153K - views

An AsShortAsPossible Introduction to the Least Squares Weighted Least Squares an

By scattered data we mean an arbitrary set of points in which carry scalar quantities ie a scalar 64257eld in dimensional parameter space In contrast to the global nature of the leastsquares 64257t the weighted local ap proximation is computed eithe

Tags : scattered data
Embed :
Pdf Download Link

Download Pdf - The PPT/PDF document "An AsShortAsPossible Introduction to the..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

An AsShortAsPossible Introduction to the Least Squares Weighted Least Squares an






Presentation on theme: "An AsShortAsPossible Introduction to the Least Squares Weighted Least Squares an"— Presentation transcript:

Figure1:Fittingbivariate,quadraticpolynomialsto2Dscalarelds:thetoprowshowsthetwosetsofninedatapoints(seetext),thebottomrowshowstheleastsquarestfunction.Thecoefcientvectors[c1;:::;c6]Tare[�0:834;�0:25;0:75;0:25;0:375;0:75]T(leftcolumn)and[0:334;0:167;0:0;�0:5;0:5;0:0]T.MethodofNormalEquations.Foradifferentbutalsoverycom-monnotation,notethatthesolutionforcinEqn.(3)solvesthefollowing(generallyover-constrained)LSE(Bc=f)intheleast-squaressense264bT(x1)...bT(xN)375c=264f1...fN375;(5)usingthemethodofnormalequationsBTBc=BTfc=(BTB)�1BTf:(6)PleaseverifythatEqns.(4)and(6)areidentical.2WLSApproximationProblemFormulation.Intheweightedleastsquaresformulation,weusetheerrorfunctionalJWLS=åiq(k x�xik)kf(xi)�fik2foraxedpoint x2Rd,whichweminimizeminf2Õdmåiq(k x�xik)kf(xi)�fik2;(7)similarto(1),onlythatnowtheerrorisweightedbyq(d)wherediaretheEuclidiandistancesbetween xandthepositionsofdatapointsxi.Theunknowncoefcientswewishtoobtainfromthesolutionto(7)areweightedbydistanceto xandthereforeafunctionof x.Thus,thelocal,weightedleastsquaresapproximationin xiswrittenasf x(x)=b(x)Tc( x)=b(x)c( x);(8)andonlydenedlocallywithinadistanceRaround x,i.e.kx� xkR.WeightingFunction.Manychoicesfortheweightingfunctionqhavebeenproposedintheliterature,suchasaGaussianq(d)=e�d2 h2;(9)wherehisaspacingparameterwhichcanbeusedtosmoothoutsmallfeaturesinthedata,see[Levin2003;Alexaetal.2003].AnotherpopularweightingfunctionwithcompactsupportistheWendlandfunction[Wendland1995]q(d)=(1�d=h)4(4d=h+1):(10)Thisfunctioniswelldenedontheintervald2[0;h]andfurther-more,q(0)=1,q(h)=0,q0(h)=0andq00(h)=0(C2continuity).Severalauthorssuggestusingweightingfunctionsoftheformq(d)=1 d2+e2:(11)Notethatsettingtheparameteretozeroresultsinasingularityatd=0,whichforcestheMLStfunctiontointerpolatethedata,aswewillseelater.Solution.AnalogoustoSection1,wetakepartialderivativesoftheerrorfunctionalJWLSwithrespecttotheunknowncoefcientsc( x)åiq(di)2b(xi)[b(xi)Tc( x)�fi]=2åi[q(di)b(xi)b(xi)Tc( x)�q(di)b(xi)fi]=0;wheredi=k x�xik.Wedividebytheconstantandrearrangetoobtainåiq(di)b(xi)b(xi)Tc( x)=åiq(di)b(xi)fi;(12)andsolveforthecoefcientsc( x)=[åiq(di)b(xi)b(xi)T]�1åiq(di)b(xi)fi:(13)Obviously,theonlydifferencebetweenEqns.(4)and(13)aretheweightingterms.Noteagainthough,thatwhereasthecoef-cientscinEqn.(4)areglobal,thecoefcientsc( x)arelocalandneedtoberecomputedforevery x.IfthesquarematrixAWLS=åiq(di)b(xi)b(xi)T(oftentermedtheMomentMatrix)isnonsingular(i.e.det(AWLS)6=0),substitutingEqn.(13)intoEqn.(8)providesthetfunctionf x(x).GlobalApproximationusingaPartitionofUnity(PU).Byt-tingpolynomialsatj2[1:::n]discrete,xedpoints xjinthepa-rameterdomainW,wecanassembleaglobalapproximationtoourdatabyensuringthateverypointinWiscoveredbyatleastoneapproximatingpolynomial,i.e.thesupportoftheweightfunctionsqjcenteredatthepoints xjcoversWW=[jsupp(qj):Properweightingoftheseapproximationscanbeachievedbycon-structingaPartitionofUnity(PU)fromtheqj[Shepard1968]jj(x)=qj(x) ånk=1qk(x);(14)whereåjjj(x)1everywhereinW.Theglobalapproximationthenbecomesf(x)=åjjj(x)b(x)Tc( xj):(15) ANumericalIssue.Toavoidnumericalinstabilitiesduetopossi-blylargenumbersinAWLSitcanbebenecialtoperformthettingprocedureinalocalcoordinatesystemrelativeto x,i.e.toshift xintotheorigin.Wethereforerewritethelocaltfunctionin xasf x(x)=b(x� x)Tc( x)=b(x� x)c( x);(16)theassociatedcoefcientsasc( x)=[åiq(di)b(xi� x)b(xi� x)T]�1åiq(di)b(xi� x)fi;(17)andtheglobalapproximationasf(x)=åjjj(x)b(x� xj)Tc( xj):(18)3MLSApproximationandInterpolationMethod.TheMLSmethodwasproposedbyLancasterandSalka-uskas[LancasterandSalkauskas1981]forsmoothingandinterpo-latingdata.Theideaistostartwithaweightedleastsquaresfor-mulationforanarbitraryxedpointinRd,seeSection2,andthenmovethispointovertheentireparameterdomain,whereaweightedleastsquarestiscomputedandevaluatedforeachpointindividu-ally.Itcanbeshownthattheglobalfunctionf(x),obtainedfromasetoflocalfunctionsf(x)=fx(x);minfx2Õdmåiq(kx�xik)kfx(xi)�fik2(19)iscontinuouslydifferentiableifandonlyiftheweightingfunctioniscontinuouslydifferentiable,seeLevinswork[Levin1998;Levin2003].SoinsteadofconstructingtheglobalapproximationusingEqn.(15),weuseEqns.(8)and(13)(or(16)and(17))andcon-structandevaluatealocalpolynomialtcontinuouslyovertheen-tiredomainW,resultingintheMLStfunction.Aspreviouslyhintedat,using(11)astheweightingfunctionwithaverysmalleassignsweightsclosetoinnityneartheinputdatapoints,forcingtheMLStfunctiontointerpolatetheprescribedfunctionvaluesinthesepoints.Therefore,byvaryingewecandirectlyinuencetheapproximatimg/interpolatingnatureoftheMLStfunction.4ApplicationsLeastSquares,WeightedLeastSquaresandMovingLeastSquares,havebecomewidespreadandverypowerfultoolsinComputerGraphics.Theyhavebeensuccessfullyappliedtosurfacerecon-structionfrompoints[Alexaetal.2003]andotherpointsetsurfacedenitions[AmentaandKil2004],interpolatingandapproximatingimplicitsurfaces[Shenetal.2004],simulating[Belytschkoetal.1996]andanimating[M¨ulleretal.2004]elastoplasticmaterials,PartitionofUnityimplicits[Ohtakeetal.2003],andmanyotherresearchareas.In[Alexaetal.2003]apoint-set,possiblyacquiredfroma3Dscanningdeviceandthereforenoisy,isreplacedbyarepresenta-tionpointsetderivedfromtheMLSsurfacedenedbytheinputpoint-set.Thisisachievedbydown-sampling(i.e.iterativelyre-movingpointswhichhavelittlecontributiontotheshapeofthesurface)orup-sampling(i.e.addingpointsandprojectingthemtotheMLSsurfacewherepoint-densityislow).Theprojectionproce-durehasrecentlybeenaugmentedandfurtheranalyzedintheworkofAmentaandKil[AmentaandKil2004].Shenet.al[Shenetal.2004]useanMLSformulationtoderiveimplicitfunctionsfrompolygonsoup.Insteadofsolelyusingvalueconstraintsatpoints(asshowninthisreport)theyalsoaddvalueconstraintsintegratedoverpolygonsandnormalconstraints.ReferencesALEXA,M.,BEHR,J.,COHEN-OR,D.,FLEISHMAN,S.,LEVIN,D.,ANDT.SILVA,C.2003.Computingandrenderingpointsetsurfaces.IEEETransactionsonVisualizationandComputerGraphics9,1,3–15.AMENTA,N.,ANDKIL,Y.2004.Deningpoint-setsurfaces.InProceed-ginsofACMSIGGRAPH2004.BELYTSCHKO,T.,KRONGAUZ,Y.,ORGAN,D.,FLEMING,M.,ANDKRYSL,P.1996.Meshlessmethods:Anoverviewandrecentdevel-opments.ComputerMethodsinAppliedMechanicsandEngineering139,3,3–47.FRIES,T.-P.,ANDMATTHIES,H.G.2003.Classicationandoverviewofmeshfreemethods.Tech.rep.,TUBrunswick,GermanyNr.2003-03.LANCASTER,P.,ANDSALKAUSKAS,K.1981.Surfacesgeneratedbymovingleastsquaresmethods.MathematicsofComputation87,141–158.LEVIN,D.1998.Theapproximationpowerofmovingleast-squares.Math.Comp.67,224,1517–1531.LEVIN,D.,2003.Mesh-independentsurfaceinterpolation,toappearin'ge-ometricmodelingforscienticvisualization'editedbybrunnett,hamannandmueller,springer-verlag.M¨ULLER,M.,KEISER,R.,NEALEN,A.,PAULY,M.,GROSS,M.,ANDALEXA,M.2004.Pointbasedanimationofelastic,plasticandmelt-ingobjects.InProceedingsof2004ACMSIGGRAPHSymposiumonComputerAnimation.OHTAKE,Y.,BELYAEV,A.,ALEXA,M.,TURK,G.,ANDSEIDEL,H.-P.2003.Multi-levelpartitionofunityimplicits.ACMTrans.Graph.22,3,463–470.PRESS,W.,TEUKOLSKY,S.,VETTERLING,W.,ANDFLANNERY,B.1992.NumericalRecipesinC-TheArtofScienticComputing,2nded.CambridgeUniversityPress.SHEN,C.,O'BRIEN,J.F.,ANDSHEWCHUK,J.R.2004.Interpolatingandapproximatingimplicitsurfacesfrompolygonsoup.InProceedingsofACMSIGGRAPH2004,ACMPress.SHEPARD,D.1968.Atwo-dimensionalfunctionforirregularlyspaceddata.InProc.ACMNat.Conf.,517–524.WENDLAND,H.1995.Piecewisepolynomial,positivedeniteandcom-pactlysupportedradialbasisfunctionsofminimaldegree.AdvancesinComputationalMathematics4,389–396. Figure2:TheMLSsurfaceofapoint-setwithvaryingdensity(thedensityisreducedalongtheverticalaxisfromtoptobottom).ThesurfaceisobtainedbyapplyingtheprojectionoperationdescribedbyAlexaet.al.[2003].ImagecourtesyofMarcAlexa.