem of the Continuum Hypothesis cannot be solved on the basis of these axioms od ID: 49446

The axioms ZFC

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Proceedings of the International Congres..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2IshallbrieyreviewtheconstructionofL,thebasictemplateforlargecardinalaxioms,anddescribetheprogramwhichseeksenlargementsofLcompatiblewithlargecardinalaxioms.FinallyIwillintroduce -logic,explainhowonthebasisofthe ConjectureamultiverseconceptionofVisuntenable,andreviewtherecentdevelopmentsontheprospectsforanultimateversionofL.IwillendbystatinganaxiomwhichIconjectureistheaxiomthatVisthisultimateLeventhoughthedenitionofthisultimateLisnotyetknown.Thisaccountfollowsathreadovernearly100yearsbutneitheritnorthelistofreferencesisintendedtobecomprehensive,see[10]and[18]forfarmoreelegantandthoroughaccounts.2.TheprojectivesetsandtwoquestionsofLuzinTheprojectivesetsarethosesetsofrealnumbersARwhichcanbegeneratedfromtheopensubsetsofRinnitelymanystepsoftakingcomplementsandimagesbycontinuousfunctions,f:R!R:SimilarlyonedenestheprojectivesetsARnoronecansimplyuseaborelbijection,:R!RnanddeneARntobeprojectiveifthepreimageofAbyisprojective.Fromperspectiveofsettheoreticcomplexity,projectivesetsarequitesimpleandonemightexpectthattheirbasicpropertiescanbeestablisheddirectlyonthebasisoftheaxiomsZFC.TheprojectivesetsweredenedbyLuzinwhoposedtwobasicquestions,[13]and[14].Adenitionisrequired.SupposethatARR.AfunctionfuniformizesAifforallx2R,ifthereexistsy2Rsuchthat(x;y)2Athen(x;f(x))2A.TheAxiomofChoiceimpliesthatforeverysetARRthereexistsafunctionwhichuniformizesA.ButifAisprojectivetheAxiomofChoiceseemstoo erlittleinsightintowhetherthereisafunctionfwhichuniformizesthesetAandwhichisalsoprojective(inthesensethatthegraphoffisaprojectivesubsetofRR).ThetwoquestionsofLuzinarethefollowingbutIhaveexpandedthescopeofthesecondquestion–thisisthemeasurequestion–toincludethepropertyofBaire.1.SupposeARRisprojective.CanAbeuniformizedbyaprojectivefunction?2.SupposeARisprojective.IsALebesguemeasurableanddoesAhavethepropertyofBaire?Luzinconjecturedthat“wewillneverknowtheanswertothemeasurequestionfortheprojec-tivesets”.Luzin'sreasonforsuchaboldconjectureistheobviousfactthatLebesguemeasurabilityisnotpreservedundercontinuousimagessinceanysetARisthecontinuousimageofaLebesguenullset.TheexactmathematicalconstructionsofG¨odel[6],[7]andCohen[1],[2]whichwereusedtoshowthattheContinuumHypothesiscanneitherbeprovednorrefutedonthebasisoftheZFCaxioms,showthattheuniformizationquestionfortheprojectivesetscanalsoneitherbeprovedorrefutedfromtheaxiomsZFC.ThemeasurequestionismoresubtlebuttheconstructionofG¨odelandarenementofCohen'sconstructionduetoSolovay[25]showthesameistrueforthemeasurequestion.AcuriouswrinkleisthatforSolovay'sconstructionamodestlargecardinalhypothesisisnecessary.ThestructureoftheprojectivesetsisoffundamentalmathematicalinterestsinceitissimplythestructureofthestandardmodelofSecondOrderNumberTheory:hP(N);N;+;;2i: 44.Thehierarchyoflargecardinals,determinacy,andtheanswerstoLuzin'squestionsSupposeAR.Thereisanassociatedinnitegameinvolvingtwoplayers.Theplayersalternatechoosingi2f0;1g.Afterinnitelymanymovesaninnitebinarysequencehi:i2Niisdened.PlayerIwinsthisrunofthegameif1i=1i=2i2AotherwisePlayerIIwins.Eitherplayercouldchoosetofollowastrategywhichissimplyafunction:SEQ!f0;1gwhereSEQisthesetofallnitebinarysequencesh1;:::;ni.Thestrategyisawinningstrategyforthatplayerifbyfollowing,thatplayerwinsnomatterhowtheotherplayermoves.Triviallyif[0;1]AtheneverystrategyisawinningstrategyforPlayerIandifA\[0;1]=;theneverystrategyisawinningstrategyforPlayerII.ThesetAisdeterminedifthereisawinningstrategyforoneoftheplayersinthegameassociatedtoA.GaleandStewart[5]provedthatifAisaclosedsetthenAisdeterminedandtheyaskedwhetherthisisalsotruewhenAisborel.MycielskiandSteinhaus[20]tookamuchbolderstepandformu-lated50yearsagotheaxiomAD.Denition1(Mycielski,Steinhaus).AxiomofDeterminacy(AD):EverysetARisdetermined.utTheaxiomADisrefutedbytheAxiomofChoiceandsoitisfalse.Butrestrictedversionshaveproventobequiteimportantandprovidetheanswers(yes)toLuzin'squestions,[18],[19],and[20].Denition2.ProjectiveDeterminacy(PD):EveryprojectivesetARisdetermined.utTheorem3.Assumeeveryprojectivesetisdetermined.(1)(Mycielski,Steinhaus)EveryprojectivesethasthepropertyofBaire.(2)(Mycielski,Swierczkowski)EveryprojectivesetisLebesguemeasurable.(3)(Moschovakis)EveryprojectivesetARRcanbeuniformizedbyaprojectivefunction.utTheaxiomPDyieldsarichstructuretheoryfortheprojectivesetsandmodulonotionsofinnitynoquestionabouttheprojectivesetsisknowntobeunsolvableonthebasisofZFC+PD.ButisPDevenconsistentandifconsistentisPDtrue?Theanswerstobothquestionsisyesbutthisinvolvesanotherfamilyofaxioms,thesearelargecardinalaxiomswhichareaxiomsofstronginnity.ThebasicmodernformoftheseaxiomsisasfollowswhereaclassMistransitiveifeachelementofMisasubsetofM(justasfortransitivesets).Acardinalisalargecardinalifthereexistsanelementaryembedding,j:V!MsuchthatMisatransitiveclassandistheleastcardinalsuchthatj( ), .Thisisthecriticalpointofj,denotedCRT(j).ByrequiringmoresetstobelongtoM,possiblyinawaythatdependsonactionofjonthecardinals,oneobtainsahierarchyofnotions.Theobviousmaximumhere,takingM=V,isnotpossible(itisrefutedbytheAxiomofChoicebyatheoremofKunen).Insomecasesthelargecardinalaxiomofinterestholdingatisspeciedbytheexistenceofmanyelementaryembeddingsandpossiblyelementaryembeddingswithsmallercriticalpointsthatthecardinal.ThecarefulreadermightobjecttothereferencetoclassesbutinallinstancesofinterestonecanrequireMandjbedenableclasses(fromparametersbutinasimplemanner)andjneedonlybeelementarywithrespecttorathersimpleformulas.ThesituationisanalogoustothatinNumberTheorywhereonefrequentlyreferstoinnitecollectionssuchasthesetofprimenumbers.This 6ItisaconsequenceoftheaxiomsZFCthatforeachordinal ,V existsandmoreoverthatforeachsetXthereexistsanordinal suchthatX2V .ThesetV istherankinitialsegmentofVdeterminedbytheordinal .ThiscalibrationofVsuggeststhattounderstandVoneshouldsimplyproceedbyinductionon ,analyzingV .TheintegersappearinV!,therealsappearinV!+1,andallsetsofrealsappearinV!+2.TheprojectivesetsintheirincarnationasrelationsofSecondOrderNumberTheoryappearine ectinV!+1sinceV!+1islogicallybi-interpretablewithhP(N);N;+;;2i.Giventheamountofmathemati-cale ortanddevelopmentwhichwasrequiredtounderstandV!+1justtothepointwhereonecouldidentifythecorrectaxiomsforV!+1,andnotingthatthisisaninnitesimalfragmentoftheUniverseofSets,theprospectsforunderstandingVtothissamedegree,orevenjustV!+2whichwouldrevealwhethertheContinuumHypothesisistrue,isadauntingtask.Itakeastrong,perhapsunreasonableposition,onthis.ThestatementthatProjectiveDetermi-nacyisconsistentisanewmathematicaltruth.Itpredictsfactsaboutourworld,forexamplethatinthenext1000years,sobyICM3010,therewillbenocontradictiondiscoveredfromProjec-tiveDeterminacybyanymeans.Ofcourseonecouldrespondwiththeobservationthatwitheachnewtheoremofmathematicscomessuchaprediction.ForexamplefromWiles'proofofFermat'sLastTheorem,onehasthesuperciallysimilarpredictionthatnocounterexampletoFLTwillbediscovered.Butthisprediction,whilecertainlyanewprediction,isreduciblebynitemeans(i.e.theproof)toapreviousprediction–namelythattheaxioms(whatevertheyare)necessaryforWiles'proofwillnotbediscoveredtobecontradictory.ThisisnotthecaseforthepredictionIhavemadeabove.Thatpredictionisagenuinelynewpredictionwhichisnotreduciblebynitemeanstoanypreviouslyheldprediction(sayfrombefore1960).Thisisthenatureoftheinvestigationoflargecardinalaxiomswhichsetsitapartfromothermathematicalenterprises.Butnowthereisadilemma.Theclaimthatalargecardinalaxiomisconsistent,suchastheclaimthattheexistenceofWoodincardinalsisconsistent,wouldseemultimatelytohavetobefoundedonaconceptionoftruthfortheUniverseofSetswhichincludestheexistenceoftheselargecardinals.ButifouraxiomsforthisUniverseofSetsfailtoresolveeventhemostbasicquestionsabouttheUniverseofSets,suchasthatoftheContinuumHypothesis,thenultimatelywhatsenseistheretotheclaimthatlargecardinalsexist?Thisisperhapstolerableonatemporarybasisduringaperiodofaxiomaticdiscoverybutitcertainlycannotbethepermanentstateofa airs.Thealternativeposition–thatconsistencyclaimscanneverbemeaningfullymade–issimplyarejectionoftheinnitealtogether.Andwhatifmypredictioniscorrectandaninstanceofanevolvingseriesofeverstrongersimilarlycorrectpredictions?Howwillthisskepticexplainthat?InanycaseanincrementalapproachmightbeprudentandsoIshallrestrictattentiontosen-tencesabouttheuniverseofsetsofaparticularform.Asentenceisarank-universalsentenceifforsomesentence ,assertsthatV  forallordinals .Similarlyasentenceisarank-existentialsentenceifforsomesentence ,assertsthatthereexistsanordinal suchthatV  .Foranysentence ,theassertionthatV!+2 isbothrank-universalandrank-existentialandsotheContinuumHypothesisisexpressibleasbotharankuniversalsentenceandarankexistentialsentence.Thereisnothingparticularlyspecialabouttheordinal!hereorforthatmatterabout2either.Forexampleif0istheleastWoodincardinalthenforanysentence ,theassertionthatV0+! isbothrank-universalandrank-existential,etc. 8Theorem10(Martin,Steel,Woodin).AssumethereareinnitelymanyWoodincardinalswithameasurablecardinalabove.ThenL(R)AD.utTheproofofthetheoreminvolvescombining[15]withmethodsfrompreviousresultsandsomethinglikethemeasurablecardinalisnecessarybutonlyjustbarely.Thefollowingtheoremclariesthesituationbyprovidinganexactmatchtotheaxiom“L(R)AD”withinthehierarchyoflargecardinalsaxiomsandfromtheperspectiveoftheformalconsistencyoftheories.Theorem11(Woodin).Thefollowingtheoriesareequiconsistent.(1)ZFC+“L(R)AD”.(2)ZFC+“ThereareinnitelymanyWoodincardinals”.utTheaxiom,L(R)AD,givesacompleteanalysisofL(R)extendingtheanalysisthattheax-iom,allprojectivesetsaredetermined,providesfortheprojectivesets.ForexampleMoschovakis'stheoremonuniformizationgeneralizestoshowthatformanyordinals ,assumingallsetsinL (R)\P(R)aredetermined,uniformizationholdsinL (R).Thisincludesallcountable andquiteabitmore.SubsequentworkofSteelhasexactlycharacterizedtheseordinals.OfcourseassumingV=L,uniformizationholdsinL(R)sinceinthiscaseL(R)=L.ButifuniformizationholdsinL(R)thentheAxiomofChoicemustholdinL(R)andsoinL(R),uni-formizationimpliesthatL(R)6AD.ThusthereismathematicaltensionbetweenuniformizationandtheregularitypropertiessuchasLebesguemeasurabilityandhavingthepropertyofBaire.Theorem12(Woodin).SupposethatuniformizationholdsinL (R)andthat =!1 forsomelimitordinal .Thenthefollowingareequivalent.(1)EverysetA2L (R)\P(R)isLebesguemeasurableandhasthepropertyofBaire.(2)EverysetA2L (R)\P(R)isdetermined.utTheproofofthetheoremusesratherelaboratemachinerytoconstructgivenA2L (R)\P(R)andassuming(1),acountabletransitivesetMsuchthatA\M2MandsuchthatinMthereareWoodincardinalssucienttoestablishthatA\Misdetermined.ThereisanadditionalrequirementthatM\AbecorrectaboutwhetherastrategyisawinningstrategyinthegameassociatedtoAandsothedeterminacyofA\MwithinMyieldsthedeterminacyofA.ByaremarkabletheoremofSteeltherestrictionon isnecessary,inparticularTheorem12doesnotholdwith =!1andthisfactarguesstronglythatthereisnoelementaryproofofthetheoremeveninspeciccasessuchas =!1!1wherethetheoremdoeshold.Theprevioustheoremisnowoneofmanyanalogoustheoremswhichhavebeenproved,in-cludingrecentdramaticresultsofSargsyan[21].Thesetheoremscollectivelyconrmthattheun-derstandingofdeterminacyplaysacentralroleinmodernSetTheory.TheubiquityofProjectiveDeterminacyininnitarycombinatoricsisoftencitedasanindependentconrmationofitstruth.8.TheuniversallyBairesetsForanysetEthereisanassociatedenlargementofL,denotedL[E],whichisdenedasfollows.Foreachordinal ,L [E]isrstdenedbyinductionon :1.L0[E]=;2.(Successorcase)L +1[E]=PDef(L [E][fE\L [E]g),3.(Limitcase)L [E]=[fL [E]j g. 10ThereisanordinalmeasureofcomplexityfortheuniversallyBairesets–thiscanbedenedanumberofwaysandIdeneasomewhatcoarsenotionusingadenitionwhichisjustforthisaccount.SupposeAandBaresubsetsofR.DeneAtobeborelreducibletoB,writtenAborelB,ifthereisaborelfunction:R!RsuchthateitherA=�1[B]orA=Rn�1[B].DeneAborelBifAborelBbutBborelA.FinallydeneAandBtobeborelbi-reducibleifbothAborelBandBborelA.TheboreldegreeofAistheequivalenceclassofallsetswhichareborelbi-reduciblewithA.TheboreldegreeofasetARisanalogoustotheTuringdegreeofasetAN.ThefollowinglemmaisanimmediatecorollaryoftheratherremarkableWadge'sLemmafromthetheoryofdeterminacytogetherwiththedeterminacyoftheuniversallyBairesets.Thesubse-quenttheoremissimilarlyacorollaryofafundamentaltheoremofMartinontheWadgeorder.Lemma18.AssumethereisaproperclassofWoodincardinals.SupposethatAandBareuniver-sallyBairesubsetsofR.(1)EitherAborelBorBborelA,(2)SupposeAborelB.Thenthereisaborelfunction:R!RsuchthatA=�1[B].utTheorem19.AssumethereisaproperclassofWoodincardinals.ThereisnosequencehAi:i!iofuniversallyBairesetssuchthatforalli!,Ai+1borelAi.utThus,assumingthereisaproperclassofWoodincardinals,theboreldegreesoftheuniversallyBairesetsarelinearlyorderedbyborelreducibilityandmoreoverthislinearorderisawellorder.IillustratetherelevanceofthistotheInnerModelProgram.SupposethatthereisproperclassofWoodincardinalsandconsidertheenlargementofL(R)givenbyL(R)[]asdiscussedabove.ThenthesetsinL(R)[]\P(R)arealluniversallyBaire.SupposethatA;B2L(R)[]\P(R)andthatforsomeordinal ,A2L (R)[]butBL (R)[].ThenAborelB.Ingeneral,therankingoftheuniversallyBairesetsgivenbyborelreducibilitymustrenetheorderofgenerationofthesesetsinanypossibleenlargementofLadaptedtodeneanenlargementofL(R).ThepointhereisthatforanytransitivesetX,ifAborelBandB2PDef(X)thenA2PDef(X).Insummary,thesetsgeneratedbyanypossibleenlargementofL(subjectonlytoverygeneralconstraints)adaptedtodeneanenlargementofL(R)denesaninitialsegmentoftheuniversallyBairesetsrelativetotheorderofborelreducibility.Theextentofthatinitialsegmentisdeterminedbytheextentofthelargecardinalaxiomswhichholdintheinitialsegmentsofthatenlargement.9. -logicandthe ConjectureThefoundationalissuesoftruthinSetTheoryarisebecauseofCohen'smethodofforcingandIshallreferinthispapertoextensionsobtainedbythemethodofforcingasCohenextensions.CohenextensionsarethesourceoftheprofoundunsolvabilityofproblemssuchasthatoftheContinuumHypothesiswhichmakestheseproblemsseemsointractable.ThisisincontrasttoLuzin'squestionsabouttheprojectivesetswhichwehaveseenareresolvedbysimplyinvokingstrongnotionsofinnity.Perhapsthenthebestonecandoisamultiverseconceptionoftheuniverseofsets.ToillustratesupposethatMisacountable(transitive)modelofZFC(ofcourseonecannotprovesuchasetexistswithoutappealingtolargecardinalaxioms).LetV(M)bethesmallestcollectionofcountabletransitivemodelssuchthatif(M0;M1)isanypairofcountabletransitivemodelswithM1aCohenextensionofM0,ifeitherM02V(M)orM12V(M)thenbothmodelsareinV(M).V(M)isthegenericmultiversegeneratedbyM.TakingMtobeVitself,thisdenesthegeneric-multiverse.Ofcourseoneisinterestedinthecorrespondingnotionoftruth.Soasentenceistrueinthegeneric-multiversegeneratedbyVifistrueineachuniverseofthegeneric-multiversegeneratedbyV.Thiscanbemadeperfectlyprecise(withoutquantifyingoverclasses)andIshallgivearelativelysimplereformulationatleastforrank-universalsentences. 12LetT0bethesetofsentences suchthat“V!+2 ”isageneric-multiversetruthandletTbethesetofallrank-universalsentenceswhicharegeneric-multiversetruths.ClearlyT0isreducibletoT.Thesecondtheoremshowsthatassumingthe Conjecture(andthatthereisaproperclassofWoodincardinals)thenthesetwosetshavethesamecomputationalcomplexitybyshowingthatTisreducibletoT0(andtheproofgivestheexplicitreduction).Theorem26.SupposethatthereisaproperclassofWoodincardinalsandassumethe Conjectureholds.ThenTisrecursivelyreducibletoT0.utWhyisthisaproblem?Assumingthe Conjecture(andthatthereisaproperclassofWoodincardinals),thenthesecondtheoremshowsthatthewholehierarchyofrank-universaltruth–inthegeneric-multiverseconceptionoftruth–collapsestosimplythetruthsofV!+2.Moreoveraugmentedbyasecondconjecture,the Conjectureyieldsastrongformofthersttheorem–namelythatthissetofsentencesisactuallydenableinV!+2.ThiscollapseiscompletelycountertothefundamentalprinciplesconcerninginnityonwhichSetTheoryisfounded.MoreoversinceV!+2isinessencejustthestandardstructureforThirdOrderNumberTheory,thiscollapseshowsthatthegeneric-multiverseconceptionoftruth(forrank-universalsentences)issimplyaversionofthirdorderformalism.Ifthe Conjectureistruethenthegeneric-multiverseconceptionoftruthisuntenable.Noviablealternativemultiverseconceptionoftruthisknownthatsurvivesthechallengeposedbythe ConjectureandthisseemstoargueforamultiverseofoneuniversewhichleadsusbacktosearchingforgeneralizationsoftheaxiomV=LandtheInnerModelProgram.Perhapsthisallissimplyevidencethatthe Conjectureisfalse.The ConjectureisinvariantacrossthegenericmultiversegeneratedbyVandsoareasonableconjectureisthatifthe Conjec-turecanfailthenitmustberefutedbysomelargecardinalaxiom.Butthe ConjectureholdsinalltheenlargementsofLproducedbytheInnerModelProgramandsototheextentthisprogramsucceedsinanalyzinglargecardinalaxioms,nolargecardinalaxiomcanrefutethe Conjecture.10.Extendermodels,supercompactcardinals,andHODItisScott'stheoremthatifV=LthentherearenomeasurablecardinalswhichnecessitatesthesearchforgeneralizationsofthedenitionofLinwhichlargecardinalaxiomscanhold.ThisisreinforcedbyG¨odel'stheoremthatshowsthatifV=Lthenonecannothavethetruetheoryoftheprojectivesets:projectivedeterminacymustfailandmoreovertherearepathologicalprojectivesets.ButhowshouldoneenlargeL?TheenlargementsareoftheformL[˜E]forsomeset(orclass)˜E.Theproblemistoidentifysets˜EforwhichL[˜E]isageneralizationofLfromtheperspectiveofdenability.Sincetheissueislargecardinalaxioms,thesesetsshouldsomehowbederivedfromlargecardinals.Therelevantkeynotionisthatofanextender,themodernformulationisduetoJensenandbasedonanearlierformulationduetoMitchell.ThereareprecursorsduetoPowell(inamodeltheoreticcontext)andtoJensen,see[10]formoredetails.TosimplifythisexpositionIdeviatefromthestandarddenitionofanextenderanduseadenitionwhichisinsomewaysmorerestricted,inotherwaysmoregeneral,butinallwayslesstechnicaltostate.Denition27.Afunction,E:P( )!P( )where isanordinal,isanextenderoflength ifthereexistsanelementaryembeddingj:V!Msuchthat1.CRT(j) andV +!M,2.forallA ,E(A)=j(A)\ .utIfEisanextenderitisconvenienttodeneCRT(E)=CRT(j)wherej:V!MwitnessesthatEisanextender.Thisiswell-denedandCRT(E)iseasilycomputedfromEitself. 14SupposeNisatransitiveclass.ThenE(N:V)denotestheclassofallF\NsuchthatFisanextender,F\N2N,andsuchthatF\NisanextenderinN.Theorem31.SupposeL[˜E]isanextendermodelsuchthatissupercompactinL[˜E]andthisiswitnessedinL[˜E]byE(L[˜E]:V).SupposeFisanextenderofstronglyinaccessiblelengthsuchthatL[˜E]isclosedunderFandsuchthatCRT(F).ThenF\L[˜E]2L[˜E].utInotethatLisclosedunderallextendersandmoregenerallyifNisanytransitiveclasswhichcontainstheordinalsandifsucientlargecardinalsexistinVthennecessarilyNisclosedunderFforarichclassofextendersFofstronglyinaccessiblelength.ThereforetherequirementsthatL[˜E]beclosedunderFandFhavestronglyinaccessiblelengtharenotaveryrestrictiverequirements.TodatethebasicmethodologyofextendermodelsissuchthatifFisanextenderinL[˜E],thenFisgivenbyanintialsegmentofanextenderonthesequence˜E,[22].ThishasalwaysseemedanessentialfeatureofthedetailedanalysisofL[˜E]anditiscloselyrelatedtowhyeachnewconstructionofanextendermodelhascomewithanassociatedgeneralizationofScott'sTheorem(thattherearenomeasurablecardinalsinL).Theprevioustheoremeasilyyieldsacompletereversalofthisatthelevel1ofonesupercompactcardinal.Forexampleif�isanextendiblecardinalthenmustbeasupercompactcardinalinL[˜E]andthisgeneralizestoessentiallyalllargecardinalnotions.Thenexttheorem–whichisalsocloselyrelatedtotheprevioustheorem–givesyetanothermea-sureofthetranscendenceofextendermodelsatthelevelofonesupercompactcardinal.Theseex-tendermodels,atleastinabackgrounduniverseofsucientlargecardinalstrength,mustcorrectlycomputetheproofrelationfor -logic.Theorem32.Supposethereisaproperclassofextendiblecardinals.SupposeL[˜E]isanextendermodelsuchthatissupercompactinL[˜E]andthisiswitnessedinL[˜E]byE(L[˜E]:V).Thenforallrank-universalsentencesthefollowingareequivalent.(1)` .(2)L[˜E]“` ”.utIrequireanotherdenitionduetoG¨odel.ThisdenitionisoftheclassHODofallhereditar-ilyordinaldenablesetsandhereIgiveanequivalentreformulationofG¨odel'sdenitionwhichhighlightsitassomesortofmergeofthedenitionsofthecumulativehierarchyandthatofL.Denition33.HODistheclassofallsetsXsuchthatthereexist 2OrdandA suchthatAisdenableinV withoutparametersandsuchthatX2L[A].utIfV=LthenHOD=LbutifforexampleL(R)ADthenHOD,L.TheclassHODisnotingeneralcanonical,forexamplebypassingtoaCohenextensionofVonecanarrangethatanydesignatedsetofVbeanelementofHODasdenedintheextension.ThereisaremarkabletheoremofVopenkawhichconnectsHODandCohen'smethodofforcing,see[10].ThistheoremillustrateswhyCohen'smethodissocentralinSetTheoryandforreasonsotherthansimplyestablishingindependenceresults.IfGOrdthenHODGissimplyHODdenedallowingGasaparameter(soG2HODG).Theorem34(Vopenka).ForeachsetGOrd,ifGHODthenHODGisaCohenextensionofHOD.ut 1Therearesomeveryrecentdevelopmentswhichshowthatthecriticalstageisactuallybelowthelevelofonesupercompactcardinalandwhichplausiblyidentifyexactlythecriticalstage. 16BycombiningthethreenotionsofuniversallyBairesets,relativeconstructibility,andHOD,IcanformulatewhatIconjecturewillbetheaxiomthatVisultimate-L.IdothisinthecontextthatthereisasupercompactcardinalandaproperclassofWoodincardinalsthoughthelatterisultimatelyirrelevant.Theformulationofthisaxiominvolvesonelastdenition.SupposethatARisuniversallyBaire.ThenL(A;R)isthesupremumoftheordinals suchthatthereisasurjection,:R! ,suchthat2L(A;R).TheconnectionbetweenthedeterminacyoftheprojectivesetsandWoodincardinalsgeneralizestoastructuralconnectionillustratedbythefollowingtheoremwhereHODL(A;R)denotesHODasdenedwithinL(A;R).Theorem35(Woodin).SupposethatthereisaproperclassofWoodincardinalsandthatAisuniversallyBaire.ThenL(A;R)isaWoodincardinalinHODL(A;R).utTheconnectionrunsmuchdeeperasindicatedbythefollowingtheoremofSteelandInowrefertoextendermodelsintheirtrueform(andmoreoverexpandedtoincludeelementarysubstructures)andnotthesimpleapproximationthatIhavedenedpreviously.TheMitchell-SteelextendermodelsarethesolutionsoftheInnerModelProgramatthelevelofWoodincardinalswhichIalludedtointhediscussionafterthetwotestquestions.Theorem36(Steel).SupposethatthereisaproperclassofWoodincardinals.Let=L(R).ThenHODL(R)\VisaMitchell-Steelextendermodel.utTheorem37(Woodin).SupposethatthereisaproperclassofWoodincardinals.ThenHODL(R)isnotaMitchell-Steelextendermodel.utButthenwhatisHODL(R)?Itbelongstoadi erent,previouslyunknown,classofextendermodels,thesearethestrategicextendermodels.ForasignicantinitialsegmentoftheuniversallyBairesets,HODL(A;R)hasbeenveriedtobeastrategicextendermodelandthereisverystrongevidencethatthiswillbetrueforalluniversallyBairesets.Untilrecentlyitwasnotclearatallwhatlargecardinalaxiomscouldholdinthesemodels.ButonthebasisofthefoundationalquestionswhichIhavebeendiscussingcombinedwithassociatedmathematicaldevelopments,[29],thereiscompellingevidence(tome)thattheseinnermodelsHODL(A;R)\Vwhere=L(A;R)cannotbelimitinginanyway:theonlyissue(assumingthesearestrategicextendermodels)iswhetherstrate-gicextendermodelscanexistatthelevelofonesupercompactcardinalforthenjustasisthecaseforextendermodels,theyaretranscendentforlargecardinals.Thereisabsolutelycompellingevidencethatstrategicextendermodelsexistwhicharetranscendentfor -logicinthesenseofTheorem32andfromthisperspectiveitseemsperhapsobviousthattheremustexiststrategicextendermodelsatthelevelofonesupercompactcardinalaswell.TheunderlyingpointhereisthatthefamilyofinnermodelsHODL(A;R)\Vwhere=L(A;R)andAisuniversallyBairearecollectivelytranscendentfor -logic.Thereforeiftheseinnermodelsarestrategicextendermodelsthenstrategicextendermodelsaretranscendentfor -logicaswell.Extendingthetheoryofextendermodelstothelevelofonesupercompactcardinalseemsdi-cultenough,whyshouldtherebeanyoptimismthatthiscanbedoneforstrategicextendermodelsthetheoryofwhichhasgenerallybeenmoredicult.Thereisakeyandfundamentaldi erence.ThestructureandtheoryofstrategicextendermodelswillbefullyrevealedbytheinnermodelsHODL(A;R)whereAisuniversallyBaire.Sothemathematicalproblemisnotoneofndingthecorrectdenitiontosatisfyapossiblyvaguegoal,butratheroftheanalysisofstructureswecanalreadydene.Moreoverwehavearichframeworkprovidedbydeterminacyinwhichtoundertakethatanalysis.IshouldemphasizethatpriortotheproofofTheorem37,itwasnotknownifstrategicextendermodelscouldexistinanyreasonableform. 18[9]R.Jensen.AnewnestructureformicebelowoneWoodincardinal.Handwrittennotes,(Berlin)1997.[10]AkihiroKanamori.Thehigherinnite.PerspectivesinMathematicalLogic.Springer-Verlag,Berlin,2008.Largecardinalsinsettheoryfromtheirbeginnings;secondedition.[11]PeterKoellnerandW.HughWoodin.Largecardinalsfromdeterminacy.InMatthewFore-manandAkihiroKanamori,editors,HandbookofSetTheory,volumeIII,pages1951–2120.Springer–Verlag,NewYork,2010.[12]KennethKunen.Someapplicationsofiteratedultrapowersinsettheory.Ann.Math.Logic,11:179–227,1977.[13]NikolaiN.Luzin.SurlesensemblesprojectifsdeM.HenriLebesgue.ComptesRendusHebomadairesdesS´eancesdel'Acad´emiedesSciences,Paris,180:1572–1574,1925.[14]NikolaiN.Luzin.SurleproblemedeM.J.Hadamardd'uniformisationdesensembles.ComptesRendusHebomadairesdesS´eancesdel'Acad´emiedesSciences,Paris,190:349–351,1930.[15]D.A.MartinandJ.Steel.Aproofofprojectivedeterminacy.J.Amer.Math.Soc.,2:71–125,1989.[16]D.A.MartinandJ.Steel.Iterationtrees.J.Amer.Math.Soc.,7:1–74,1994.[17]WilliamJ.MitchellandJohnR.Steel.Finestructureanditerationtrees.Springer-Verlag,Berlin,1994.[18]YiannisN.Moschovakis.Descriptivesettheory.North-HollandPublishingCo.,Amsterdam,1980.[19]JanMycielskiandStanisawSwierczkowski.OntheLebesguemeasurabilityandtheAxiomofDeterminateness.Fund.Math.,54:67–71,1964.[20]JanMycielskiandHugoSteinhaus.AmathematicalaxiomcontradictingtheAxiomofChoice.Bulletindel'Acad´emiePolonaisedesSciences,S´eriedesSciencesMath´ematiques,AstronomiquesetPhysiques(continuedfrom1983byBulletinofthePolishAcademyofSci-ences.Mathematics.),10:1–3,1962.[21]G.Sargsyan.Ataleofhybridmice.PhDthesis,U.C.Berkeley,2009.[22]F.Schlutzenberg.Measuresinmice.PhDthesis,U.C.Berkeley,2007.[23]DanaS.Scott.Measurablecardinalsandconstructiblesets.Bulletindel'Acad´emiePolonaisedesSciences,S´eriedesSciencesMath´ematiques,AstronomiquesetPhysiques(continuedfrom1983byBulletinofthePolishAcademyofSciences.Mathematics.),9:521–524,1961.[24]JackH.Silver.Measurablecardinalsand13well-orderings.Ann.ofMath.,94:414–446,1971.[25]RobertM.Solovay.AmodelofsettheoryinwhicheverysetofrealsisLebesguemeasurable.Ann.ofMath.,92:1–56,1970.[26]JohnSteel,RalfSchindler,andMartinZeman.Deconstructinginnermodeltheory.J.SymbolicLogic,67(June):712–736,2002.[27]WilliamW.Wadge.Degreesofcomplexityofsubsetsofthebairespace.NoticesAmer.Math.Soc.,19,1972.Abstract714.[28]W.HughWoodin.ThenestructureofsuitableextendersequencesI.Preprint,2010.[29]W.HughWoodin.Suitableextendersequences.Preprint,2010.W.HughWoodin:UuniversityofCalifornia,BerkeleyE-mail:woodin@math.berkeley.edu