PDF-ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi fkkeldiXkfi XeefdeXkfipk NXk VV e dgck
Author : cheryl-pisano | Published Date : 2014-10-19
ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi fkkeldiXkfi XeefdeXkfipk NXk VV e dgckfid Xkfif1 Xkfif1 fXe 1 INIATHESSON filnkkilXip
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document " ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi ..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi fkkeldiXkfi XeefdeXkfipk NXk VV e dgck: Transcript
ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi fkkeldiXkfi XeefdeXkfipk NXk VV e dgckfid Xkfif1 Xkfif1 fXe 1 INIATHESSON filnkkilXip. \Z`[`e^n_\k_\ikfi\Yl`c[fii\jli]XZ\X^i\\ej_flc[Y\YXj\[fej\m\iXcjk\gj+Ie\`jkf\mXclXk\k_\`ek\^i`kpf]k_\[iX`eX^\jpjk\d+B\i\(Xk\jk_fc\nXj[l^fek_\_`^_j`[\f]k_\glkk`e^^i\\eXe[nXk\inXjX[[\[[`i\Zkcpkf `ekXZk( 2ntana 2nwhereaisnotanintegermultipleof.7.Prove:1Xn=13n 1sin3a 3n=1 4(a sina):2NoTrig(notentirelystolenfromTitu97)1.GetaniceformulaforPnk=1k!(k2+k+1).Solution:Summandis(k+1)(k+1)! (k)(k)!.Soweget(n+1 ('( Mfij\ Ski\\k# NXk\ikfne MA ')+.) nnn%[\ fi -(. 0)-$'+0( for YOYO Man Nemo Concepcion e YoYo Man I fell under the yoyos spell on the rst really hot day of Spring in BinomialFormulas nXk=0nkxkyn k=(x+y)n (BinomialTheorem)nXk=0nk=2n(Lowersummation)nXm=kmk=n+1k+1(Uppersummation)nXk=0m+kk=n+m+1n(Parallelsummation)nXk=0nk2=2nn(Squaresummation)rXk=0mk k(k 1)=1+nXk=21 k 1 1 k=1+1 1 n2:So,thesequence(sn)ofpartialsumsisboundedinRandsinceitisalsoincreasing,itconverges.Example6.5.TheharmonicseriesP1=kdiverges.Indeed,ifsn=Pnk=11=k,thenjs2n snj=1 n+1+:: 2FXf=1NXk=1Pfkhck(DXi=1Cifvi)2 NXk=1bckhck(1)whereP2RFNisamatrixwithnon-positiveentries,Nisthenumberofhiddenunitsandbcisavectorofbi-ases.Eachtermintherstsumconsistsofatripletofvari- Figure2.Toyillus n=1 1 2+1 3 iseasilyseentobetheTaylorseriesexpansionoflog(1+x)evaluatedatx=1.Thatis,itssumislog2.Asweknow,thisseriesisconditionallyconvergent.Ifwetrytherearrangementabove(twooddtermsfollowedbyaneve 2FXf=1NXk=1Pfkhck(DXi=1Cifvi)2 NXk=1bckhck(1)whereP2RFNisamatrixwithnon-positiveentries,Nisthenumberofhiddenunitsandbcisavectorofbi-ases.Eachtermintherstsumconsistsofatripletofvari- Figure2.Toyillus 1pforjpj1;wewouldget1Xk=0kpk1=1 (1p)2;1 and1Xk=0k2pk1=p (1p)20=1+p (1p)3forjpj1.Finally,wehave1Xk=0k2pk=p(1+p) q3:Plugginginthisexpression,itfollowsthata0=1 (4)Problem14onpage60ofAxler.(Hint:youmightneedproblem3onpage59ofAxler.)Solution.FirstsupposethatTisinjective.DeneS0:rangeT VbyS0(Tv)=v.BecauseTisinjective,eachelementofrangeTcanberepre-sentedinth 1IntroductionWeightedessentiallynon-oscillatory(WENO)schemeshavebeenusedextensivelyinnu-mericalsolutionsofhyperbolicpartialdierentialequations(PDEs)andotherconvectiondominatedproblems.TherstWENOsche Thm.[B] LetX1;X2;;Xkbeeigenvectorscorrespondingto distinct eigenvalues1;2;;kofA.ThenfX1;X2;;Xkgis linearlyindependent . Proof.AssumethatfX1;X2;
Download Document
Here is the link to download the presentation.
" ekiXkkfddfe Xkfi fkeldiXkfi XeefdeXkfi fkkeldiXkfi XeefdeXkfipk NXk VV e dgck"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents