PPT-Data Mining Anomaly/Outlier Detection
Author : cheryl-pisano | Published Date : 2018-12-06
Lecture Notes for Chapter 10 Introduction to Data Mining by Tan Steinbach Kumar New slides have been added and the original slides have been significantly modified
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Data Mining Anomaly/Outlier Detection" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Data Mining Anomaly/Outlier Detection: Transcript
Lecture Notes for Chapter 10 Introduction to Data Mining by Tan Steinbach Kumar New slides have been added and the original slides have been significantly modified by Christoph F Eick Lecture Organization . Introduction and Use Cases. Derick . Winkworth. , Ed Henry and David Meyer. Agenda. Introduction and a Bit of History. So What Are Anomalies?. Anomaly Detection Schemes. Use Cases. Current Events. Q&A. Anomaly Detection for. Cyber Security. Presentation by Mike Calder . Anomaly Detection. Used for cyber security. Detecting threats using network data. Detecting threats using host-based data. In some domains, anomalies are detected so that they can be removed/corrected. Subgraphs from . Network Datasets. Manish . Gupta. UIUC. Microsoft. , India. Arun. . Mallya. , . Subhro. Roy. Jason Cho, Jiawei . Han. Motivation (1). Query based subgraph outlier detection. A security officer may like to find some tiny but . Gustavo Henrique Orair. Federal University of . Minas Gerais. Wagner Meira Jr.. Federal University of Minas Gerais. Presented by . Kajol. UH ID : 1358284. PURPOSE OF THE PAPER. Distance-Based . DASFAA 2011. By. Hoang Vu Nguyen, . Vivekanand. . Gopalkrishnan. and Ira . Assent. Presented By. Salman. Ahmed . Shaikh. (D1). Contents. Introduction. Subspace Outlier Detection Challenges. Objectives of Research. Craig Buchanan. University of Illinois at Urbana-Champaign. CS 598 MCC. 4/30/13. Outline. K-Nearest Neighbor. Neural Networks. Support Vector Machines. Lightweight Network Intrusion Detection (LNID). Anomaly-based . Network Intrusion . Detection (A-NIDS). by Nitish Bahadur, Gulsher Kooner, . Caitlin Kuhlman. 1. PALANTIR CYBER An End-to-End Cyber Intelligence Platform for Analysis & Knowledge Management [Online]. Available: . Detection. Carolina . Ruiz. Department of Computer Science. WPI. Slides based on . Chapter 10 of. “Introduction to Data Mining”. textbook . by Tan, Steinbach, Kumar. (all figures and some slides taken from this chapter. DETECTION. Scholar: . Andrew . Emmott. Focus: . Machine Learning. Advisors: . Tom . Dietterich. , Prasad . Tadepalli. Donors: . Leslie and Mark Workman. Acknowledgements:. Funding for my research is . Gustavo Henrique Orair. Federal University of . Minas Gerais. Wagner Meira Jr.. Federal University of Minas Gerais. Presented by . Kajol. UH ID : 1358284. PURPOSE OF THE PAPER. Distance-Based . 9. Introduction to Data Mining, . 2. nd. Edition. by. Tan. , Steinbach, Karpatne, . Kumar. With additional slides and modifications by Carolina Ruiz, WPI. 11/20/2018. Introduction to Data Mining, 2nd Edition. Introduction to Data Mining, 2. nd. Edition. by. Tan, Steinbach, Karpatne, Kumar. 4/12/2021. Introduction to Data Mining, 2nd Edition Tan, Steinbach, . Karpatne. , Kumar. 1. Anomaly/Outlier Detection. “Anomaly Detection: A Tutorial”. Arindam. . Banerjee. , . Varun. . Chandola. , . Vipin. Kumar, Jaideep . Srivastava. , . University of Minnesota. Aleksandar. . Lazarevic. , . United Technology Research Center. 14. . World-Leading Research with Real-World Impact!. CS 5323. Outline. Anomaly detection. Facts and figures. Application. Challenges. Classification. Anomaly in Wireless. . 2. Recent News. Hacking of Government Computers Exposed 21.5 Million People.
Download Document
Here is the link to download the presentation.
"Data Mining Anomaly/Outlier Detection"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents