PDF-ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi fkkeldiXkfi XeefdeXkfipk NXk VV e dgck

Author : cheryl-pisano | Published Date : 2014-10-19

ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi fkkeldiXkfi XeefdeXkfipk NXk VV e dgckfid Xkfif1 Xkfif1 fXe 1 INIATHESSON filnkkilXip

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document " ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi ..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi fkkeldiXkfi XeefdeXkfipk NXk VV e dgck: Transcript


ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi fkkeldiXkfi XeefdeXkfipk NXk VV e dgckfid Xkfif1 Xkfif1 fXe 1 INIATHESSON filnkkilXip. \Z`[`e^n_\k_\ikfi\Yl`c[fii\jli]XZ\X^i\\ej_flc[Y\YXj\[fej\m\iXcjk\gj+Ie\`jkf\mXclXk\k_\`ek\^i`kpf]k_\[iX`eX^\jpjk\d+B\i\(Xk\jk_fc\nXj[l^fek_\_`^_j`[\f]k_\glkk`e^^i\\eXe[nXk\inXjX[[\[[`i\Zkcpkf `ekXZk( 2ntana 2nwhereaisnotanintegermultipleof.7.Prove:1Xn=13n1sin3a 3n=1 4(asina):2NoTrig(notentirelystolenfromTitu97)1.GetaniceformulaforPnk=1k!(k2+k+1).Solution:Summandis(k+1)(k+1)!(k)(k)!.Soweget(n+1 ('( Mfij\ Ski\\k# NXk\ikfne MA ')+.) nnn%[\ fi -(. 0)-$'+0( for YOYO Man Nemo Concepcion e YoYo Man I fell under the yoyo’s spell on the rst really hot day of Spring in BinomialFormulas nXk=0nkxkynk=(x+y)n (BinomialTheorem)nXk=0nk=2n(Lowersummation)nXm=kmk=n+1k+1(Uppersummation)nXk=0m+kk=n+m+1n(Parallelsummation)nXk=0nk2=2nn(Squaresummation)rXk=0mk k(k1)=1+nXk=21 k11 k=1+11 n2:So,thesequence(sn)ofpartialsumsisboundedinRandsinceitisalsoincreasing,itconverges.Example6.5.TheharmonicseriesP1=kdiverges.Indeed,ifsn=Pnk=11=k,thenjs2nsnj=1 n+1+:: 2FXf=1NXk=1Pfkhck(DXi=1Cifvi)2NXk=1bckhck(1)whereP2RFNisamatrixwithnon-positiveentries,Nisthenumberofhiddenunitsandbcisavectorofbi-ases.Eachtermintherstsumconsistsofatripletofvari- Figure2.Toyillus n=11 2+1 3iseasilyseentobetheTaylorseriesexpansionoflog(1+x)evaluatedatx=1.Thatis,itssumislog2.Asweknow,thisseriesisconditionallyconvergent.Ifwetrytherearrangementabove(twooddtermsfollowedbyaneve 2FXf=1NXk=1Pfkhck(DXi=1Cifvi)2NXk=1bckhck(1)whereP2RFNisamatrixwithnon-positiveentries,Nisthenumberofhiddenunitsandbcisavectorofbi-ases.Eachtermintherstsumconsistsofatripletofvari- Figure2.Toyillus 1�pforjpj1;wewouldget1Xk=0kpk�1=1 (1�p)2;1 and1Xk=0k2pk�1=p (1�p)20=1+p (1�p)3forjpj1.Finally,wehave1Xk=0k2pk=p(1+p) q3:Plugginginthisexpression,itfollowsthata0=�1&# (4)Problem14onpage60ofAxler.(Hint:youmightneedproblem3onpage59ofAxler.)Solution.FirstsupposethatTisinjective.De neS0:rangeT VbyS0(Tv)=v.BecauseTisinjective,eachelementofrangeTcanberepre-sentedinth 1IntroductionWeightedessentiallynon-oscillatory(WENO)schemeshavebeenusedextensivelyinnu-mericalsolutionsofhyperbolicpartialdi erentialequations(PDEs)andotherconvectiondominatedproblems.The rstWENOsche Thm.[B] LetX1;X2;;Xkbeeigenvectorscorrespondingto distinct eigenvalues1;2;;kofA.ThenfX1;X2;;Xkgis linearlyindependent . Proof.AssumethatfX1;X2;&#

Download Document

Here is the link to download the presentation.
" ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi fkkeldiXkfi XeefdeXkfipk NXk VV e dgck"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents