/
2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWenoticethatTheorem1extends[DKSS,T 2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWenoticethatTheorem1extends[DKSS,T

2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWenoticethatTheorem1extends[DKSS,T - PDF document

cheryl-pisano
cheryl-pisano . @cheryl-pisano
Follow
377 views
Uploaded On 2015-11-21

2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWenoticethatTheorem1extends[DKSS,T - PPT Presentation

q1qr1thentheestimateofCorollary2becomestrivialTurningtotheupperboundswepresentseveraldi erentconstructionsSomeofthemcanberegardedasre nedandadjustedversionsofpreviouslyknownonesothertoourknow ID: 201248

q1qr1 thentheestimateofCorollary2becomestrivial.Turningtotheupperbounds wepresentseveraldi erentconstructions.Someofthemcanberegardedasre nedandadjustedversionsofpreviouslyknownones;other toourknow

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWeno..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWenoticethatTheorem1extends[DKSS,Theorem11]andindeed,thelatterresultisaparticularcaseoftheformer,obtainedforr=1.TheproofofTheorem1usesthepolynomialmethodinthespiritof[DKSS,SS08].Usingtheinequality(1+x)�m1�mx;x0;m1;onereadilyderivesCorollary2.Ifnr1areintegers,qaprimepower,andKFnqaKakeyasetofrankr,thenjKj�1�n(q�1)q�rqn:Tofacilitatecomparisonbetweenestimates,weintroducethefollowingterminology.GiventwoboundsB1andB2forthesmallestsizeofaKakeyasetinFnq(whichareeitherbothupperboundsorbothlowerbounds),wesaythattheseboundsareessentiallyequivalentinsomerangeofnandqifthereisaconstantCsuchthatforallnandqinthisrangewehaveB1CB2;B2CB1;andalsoqn�B1C(qn�B2);qn�B2C(qn�B1):Wewillalsosaythattheestimates,correspondingtothesebounds,areessentiallyequiv-alent.Withthisconvention,itisnotdiculttoverifythatforevery xed"�0,theestimatesofTheorem1andCorollary2areessentiallyequivalentwhenevern(1�")qr�1.Ifn1+1 q�1qr�1,thentheestimateofCorollary2becomestrivial.Turningtotheupperbounds,wepresentseveraldi erentconstructions.Someofthemcanberegardedasre nedandadjustedversionsofpreviouslyknownones;other,toourknowledge,didnotappearintheliterature,buthavebeen\intheair"forawhile.We rstpresentaKakeyasetconstructiongearedtowardslarge elds.Itisbasedon(i)the\quadraticresidueconstruction"duetoMockenhauptandTao[MT04](withare nementbyDvir,see[SS08]),(ii)the\liftingtechnique"from[EOT],and(iii)the\tensorpowertrick".Ourstartingpointis[SS08,Theorem8],statingthatifn1isanintegerandqaprimepower,thenthereexistsarank-1KakeyasetKFnqsuchthatjKj2�(n�1)qn+O(qn�1);(1)withanabsoluteimplicitconstant.Indeed,theproofin[SS08]yieldstheexplicitestimatejKj(q�q+1 2n�1+qn�1ifqisodd;(q�1)�q 2n�1+qn�1ifqiseven:(2) 4S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANCorollary5.Letn�r1beintegersandqaprimepower.ThereexistsaKakeyasetKFnqofrankrsuchthatjKjqn� �qn�(r�1);moreover,ifnrqr�1,theninfactjKjqn� n rqn�(r�1)(withabsoluteimplicitconstants).WeremarkthatCorollaries2and5givenearlymatchingboundsonthesmallestpossiblesizeofaKakeyasetofrankrinFnqinthecasewhereris xed,qgrows,andthedimensionndoesnotgrow\toofast".Thesituationwhereqisboundedandngrowsisquitedi erent:forr=1theO-termin(1)donotallowforconstructingKakeyasetsofsizeo(qn),andforrlargetheestimateofTheorem4isratherweak.Addressing rstthecaser=1,wedevelopfurthertheideabehindtheproofof[SS08,Theorem8]toshowthattheO-termjustmentionedcanbewellcontrolled,makingtheresultnon-trivialintheregimeunderconsideration.Theorem6.Letn1beanintegerandqaprimepower.Thereexistsarank-1KakeyasetKFnqwithjKj8&#x]TJ/;༶ ;.9;Ւ ;&#xTf 1;.42; 31;&#x.682;&#x Td ;&#x[000;&#x]TJ/;༶ ;.9;Ւ ;&#xTf 1;.42; 31;&#x.682;&#x Td ;&#x[000;&#x]TJ ;� -2;.52;&#x Td ;&#x[000;&#x]TJ ;� -2;.52;&#x Td ;&#x[000;:2�1+1 q�1�q+1 2nifqisodd;3 2�1+1 q�1�2q+1 3nifqisanevenpowerof2;3 22(q+p q+1) 3nifqisanoddpowerof2:Theorem6istobecomparedagainstthecaser=1ofTheorem1showingthatifKFnqisarank-1Kakeyaset,thenjKj�q2=(2q�1)n.ForseveralsmallvaluesofqtheestimateofTheorem6canbeimprovedusingacombinationofthe\missingdigitconstruction"andthe\randomrotationtrick"ofwhichwelearnedfromTerryTaowho,inturn,referstoImreRuzsa(personalcommunicationinbothcases).Fora eldF,byFwedenotethesetofnon-zeroelementsofF.Themissingdigitconstructionbyitselfgivesaveryclean,butratherweakestimate.Theorem7.Letn1beanintegerandqaprimepower,andsupposethatfe1;:::;engisalinearbasisofFnq.LetA:=f"1e1++"nen:"1;:::;"n2FqgandB:=f"1e1++"nen:"1;:::;"n2f0;1gg: 6S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANCorollary11.Letnr1beintegersandqaprimepower.ThereexistsaKakeyasetKFnqofrankrsuchthatjKjqn(1�q�r)+r+1:ItisnotdiculttoverifythatCorollary11supersedesCorollary5forn(r+2)qr,andthatforngrowing,Theorem10supersedesTheorem4ifrissucientlylargeascomparedtoq(roughly,r&#x-278;Cq=logqwithasuitableconstantC).AslightlymorepreciseversionofCorollary11isthatthereexistsaKakeyasetKFnqofrankrwithjKjqn�bn=qrc+r;thisisessentiallyequivalenttoTheorem10providedthatn(r+1)qr.(Ontheotherhand,Theorem10becomestrivialifnqr.)TheremainderofthepaperismostlydevotedtotheproofsofTheorems1,6,7,and8,andLemma9.Fortheconvenienceofthereaderandself-completeness,wealsoprove(aslightlygeneralizedversionof)Lemma3intheAppendix.Section6containsashortsummaryandconcludingremarks.2.ProofofTheorem1.AsapreparationfortheproofofTheorem1,webrie yreviewsomebasicnotionsandresultsrelatedtothepolynomialmethod;thereaderisreferredto[DKSS]foranin-depthtreatmentandproofs.Fortherestofthissectionweusemultidimensionalformalvariables,whicharetobeunderstoodjustasn-tuplesof\regular"formalvariableswithasuitablen.Thus,forinstance,ifnisapositiveintegerandFisa eld,wecanwriteX=(X1;:::;Xn)andP2F[X],meaningthatPisapolynomialinthenvariablesX1;:::;XnoverF.ByN0wedenotethesetofnon-negativeintegers,andforXasaboveandann-tuplei=(i1;:::;in)2Nn0weletkik:=i1++inandXi:=Xi11Xinn.LetFbea eld,n1aninteger,andX=(X1;:::;Xn)andY=(Y1;:::;Yn)formalvariables.ToeverypolynomialPinnvariablesoverFandeveryn-tuplei2Nn0therecorrespondsauniquelyde nedpolynomialP(i)overFinnvariablessuchthatP(X+Y)=Xi2Nn0P(i)(Y)Xi:ThepolynomialP(i)iscalledtheHassederivativeofPoforderi.Notice,thatP(0)=P(whichfollows,forinstance,bylettingX=(0;:::;0)),andifkik&#x-277;degP,thenP(i)=0.Also,itiseasytocheckthatifPHdenotesthehomogeneouspartofP(meaningthatPHisahomogeneouspolynomialsuchthatdeg(P�PH)degP),and(P(i))HdenotesthehomogeneouspartofP(i),then(P(i))H=(PH)(i). 8S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDAN(notypo:kentersbothsides!),weshow rstthatm+n�1njKjn+kn;(6)andthenoptimizebymandk.Supposeforacontradictionthat(6)fails;thus,byLemma13,thereexistsanon-zeropolynomialPoverFqofdegreeatmostkinnvariables,vanishingateverypointofKwithmultiplicityatleastm.Writel:=lqm�k q�1mand xi=(i1;:::;in)2Nn0satisfyingw:=kikl.LetQ:=P(i),theithHassederivativeofP.SinceKisaKakeyasetofrankr,foreveryd1;:::;dr2Fnqthereexistsb2Fnqsuchthatb+t1d1++trdr2Kforallt1;:::;tk2Fq;hence,(P;b+t1d1++trdr)m;andtherefore,byLemma12,(Q;b+t1d1++trdr)m�wwhenevert1;:::;tr2Fq.ByLemma14,wehave(Q;b+t1d1++trdr)(Q(b+T1d1++Trdr);(t1;:::;tr));whereQ(b+T1d1++Trdr)isconsideredasapolynomialinthevariablesT1;:::;Tr.Thus,foreveryd1;:::;dr2Fnqthereexistsb2FnqsuchthatQ(b+T1d1++Trdr)vanisheswithmultiplicityatleastm�wateachpoint(t1;:::;tr)2Frq.ComparedwithdegQ(b+T1d1++Trdr)degQk�wq(m�w)(asitfollowsfromwl),inviewofCorollary16thisshowsthatQ(b+T1d1++Trdr)isthezeropolynomial.LetPHandQHdenotethehomogeneouspartsofthepolynomialsPandQ,respec-tively,sothatQ(b+T1d1++Trdr)=0impliesQH(T1d1++Trdr)=0.Thus,(PH)(i)(T1d1++Trdr)=0foralld1;:::;dr2Fnq.Weinterpretthissayingthat(PH)(i),consideredasapolynomialinnvariablesoverthe eldofrationalfunctionsFq(T1;:::;Tr),vanishesateverypointofthesetfT1d1++Trdr:d1;:::;dr2Fnqg=Sn;whereS:=f 1T1++ rTr: 1;:::; r2Fqg:ThisshowsthatallHassederivativesofPHoforder,smallerthanl,vanishonSn;inotherwords,PHvanisheswithmultiplicityatleastlateverypointofSn.Since,onthe 10S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANcompletingtheproof.TheassertionofTheorem6forqoddfollowsimmediatelyfromLemma17uponchoos-ingF:=Fqandf(x):=x2,andobservingthatthenjIf(t)j=(q+1)=2foreacht2Finviewofx2+tx=(x+t=2)2�t2=4:InthecaseofqeventheassertionfollowseasilybycombiningLemma17withthefollowingtwopropositions.Proposition18.Supposethatqisanevenpowerof2andletf(x):=x3(x2Fq).Thenforeveryt2FqwehavejIf(t)j(2q+1)=3.Proposition19.Supposethatqisanoddpowerof2andletf(x):=xq�2+x2(x2Fq).Thenforeveryt2FqwehavejIf(t)j2(q+p q+1)=3.TocompletetheproofofTheorem6itremainstoprovePropositions18and19.Forthisweneedthefollowingwell-knownfact.Lemma20.Supposethatqisapowerof2,andletTrdenotethetracefunctionfromthe eldFqtoitstwo-elementsub eld.For ; ; 2Fqwith 6=0,thenumberofsolutionsoftheequation x2+ x+ =0inthevariablex2Fqis8�&#x]TJ ;� -2;.52;&#x Td ;&#x[000;:1if =0;0if 6=0andTr( = 2)=1;2if 6=0andTr( = 2)=0:ProofofProposition18.Theassumptionthatqisanevenpowerof2impliesthatq�1isdivisibleby3.Consequently,Fqcontains(q�1)=3+1(2q+1)=3cubes,andweassumebelowthatt6=0.Forx;y2Fqwewritexyifx3+tx=y3+ty.Clearly,thisde nesanequivalencerelationonFq,andjIf(t)jisjustthenumberofequivalenceclasses.Sincetheequationx3+tx=0hasexactlytwosolutions,whichare0andp t,thesetf0;p tgisanequivalenceclass.Fixnowx=2f0;p tgandconsidertheequivalenceclassofx.Forxytoholditisnecessaryandsucientthateithery2+xy+x2=t,orx=y,andthesetwoconditionscannotholdsimultaneouslyinviewofx6=p t.Hence,withTrde nedasinLemma20,andusingtheassertionofthelemma,thenumberofelementsintheequivalenceclassofxis(1ifTr((x2+t)=x2)=1;3ifTr((x2+t)=x2)=0:AsxrunsoverallelementsofFqnf0;p tg,theexpression(x2+t)=x2runsoverallelementsofFqnf0;1g.Sinceqisanevenpowerof2,wehaveTr(1)=Tr(0)=0;thus,thereareq=2�2valuesofx=2f0;p tgwithTr((x2+t)=x2)=0. 12S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANToestimateNwenoticethat1 x(x+t)2=1 t2x+1 t2(x+t)+1 t(x+t)2;andthatTr1 t(x+t)2=Tr1 p t(x+t);implyingTr1 x(x+t)2=Tr1 t2x+1 t2+1 p t1 x+t=Trx=p t+1=t x(x+t):Thus,ift=1,thenTr1 x(x+t)2=Tr1 x;showingthatN=#fx2Fqnf0;1g:Tr(1=x)=0g=q=2�1(astheassumptionthatqisanoddpowerof2impliesTr(1)=1),andhencejIf(1)jq�2 3(q=2�1)=2q+2 3by(7).Finally,supposethatt=2f0;1g.ForbrevitywewriteR(x):=x=p t+1=t x(x+t);andlet denotetheadditivecharacterofthe eldFq,de nedby (x)=(�1)Tr(x);x2Fq:SinceR(1=p t)=0,wehaveN=1 2Xx2Fqnf0;t;1=p tg�1+ (R(x))=1 2Xx2Fqnf0;tg (R(x))+q 2�2:UsingWeil'sbound(aslaidout,forinstance,in[MM91,Theorem2]),wegetNq 2�2�1 2(2p q+1)=q 2�p q�5 2:Now(7)givesjIf(t)jq�2 3�(q=2)�p q�(5=2)�1=2(q+p q+1) 3; 14S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANsothats+l=kands+2lq:(8)Thenq�1 2e(�t)=Xi2[1;k]:mi2mi2l(q�s)=l2=1 2(q�s)q�s l�1=1 2l(q�s)(q�k):Ifwehadkq=2,thiswouldyieldq 2�q�1 21 2l(q�s)q 2;contradicting(8).4.ProofofTheorems7and8.ProofofTheorem7.Givenavectord="1e1++"nenwith"1;:::;"n2Fq,letb:=Xi2[1;n]:"i=0ei:Thus,b2B,anditisreadilyveri edthatfort2Fqwehaveb+td2A.Therefore,thelinethroughbinthedirectiondisentirelycontainedinK.TheassertiononthesizeofKfollowsfromA\B=fe1++eng.ProofofTheorem8.Wenoticethattheassertionistrivialifn=O(q(lnq)3),asinthiscaseforasucientlylargeconstantCwehaveq 22=qn+Cp nlnq=q�qn;consequently,weassumen�32q(lnq)3(9)fortherestoftheproof.Fixalinearbasisfe1;:::;engFnqand,asinTheorem7,letA:=f"1e1++"nen:"1;:::;"n2FqgandB:=f"1e1++"nen:"1;:::;"n2f0;1gg:Givenavectorv="1e1++"nenwith"1;:::;"n2Fqandascalar"2Fq,let"(v)denotethenumberofthoseindicesi2[1;n]with"i=".Set:=2p lnqandde neD0:=fd2Fnq:"(d)�n=q�(n=q)1=2forall"2Fqg 16S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANHencenH(N=n)+(n�N)ln(q�2)=nH(2=q)+n(1�2=q)ln(q�2)+O�(n=q)1=2(lnq)3=2=nlnq�2 qln2+O�(n=q)1=2(lnq)3=2;implyingjA0jq 22=qnexp�O�(n=q)1=2(lnq)3=2:Sinceq=22=q�2forq3,weconcludethatjK0jjA0j+jBjq 22=qnexp�O�(n=q)1=2(lnq)3=2=q 22=qn+O�p nlnq=q:WenowusetherandomrotationtricktoreplaceK0withaslightlylargersetKcontaininglinesinall(notonlypopular)directions.TothisendwechoseatrandomlinearautomorphismsT1;:::;TnofthevectorspaceFnqandsetK:=T1(K0)[[Tn(K0):Thus,KcontainsalineineverydirectionfromthesetD:=T1(D0)[[Tn(D0):Choosingavectord2Fnqnf0gatrandom,foreach xedj2[1;n]theprobabilitythatd=2Tj(D0)isatmost1=q,whencetheprobabilitythatd=2Disatmostq�n.Hence,theprobabilitythatD6=Fnqnf0gissmallerthan1,showingthatT1;:::;TncanbeinstantiatedsothatKisarank-1Kakeyaset.ItremainstonoticethatjKjnjK0j.5.ProofofLemma9.Ifk�n,thentheassertionofthelemmaistrivial;suppose,therefore,thatkn,andletthenm:=bn=kc.FixadecompositionFnq=V0V1Vk,whereV0;V1;:::;VkFnqaresubspaceswithdimVi=mfori=1;:::;k,andforeachi2[0;k]letidenotetheprojectionofFnqontoVialongtheremainderofthedirectsum;thus,v=0(v)+1(v)++k(v)foreveryvectorv2Fnq.Finally,letU:=fu2Fnq:i(u)=0foratleastoneindex1ikg:Asimplecomputationcon rmsthatthesizeofUisasclaimed.ToseewhyUcontainsatranslateofeveryk-elementsubsetofFnq,givensuchasubsetfa1;:::;akgweletb:=�1(a1)��k(ak)andobservethat,foreachi2[1;k],i(b+ai)=i(b)+i(ai)=0;whenceb+ai2U. 18S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANReferences[ABS]N.Alon,B.Bukh,andB.Sudakov,DiscreteKakeya-typeproblemsandsmallbases,IsraelJ.Math.,toappear.[AS08]N.AlonandJ.H.Spencer,Theprobabilisticmethod,Thirdedition,Wiley-InterscienceSeriesinDiscreteMathematicsandOptimization,JohnWiley&Sons,Inc.,Hoboken,NJ,2008.xviii+352pp.[DKSS]Z.Dvir,S.Kopparty,S.Saraf,andM.Sudan,Extensionstothemethodofmultiplicities,withapplicationstoKakeyasetsandmergers,Submitted.[EOT]J.Ellenberg,R.Oberlin,andT.Tao,TheKakeyasetandmaximalconjecturesforalgebraicvarietiesover nite elds,Mathematika56(1)(2009),1{25.[MM91]C.J.MorenoandO.Moreno,ExponentialsumsandGoppacodes.I,Proc.Amer.Math.Soc.111(2)(1991),523{531.[MT04]G.MockenhauptandT.Tao,RestrictionandKakeyaphenomenafor nite elds,DukeMath.J.121(1)(2004),35{74.[SS08]S.SarafandM.Sudan,AnimprovedlowerboundonthesizeofKakeyasetsover nite elds,Anal.PDE1(3)(2008),375{379.ComputerScienceandArtificialIntelligenceLaboratory,MIT,32VassarStreet,Cambridge,MA02139,USAE-mailaddress:swastik@mit.eduDepartmentofMathematics,TheUniversityofHaifaatOranim,Tivon36006,IsraelE-mailaddress:seva@math.haifa.ac.ilComputerScienceandArtificialIntelligenceLaboratory,MIT,32VassarStreet,Cambridge,MA02139,USAE-mailaddress:shibs@mit.eduMicrosoftResearch,OneMemorialDrive,Cambridge,MA02142,USAE-mailaddress:madhu@mit.edu