/
Convergence in multiagent coordination consensus and flocking Convergence in multiagent coordination consensus and flocking

Convergence in multiagent coordination consensus and flocking - PDF document

cheryl-pisano
cheryl-pisano . @cheryl-pisano
Follow
398 views
Uploaded On 2017-09-03

Convergence in multiagent coordination consensus and flocking - PPT Presentation

consensusasshownbyExample1belowExercise31inp517of3InparticularconvergencetoconsensusfailseveninthespecialcaseoftheequalneighbormodelThemainideaisthattheagreementalgorithmcancloselyemulatean ID: 89933

consensus asshownbyExample1below(Exercise3.1 inp.517of[3]).Inparticular convergencetoconsensusfailseveninthespecialcaseoftheequalneighbormodel.Themainideaisthattheagreementalgorithmcancloselyemulatean

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Convergence in multiagent coordination c..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Equalneighbormodel:Here,aij(t)=1=ni(t);ifj2Ni(t),0;ifj=2Ni(t),whereNi(t)=fjj(j;i)2E(t)gisthesetofagentsjwhosevalueistakenintoaccountbyiattimet,andni(t)isitscardinality.ThismodelisalinearversionofamodelconsideredbyVicseketal.[15].Notethatheretheconstant ofAssumption1isequalto1=n.Pairwiseaveragingmodel([5]):Thisisthespecialcaseofboththesymmetricmodelandoftheequalneighbormodelinwhich,ateachtime,thereisasetofdisjointpairsofagentswhocommunicate(bidirectionally)witheachother.Ificommunicateswithj,thenxi(t+1)=xj(t+1)=(xi(t)+xj(t))=2.Notethatthesumx1(t)++xn(t)isconserved;therefore,ifconsensusisreached,ithastobeontheaverageoftheinitialvaluesofthenodes.Theassumptionbelowisreferredtoas“partialasynchro-nism”in[3].Wewillseethatitissometimesnecessaryforconvergence.Assumption3.(Boundedintercommunicationintervals)Ificommunicatestojaninnitenumberoftimes[thatis,if(i;j)2E(t)innitelyoften],thenthereissomeBsuchthat,forallt,(i;j)2E(t)[E(t+1)[[E(t+B�1).III.CONVERGENCERESULTSINTHEABSENCEOFDELAYS.Wesaythattheagreementalgorithmguaranteesasymp-toticconsensusifthefollowingholds:foreveryx(0),andforeverysequencefA(t)gallowedbywhateveras-sumptionshavebeenplaced,thereexistssomecsuchthatlimt!1xi(t)=c,foralli.Theorem1.UnderAssumptions1,2(connectivity),and3(boundedintercommunicationintervals),theagreementalgorithmguaranteesasymptoticconsensus.Theorem1subsumesthespecialcasesofsymmetryoroftheequalneighbormodel,andthereforesubsequentconver-genceresultsandproofsforthosecases.Theorem1ispresentedin[14]andisprovedin[13];asimpliedproof,forthespecialcaseofxedcoefcientscanbefoundin[3].Themainidea,whichappliestomostresultsofthistype,isasfollows.Letm(t)=minixi(t)andM(t)=maxixi(t).SinceeachA(t)isstochastic,itisstraightforwardtoverifythatm(t)andM(t)arenondecreas-ingandnonincreasing,respectively.ItthensufcestoverifythatthedifferenceM(t)�m(t)isreducedbyaconstantfactoroverasufcientlylargetimeinterval;theintervalischosensothateveryagentgetstoinuence(indirectly)everyotheragent;bytracingthechainofsuchinuences,andusingtheassumptionthateachinuencehasanontrivial“strength”(ourassumptionthatwheneveraij(t)isnonzero,itisboundedbelowby �0),theresultfollows.Intheabsenceoftheboundedintercommunicationintervalassumption,thealgorithmdoesnotguaranteeasymptotic consensus,asshownbyExample1below(Exercise3.1,inp.517of[3]).Inparticular,convergencetoconsensusfailseveninthespecialcaseoftheequalneighbormodel.Themainideaisthattheagreementalgorithmcancloselyemulateanonconvergentalgorithmthatkeepsexecutingthethreeinstructionsx1:=x3,x3:=x2,x2:=x1,oneaftertheother.Example1.Letn=3,andsupposethatx(0)=(0;0;1).Let1beasmallpositiveconstant.Considerthefollowingsequenceofevents.Agent3communicatestoagent1;agent1formstheaverageofitsownvalueandthereceivedvalue.Thisisrepeatedt1times,wheret1islargeenoughsothatx1(t1)1�1.Thus,x(t1)(1;0;1).Wenowletagent2communicatestoagent3,t2times,wheret2islargeenoughsothatx3(t1+t2)1.Inparticular,x(t1+t2)(1;0;0).Wenowrepeattheabovetwoprocesses,innitelymanytimes.Duringthekthrepetition,1isreplacedbyk(andt1;t2getadjustedaccordingly).Furthermore,bypermutingtheagentsateachrepetition,wecanensurethatAssumption2issatised.Afterkrepetitions,itcanbecheckedthatx(t)willbewithin1�1��kofaunitvector.thus,ifwechoosetheksothatP1k=1k1=2,asymptoticconsensuswillnotbeobtained.Ontheotherhand,inthepresenceofsymmetry,theboundedintercommunicationintervalassumptionisunnec-essary.Thisresultisprovedin[9]and[4]forthespecialcaseofthesymmetricequalneighbormodelandin[11],[7],forthemoregeneralsymmetricmodel.AmoregeneralresultwillbeestablishedinTheorem4below.Theorem2.UnderAssumptions1and2,andforthesym-metricmodel,theagreementalgorithmguaranteesasymp-toticconsensus.IV.PRODUCTSOFSTOCHASTICMATRICESANDCONVERGENCERATETheorem1and2canbereformulatedasresultsontheconvergenceofproductsofstochasticmatrices.Corollary1.ConsideraninnitesequenceofstochasticmatricesA(0);A(1);A(2);:::,thatsatisesAssumptions1and2.IfeitherAssumption3(boundedintercommunicationintervals)issatised,orifwehaveasymmetricmodel,thenthereexistsanonnegativevectordsuchthatlimt!1A(t)A(t�1)A(1)A(0)=1dT:(Here,1isacolumnvectorwhoseelementsareallequaltoone.)AccordingtoWolfowitz'sTheorem([16])convergenceoccurswheneverthematricesarealltakenfromanitesetofergodicmatrices,andthenitesetissuchthatanyniteproductofmatricesinthatsetisagainergodic.Corollary1extendsWolfowitz'theorembynotrequiringthematricesA(t)tobeergodic,thoughitislimitedtomatriceswithpositivediagonalentries. increasingsequenceoftimes,witht0=0andtk+1�tk!1.Iftkttk+1,theagentsupdateaccordingtox1(t+1)=(x1(t)+x2(tk))=2;x2(t+1)=(x1(tk)+x2(t))=2:Wewillthenhavex1(t1)=1�1andx2(t1)=1,where1&#x-277;0canbemadearbitrarilysmall,bychoosingt1largeenough.Moregenerally,betweentimetkandtk+1,theabsolutedifferencejx1(t)�x2(t)jcontractsbyafactorof1�2k,wherethecorrespondingcontractionfactors1�2kapproach1.IfthekarechosensothatPkk1,thenQ1k=1(1�2k)&#x]TJ/;༔ ; .96; Tf;&#x 11.;ɸ ;� Td;&#x[000;0,andthedisagreementjx1(t)�x2(t)jdoesnotconvergetozero.Accordingtotheprecedingexample,theassumptionofboundeddelayscannotberelaxed.Ontheotherhand,theassumptionofboundedintercommunicationintervalscanberelaxed,inthepresenceofsymmetry,leadingtothefollowinggeneralizationofTheorem2,whichisanewresult.Theorem4.UnderAssumptions1,2(connectivity),and4(boundeddelays),andforthesymmetricmodel,theagreementalgorithmwithdelays[cf.Eq.(1)]guaranteesasymptoticconsensus.Proof.LetMi(t)=maxfxi(t);xi(t�1);:::;xi(t�B+1)g;M(t)=maxiMi(t);mi(t)=minfxi(t);xi(t�1);:::;xi(t�B+1)g;m(t)=minimi(t):Aneasyinductiveargument,asinp.512of[3],showsthatthesequencesm(t)andM(t)arenondecreasingandnonincreasing,respectively.Theconvergenceproofrestsonthefollowinglemma.Lemma1:Ifm(t)=0andM(t)=1,thenthereexistsatimetsuchthatM()�m()1� nB.GivenLemma1,theconvergenceproofiscompletedasfollows.Usingthelinearityofthealgorithm,thereexistsatime1suchthatM(1)�m(1)(1� nB)(M(0)�m(0)).ByapplyingLemma1,withtreplacedbyk�1,andusinginduction,weseethatforeverykthereexistsatimeksuchthatM(k)�m(k)(1� nB)k(M(0)�m(0)),whichconvergestozero.This,togetherwiththemonotonic-itypropertiesofm(t)andM(t),impliesthatm(t)andM(t)convergetoacommonlimit,whichisequivalenttoasymptoticconsensus.q.e.d.ProofofLemma1:Fork=1;:::;n,wesaythat“PropertyPkholdsattimet”ifthereexistatleastkindicesiforwhichmi(t) kB.Weassume,withoutlossofgenerality,thatm(0)=0andM(0)=1.Then,m(t)0forallt,becauseofthemonotonicityofm(t).Furthermore,thereexistssomeiandsome2f�B+1;�B+2;:::;0gsuchthatxi()=1.Usingtheinequalityxi(t+1) xi(t),weobtainmi(+ B) B.ThisshowsthatthereexistsatimeatwhichpropertyP1holds.Wecontinueinductively.SupposethatknandthatPropertyPkholdsatsometimet.LetSbeasetofcardinalitykcontainingindicesiforwhichmi(t) kB,andletScbethecomplementofS.Letbethersttime,greaterthanorequaltot,atwhichaij()6=0,forsomej2Sandi2Sc(i.e.,anagentjinSgetstoinuencethevalueofanagentiinSc).Suchatimeexistsbytheconnectivityassumption(Assumption2).Notethatbetweentimestand,theagents`inthesetSonlyformconvexcombinationsbetweenthevaluesoftheagentsinthesetS(thisisaconsequenceofthesymmetryassumption).Sinceallofthesevaluesareboundedbelowby kB,itfollowsthatthislowerboundremainsineffect,andthatm`() kB,forall`2S.Fortimess,andforevery`2S,wehavex`(s+1) x`(s),whichimpliesthatx`(s) kB B,fors2f+1;:::;+Bg.Therefore,m`(+B) (k+1)B,forall`2S.Considernowanagenti2Scforwhichaij()6=0.Wehavexi(+1)aij()xj(ij()) mi() kB+1:Usingalsothefactxi(s+1) xi(s),weobtainthatmi(+B) (k+1)B.Therefore,attime+B,wehavek+1agentswithm`(+B) (k+1)B(namely,theagentsinS,togetherwithagenti).ItfollowsthatPropertyPk+1issatisedattime+B.ThisinductiveargumentshowsthatthereisatimeatwhichPropertyPnissatised.Atthattimemi() nBforalli,whichimpliesthatm() nB.Ontheotherhand,M()M(0)=1,whichprovesthatM()�m()1� nB.q.e.d.Thesymmetrycondition[(i;j)2E(t)iff(j;i)2E(t)]usedinTheorem4issomewhatunnaturalinthepresenceofcommunicationdelays,asitrequiresperfectsynchronizationoftheupdatetimes.Alooserandmorenaturalassumptionisthefollowing.Assumption5.ThereexistssomeB&#x-521;0suchthatwhenever(i;j)2E(t),thenthereexistssomethatsatisesjt�jBand(j;i)2E().Assumption5allowsforprotocolssuchasthefollowing.Agentisendsitsvaluetoagentj.Agentjrespondsbysendingitsownvaluetoagenti.Bothagentsupdatetheirvalues(takingintoaccountthereceivedmessages),withinaboundedtimefromreceivingotheragent'svalue.Inarealisticsetting,withunreliablecommunications,eventhisloosesymmetryconditionmaybeimpossibletoenforcewithabsolutecertainty.Onecanimaginemorecomplicatedprotocolsbasedonanexchangeofacknowledgments,butfundamentalobstaclesremain(seethediscussionofthe“two-armyproblem”inpp.32-34of[2]).Amorerealisticmodelwouldintroduceapositiveprobabilitythatsomeoftheupdatesarenevercarriedout.(Asimplepossibilityisto