/
EUROGRAPHICS2002STAR EUROGRAPHICS2002STAR

EUROGRAPHICS2002STAR - PDF document

cheryl-pisano
cheryl-pisano . @cheryl-pisano
Follow
365 views
Uploaded On 2015-12-03

EUROGRAPHICS2002STAR - PPT Presentation

PostVrolijkHauserLarameeDoleischFeatureExtractionandVisualisationofFlowFieldsintdata acquuser percdatacompabcvisualizationdata acquuser percdata acquuser percflow intdirect visvis ID: 213432

Post Vrolijk Hauser Laramee Doleisch/FeatureExtractionandVisualisationofFlowFieldsint.data acqu.user perc.datacomp.(a)(b)(c)visualizationdata acqu.user perc.data

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "EUROGRAPHICS2002STAR" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

EUROGRAPHICS2002STAR–StateofTheArtReportFeatureExtractionandVisualisationofFlowFieldsFritsH.Post,BenjaminVrolijkandHelwigHauser,RobertS.Laramee,HelmutDoleisch{F.H.Post,B.Vrolijk}@its.tudelft.nl{Hauser,Laramee,Doleisch}@vrvis.atDelftUniversityofTechnology,TheNetherlandsVRVisResearchCenter,Austriahttp://visualisation.tudelft.nl/http://www.vrvis.at/Abstractvisualisationhasalreadybeenaveryattractivepartofvisualisationresearchforalongtime.Usuallyverylargedatasetsneedtobeprocessed,whichoftenconsistofmultivariatedatawithalargenumberofsamplelocations,oftenarrangedinmultipletimesteps.Recently,thesteadilyincreasingperformanceofcomputersagainhasbecomeadrivingfactorforanewboominowvisualisation,especiallyintechniquesbasedonfeatureextraction,vectoreldclustering,andtopologyextraction.Inthisstate-of-the-artreport,anattemptwasmadeto(1)provideausefulcategorisationofFlowVissolutions,(2)giveanoverviewofexistingsolutions,and(3)focusonrecentwork,especiallyintheeldoffeatureextraction.Inseparatesectionswedescribe(a)directvisualisationtechniquessuchashedgehogplots,(b)visualisationusingintegralobjects,suchasstreamlines,(c)texture-basedtechniques,includingspotnoiseandlineintegralconvolution,and(d)techniquesbasedonextractionoffeaturesorowtopology.CategoriesandSubjectDescriptors(accordingtoACMCCS):I.3[ComputerGraphics]:visualisation,owvisuali-sation,computationalowvisualisation1.IntroductionComputershavebecomeincreasinglyimportantinmanyas-pectsofsociety—inscience,businessandeconomics,ed-ucationandpolitics,aswellasinmanyotherelds,com-putersareusedtoacquire,store,process,andcommunicatedata,notintheleasttousers.Visualisation,asaseparateeldofresearchanddevelopmentincomputerscience,addressesexactlythisbridgebetweendataanduser:visualisationso-lutionshelpuserstoexplore,analyse,andpresenttheirdata.Inowvisualisation(FlowVis)—oneofthetraditionalsubeldsofvisualisation—arichvarietyofapplicationeldsisgiven,formtheautomotiveindustry,aerodynam-ics,turbomachinerydesign,weathersimulationandmete-orology,climatemodelling,groundwaterow,medicalap-plications,etc.,withsignicantlydifferentcharacteristicsre-latingtothedataandusergoals.Consequently,thespectrumofFlowVissolutionsisveryrich,spanningmultipledimen-sionsoftechnicalaspects,e.g.,2Dvs.3Dsolutions,tech-niquesforsteadyandtime-dependentdata,etcetera.1.1.AspectsofFlowVisualisationBringingmanyofthosesolutionsinalinearorder(asneces-saryforatextlikethis),isnotatalleasyorintuitive.Severaloptionsofsubdividingthisbroadeldofliteraturearepos-sible.Hesselinketal.,forexample,addressedthedifcultproblemofhowtocategoriseFlowVistechniquesintheir1994overviewof(atthattime)recentresearchissues33.Inthefollowingsubsectionsseveralofthoseaspectsaredis-cussedonahigherlevel,beforeliteratureisaddresseddi-rectlylater.Directvs.integration-basedvs.feature-basedowvisualisationtothedifferentneedsoftheuserstherearediffer-entapproachestoowvisualisation(cf.Figure1c).Oneistododirectowvisualisationbyusinganasdirectaspossibletranslationoftheowdataintovisualisationcues,suchasbydrawingarrows.FlowVissolutionsofthiskindallowimme-diateinvestigationoftheowdata,withoutalotofmentaltranslationeffort.Forabettercommunicationofthelong-termbehaviourin-ducedbyowdynamics,integration-basedapproachesrstc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsint.data acqu.user perc.datacomp.(a)(b)(c)visualizationdata acqu.user perc.data acqu.user perc.flow int.direct vis.vis.Figure1:Directowvisualisation(a)vs.FlowVisbasedonowintegration(b)vs.FlowVisbasedonderiveddatasuchasowfeaturesorowtopology(c).Thisclassicationre-latestotherst-levelstructureofthisreport.integratetheowdataanduseresultingintegralobjectsasbasisforvisualisation,e.g.,usingstreamlinesforvisualisa-tion.Anotherapproachforvisualisingowdataisthefeature-basedapproach,inwhichanabstractionstepisperformedrst.Fromtheoriginaldataset,interestingobjectsareex-tracted,suchasimportantphenomenaortopologicalinfor-mationoftheow.Theseowfeaturesareanabstractionofthedata,andcanbevisualisedefcientlyandwithouttheoriginaldata.Becausetheoriginaldataisnotneededany-more,ahugedatareductionisachieved,ofafactor1000ormore.Thismakesthisapproachverysuitableforlarge(time-dependent)datasets,originatingfromcomputationaluiddynamicssimulations.Thesedatasetsaresimplytoolargetovisualisedirectly,andtherefore,alotoftimeisre-quiredinpreprocessing,forcomputingthefeatures(featureextraction).Butoncethispreprocessinghasbeenperformed,visualisationcanbedoneveryquickly.Inthisoverviewweuseseparatechaptersfortheafore-mentionedclassesofapproaches:directowvisualisationisdiscussedinSection2,integration-basedFlowVisinSec-tions3and4,andfeature-basedFlowVisisdescribedinSec-tions5through8.Figure1illustratesthedifferencebetweentheaforementionedclasses—notetheincreasingamountofcomputationspentwithinthevisualisationstepwhenchang-ingfromdirectFlowVis(a)tofeature-basedFlowVis(c).Spatialdimensionsvs.timeInowvisualisation,availablesolutionssignicantlydifferwithrespecttothegivendimensionalityoftheowdata.Techniqueswhichareusefulfor2Ddata,likecolourcod-ingorarrowplots,sometimeslacksimilaradvantagesin3D.Also,thequestion,whethertheowdataissteadyortime-dependent,usuallymakesabigdifferencewithrespecttotheFlowVissolutionofchoice.Inthisstate-of-the-artreport,we(atleastpartially)sub-structurethesectionsaboutdifferentclassesofFlowVisso-lutionsintosubsectionswithrespecttodifferentspatialdi-mensionsinvolved.Althoughtherearelotsofinterestingworksabout1DFlowVisaswellasnDFlowVis(withn�3),thisreportclearlyfocusesontwoandthreespatialdimen-sions.Below,thetop-levelsectionsstartwithasubsectionon2DFlowVistechniques(Sectionsn.1),i.e.,coveringsolutionswhichfocuson2Dowdata(in2Ddomains).Sincethe2Ddomaininherentlycorrespondstothe2Dscreen,goodoverviewsarepossibleforthesekindsoftechniqueslikewiththeuseof2DLIC(seebelowfordetails).However,thereadershouldbeaware,thatreal-worldows(atleastwhentalkingaboutuidsorgases)arerarelytwo-dimensional—datasetsthereforeareoftenslicesoutofastackofthose,orstemfromsimplicationsoftheunderlyingmodel.Asecondsubsection(Sectionsn.2)discussesFlowVisso-lutionsforboundaryowsorsectionalsubsetsof3Dows,forexample,owdataonplanarcrosssections.Thissubsec-tionthereforedealswith2Dowdata,atleastwithrespecttothelocaldimensionalityofthedata,butwhichisembeddedwithin3Dspace.Whereasboundaryowsoftenareprimar-ilyinterestingtotheuseranyway(forexampleinaerospacedesign),thevisualisationofsectionalsubsetsof3Dowusu-allyneedsspecialcare(notattheleastbecauseoftheusuallymissingthirdowcomponent).Especiallytheuseofintegralcurvesacrossowcrosssectionsisquestionableasthesug-gestedparticlepaths(ingeneral)donotcorrespondtoactualowtrajectorieswhichnaturallyextendto3Dinthiscase.Finally,athirdsubsection(Sectionsn.3)discussestruly3DFlowVissolutions,i.e.,visualisationtechniques,whichapplytotrue3Dowdata.Withtrue3DFlowVis,renderingbecomesacentralissue—inmanycasescompromisesareneeded,tradingvisibilityforcompleteness.Solutionsrangefromclippingandopacitymodulationstofeature-basedse-lections.Inadditiontothespatialdimensionsasaddressedabove,alsodimensionalitywithrespecttotimeisofgreatimpor-tanceinowvisualisation.Firstofall,owdataitselfin-corporatesanotionoftime—owsoftenareinterpretedasdifferentialdatawithrespecttotime,i.e.,whenintegratingthedata,pathsofmovingentitiesareobtained.Additionally,theowitselfcanchangeovertime(likeinturbulentows,forexample),resultingintime-dependentorunsteadydata.Inthiscase,twodimensionsoftimearepresentandthevi-sualisationmustcarefullydistinguishbetweenbothinordertopreventtheuserfrombeingconfused.Thisisespeciallytrue,whenanimationshouldbeusedforowvisualisation.Then,evenathirdtemporaldimensioncanshowupinavi-sualisation,requiringspecialcaretoavoidconfusionalongwithinterpretationoftheanimations.AlthoughthedistinctionbetweensteadyandunsteadyowscouldopenanotherdimensionwhensortingFlowVisliterature,inthisreportsolutionsfortime-dependentdataareputbesiderelatedtechniquesforsteadydata.c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsComputationalvs.experimentalandempiricalFlowVisFlowvisualisation,asdiscussedinthisliteratureoverview,isconsideredtobeequivalenttowhatotherscallcompu-tationalowvisualisation—justtodistinguishitfromthelargeandoldeldsofexperimentalandempiricalowvisu-alisation.AlthoughwedonothavespacetoalsofocusonthoseothervariantsofFlowVis,itisinterestingtorecognisethatmanycomputationalFlowVissolutionsmoreorlessmimicthevisualappearanceofwell-acceptedtechniquesinexper-imentalvisualisation(cf.particletraces,dyeinjection,etcetera).fromsimulationvs.measurementsormodelsComputationalFlowVis,ingeneral,dealswithdatathatex-hibittemporaldynamicssuchasresultsfromowsimulation(e.g.,thesimulationofuidowthroughaturbine),owmeasurements(possiblyacquiredthroughlaser-basedtech-nology),oranalyticmodelsofows(e.g.,dynamicalsys-tems,givenassetofdifferentialequations).Inthisreportwemainlyfocusonowvisualisationdeal-ingwithdatafromowsimulation,i.e.,owdatagivenasasetofsamplesonsomekindofgrid,whereassolutionsfordatafromowmeasurementsorowmodellingareonlyad-dressedinlessdetail.Technicalissuesfrequentlyariseduetothecombinationofextremelylargedatasetsanddemandinguserrequirementssuchasinteractivevisualisationoftime-dependentdata.Therefore,solutionsintheeldofparallelcomputing11;60;138;170,out-of-corerendering147,andrender-ingofcompresseddata166areoftendiscussedintheFlowVisliterature.andinteractionManyFlowVissolutionsbuildontheuseofindividualvisu-alisationobjects,forexample,streamlines.Foratleastthreereasons,theplacementofthosevisualisationcuesisanis-suewithinFlowVisliterature:(1)whenusingintegralob-jectssuchasstreamlines,anevendistributionofseedloca-tionsusuallydoesnotresultinanevendistributionofin-tegralobjects—separatealgorithmsneedtobeemployed;(2)whendealingwith3Dowdata,occlusionand/orvi-sualisationcomplexityraisesspecialchallenges—denseplacementoftenresultsinsevereclutteringwithinrenderedimages;(3)whenusingfeature-basedstrategies,placementneedstobecoupled(andaligned)withthefeatureextractionpartsofthevisualisation.Inadditiontoplacement,userinteractionplaysanim-portantrole,especiallyincaseofowanalysis.Usersre-quiresystemswhichallow(1)navigation,includingzoom-ing,panning,etc.,(2)interactiveplacementofvisualisationcues,forexample,usinganinteractiverakeforstreamlineseeding,aswellasothermeanstoinuencethevisualisa-tion,oreven(3)optionsofinteractingwiththeowdata,forexample,throughsteering.Lastbutnotleasthuman-computerinteractionchallengespresentthemselvesthroughoutowvisualisationresearch,especiallyinthecategoriesofperceptionin3D,andinter-action.Forthereisstrongevidencethatboth3Dvisualisa-tion154andinteraction34areveryimportantcomponentsfortheuserinunderstandingthedata.1.2.FlowVisFundamentalsBeforeoutliningsomeofthemostimportantFlowVistech-niquesinthemainpartofthispaper,ashortoverviewaboutthecommonmathematicalbackgroundaswellassomegen-eralconceptswithregardtothecomputationofFlowVisre-sultsarediscussed.FlowdataAninherentcharacteristicofowdataisthatderivativein-formationisgivenwithrespecttotime,whichislaidoutacrossann-dimensionaldomainWRn,forexample,forrepresenting3Duidow(n=3).Inthecaseofmultidi-mensionalowdata(n�1),temporalderivativesvofnDlo-cationspwithintheowdomainWaren-dimensionalvec-tors:v=dp=dt;p2WRn;v2Rn;t2R(1)Inanalyticmodels(likedynamicalsystems),vectorsvof-tenaredescribedasfunctionsoftherespectivespatialloca-tionsp,saylikev=ApforsteadylinearowdataifAisaconstantnn-matrix.Ageneralformulationof(possiblyunsteady,i.e.,time-dependent)owdatavwouldbev(p;t):WP!Rn(2)wherep2WRnrepresentsthespatialreferenceoftheowandt2PRrepresentsthesystemtime.Iftisconsideredtobeconstant,i.e.,forsteadyowdata,themoresimplecaseofv(p):W!Rnisgiven.IncasesofresultsfromnDowsimulation,likeinauto-motiveapplicationsorairplanedesign,vectordatavusuallyisnotgiveninanalyticform,butneedstobereconstructedfromthe(discrete)simulationoutput.Asusuallynumericalmethodsareusedtoactuallydotheowsimulationsuchasniteelementmethods.Theoutputofowsimulationusu-allyisalarge-sizedgridofmanysamplevectorsvi;t,whichdiscretelyrepresentthesolutionofthesimulationprocess(attimestepst).Forfurtherprocedure,itisassumedthattheowsimulationwasbasedonan(atleastlocally)continuousmodeloftheow,thusallowingforcontinuousreconstruc-tionoftheowdatavduringvisualisation.Oneoptionfordoingsowouldbetoapplyareconstructionlterh:Rn!Rtocomputev(p;t)=åih(ppi)vi;t.As—forpracticalreasons—lterhusuallyhasonlylocalextent(aroundtheorigin),efcientproceduresforndingthoseowsam-plesvi;t,whicharenearesttothequerypointp,areneededtodoproperreconstruction.c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsGridsowsimulation,thevectorsamplesvi;tusuallyarelaidoutacrosstheowdomainaccordingtoacertaintypeofgrid.GridtypesrangefromsimpleCartesiangridsovercurvilineargridstocomplexunstructuredgrids.Typically,simulationgridsalsoexhibitlargevariationsincellsizes.Thisvarietyofgridsstemsfromthehighinuenceofgriddesignontotheowsimulationprocessandthetherebyde-rivedneedtomodeltheowgridasoptimalaspossiblewithrespecttothesimulationinmind.Althoughtheprincipaltheoryoffunctionreconstructionfromdiscretesamplesdoesnotexhibittoomanydifferenceswithrespecttogridtypesinvolved,thepracticalhandlingdoes.WhileneighboursearchingmightbetrivialinaCarte-siangrid,itusuallyisnotinatetrahedralgrid.Similardiffer-encesaregivenfortheproblemsofpointlocationandvectorreconstruction.InthefollowingweshortlydescribeseveralfundamentaloperationswhichformthebasisforFlowViscomputationsonsimulationgrids.Startingwithpointlocation,i.e.,theproblemofndingthegridcellwhichagivennD-pointliesin,usuallytwocasesaredistinguished.Forthegeneralpointlocationprob-lemspecialdatastructurescanbeusedwhichsubdividethespatialdomaintospeedupthesearch.Thesecondcaseofiterativepointlocation,whichoftenisneededduringinte-gralcurvecomputation,usuallyallowsforquiteefciental-gorithmsduetoexploitationofspatialcoherence.Onekindofalgorithmstartswithaninitialguessforthetargetcell,checksforcontainmentthenandreningaccordinglyafter-wards.Thisprocessisiterateduntilthetargetcellisfound.Moredetailscanbefoundinoldertextsaboutowvisuali-sationfundamentals129;95.Besidepointlocation,owreconstructionwithinacelloftheowdatasetisacrucialissueinowvisualisation.Of-ten,oncethecellwhichcontainsthequerylocationisfound,onlythesamplevectorsatthecell'sverticesareconsideredforowreconstruction.Themostoftenusedapproachisrst-orderreconstructionbyperforminglinearinterpolationswithinthecell.Withinahexahedralcellin3D,forexample,trilinearowreconstructioncanbeused.Usingpointlocationandowreconstruction,owvisu-alisationcanalreadystart:vectorscanberepresented(forexample,byarrows),virtualparticlescanbeinjectedandtracedacrosstheowdomain.Nevertheless,thecomputa-tionofderiveddatamightbenecessarytodomoresophis-ticatedFlowVis.Usually,therststepistorequest(second-order)gradientinformationforarbitrarypointsintheowdomain,i.e.,rvjp,whichgivesinformationaboutlocalpropertiesoftheow(atpointp)suchasowconvergenceanddivergence,owrotationandshear,etcetera.Forfea-tureextraction,alsoowvorticityw=rvcanbeofhighinterest.Furtherdetailsaboutlocalowpropertiescanbefoundinpreviouswork96;77.FlowintegrationRecallingthatowdatainmostcasesisderivativeinforma-tionwithrespecttotimetheideaofintegratingowdataovertimeisnaturaltoprovideanintuitivenotionof(long-term)evolutioninducedbytheowdata.Anexamplewouldbeowvisualisationbytheuseofparticleadvection.Are-spectiveparticlepathp(s)—herethroughunsteadyow—wouldbedenedbyp(s)=p0+st=0v(p(t);t+t0)dt(3)wherep0representstheseedlocationoftheparticlepathandt0equalsthetimewhentheparticlewasseeded.Note,thatEquations2and3aremoreorlesscomplimentarytoeachother.Forothertypesofintegralcurvessuchasstreamlines,streaklines,etc.,refertolaterpartsofthistextorpreviousworks129;61.Inadditiontothetheoreticalspecicationofintegralcurves,itisimportanttonote,thatrespectiveintegralequa-tionslikeEquation3usuallycannotberesolvedforthecurvefunctionanalytically,andtherebynumericalintegra-tionmethodsneedtobeemployed.Themostsimpleap-proachistousearst-orderEulermethodtocomputeanapproximationpE—oneiterationofthecurveintegrationisspeciedasbypE(t+Dt)=p(t)+Dtv(p(t);t)(4)whereDtusuallyisaverysmallstepintimeandp(t)de-notesthelocationtostartthisEulerstepfrom.Amoreaccuratebutalsomorecostlytechniqueisthesecond-orderRunge-Kuttamethod,whichusestheEulerapproxi-mationpEasalook-aheadtocomputeabetterapproxima-tionpRK2oftheintegralcurve:pRK2(t+Dt)=p(t)+Dt(v(p(t);t)+v(pE(t+Dt);t))=2(5)Higher-ordermethodsliketheoftenusedfourth-orderRunge-Kuttaintegratorutilisemoresuchstepstobetterap-proximatethelocalbehaviouroftheintegralcurve.Also,adaptivestepsizesareusedtomakesmallerstepsinregionswherelotsofchangestakeplaceintheow.Inthefollowing,fourclassesofapproachesintheeldofowvisualisationarediscussed—directowvisuali-sationisdescribedinSection2,texture-basedFlowVisinSection3,geometricFlowVisisdiscussedinSection4andnally,feature-basedowvisualisationisdescribedinSec-tions5through8.2.DirectowvisualisationDirect,orglobal,owvisualisationtechniquesattempttopresentthecompletedataset,oralargesubsetofit,atalowlevelofabstraction.Themappingofthedatatoavi-sualrepresentationisdirect,withoutcomplexconversionorc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsFigure2:Examplesofdirectowvisualisation—aninteractiveslicingprobewithcolouredslicesandscalarclipping(left)122;directvolumerenderingbasedonresampling(middle)160;texture-based,colouredspotnoise(right)65.extractionsteps.Thesetechniquesareperhapsthemostin-tuitivevisualisationstrategiesastheypresentthedataasis.Difcultiesarise,whenthelong-termbehaviourinducedbyowdataisinvestigated,ifdirectFlowVisisused—thismayrequirecognitiveintegrationofvisualisationresults.2.1.DirectFlowVisin2DInthissubsectionweshortlyaddresswidelydistributed,standardtechniquesfor2DFlowVis,i.e.,colouringandar-rowplots.Colourcodingin2DAcommondirectowvisualisationtechniqueistomapowattributessuchasvelocity,pressure,ortemperaturetocolour.Sincecolourplotsarewidelydistributed,thisapproachre-sultsinveryintuitivedepictions.Ofcourse,thecolourscalewhichisusedformappingmustbechosencarefullywithrespecttoperceptualdifferentiation.Colourcodingfor2DFlowVisextendstotime-dependentdataverywell,resultinginmovingcolourplotsaccordingtochangesoftheowpropertiesovertime.Arrowplotsin2DAnaturalvectorvisualisationtechniqueistomapaline,arrow,orglyphtoeachsamplepointintheeld,orientedaccordingtotheoweld,asinFigure6(left).Usuallyaregularplacementofarrowsisusedin2D,forexample,onanevenly-spacedCartesiangrid.Twovariantsofarrowplotsareoftenused:(1)normalisedarrowsofunitlengthwhichvisualisethedirectionoftheowonlyand(2)arrowsofvaryinglengththatisproportionaltotheowvelocity.KlassenandHarrington59andSchroederetal.121callthistechniqueahedgehogvisualisation(becauseofthebristlyresult).2Dhedgehogplotscanbeextendedtotime-dependentdata,althoughbiggertimestepsmightresultinjumpingar-rows,diminishingthequalityofsuchavisualisation.HybriddirectFlowVisin2DKirbyetal.proposesimultaneousvisualisationofmultiplevalues(of2Dowdata)byusingalayeringconceptrelatedtothepaintingprocessofartists57.Arrowplotsaremixedwithcolourcodingtoprovidevisualisationresultsrichofinformation.DirectFlowVisonslicesorboundariesWhendealingwith3Dowdata,visualisationnaturallyfacesadditionalchallengessuchas3Drendering.Actingasamiddlegroundbetween2DFlowVisandthevisualisationoftruly3Dowdataistherestrictiontosubdimensionalpartsofthe3Ddomain,e.g.,sectionalslicesorboundarysur-faces.Thereby,techniquesknownfrom2DFlowVisusuallyareapplicablewithoutmajorchanges(atleastfromatechni-calpointofview).Whenworkingwithsectionalslices,thetreatmentofowcomponentsorthogonaltoslicesrequiressomespecialcare.ColourcodingonslicesorboundariesColourcodingisveryeffectiveforvisualisingboundaryowsorsectionalsubsetsof3Dowdata.Agoodexam-pleisNASA'sFieldEncapsulationLibrary85,whichallowstoeasilyusebothtechniquesforvariousowdata.Schulzetal.alsousecolourcodingofscalarson2Dslicesin3Dautomotivesimulationdata122asshowninFigure2(left).Theyintroduceaninteractiveslicingprobewhichmapsthevectorelddatatohue.Theuseofscalarclipping,i.e.,thetransparentrenderingofsliceregionswherethecorrespondingdatavaluedoesnotliewithinaspecicdatarange,allowstousemultiple(coloured)sliceswithreducedproblemsduetoocclusion.2DarrowsonslicesorboundarysurfacesUsing2Darrowsonslicesfrom3Dowdataisalsoanef-fectivevisualisationtechnique19.However,resultsofsuchavisualisationshouldbeinterpretedcarefully,asowcom-ponentswhichareorthogonaltothesliceareusuallynotde-picted.c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsAbovementioneddifcultieswith2Darrowsandsec-tionalslicesthrough3Dowarebasicallynegligible,whentalkingaboutboundarysurfaces,sinceinthesecases,rarelycross-boundaryowsaregiven.Thereforetheuseofarrowsspreadoutoverboundarysurfacesusuallyisveryeffective,asusedbyTreinishforweathervisualisation145.2.3.DirectFlowVisin3DAfterdiscussingdirectFlowVisonslicesandboundarysur-faces,directFlowVisofreal3Dowsisdiscussedinthissubsection.Incontrasttopreviouslymentionedtechniques,hererenderingbecomesthemostcriticalissue.Occlusionandcomplexitymakeitdifcult(ifpossibleatall)togetanimmediateoverviewofanentireowdatasetin3D.Volumerenderingfor3DFlowVisThenaturalextensionofcolourcodingin2D(oronslices,etc.)iscolourcodingin3D.This,however,posesspecialrequirementsontorenderingduetoocclusionproblemsandnontrivialcomplexity—volumerenderingisneeded.Vol-umerenderingiswell-knownintheeldofmedical3Dvi-sualisation,i.e.,volumevisualisation.However,thosechal-lenges,whichcloselycorrespondtoowvisualisationarebrieyaddressedhere:(1)owdatasetsareoftensig-nicantlysmootherthanmedicaldata—anabsenceofsharpandclear“object”boundaries(likeorganboundaries)makesmappingtoopacitiesmoredifcultandlessintuitive.(2)owdataisoftengivenonnon-Cartesiangrids,e.g.,oncurvilineargrids—thecomplexityofvolumerenderinggetssignicantlymoretrickyonthosekindsofgrids,startingwithnontrivialsolutionsrequiredforvisibilitysortingandblending.(3)owdataisalsotime-dependentinmanycases,imposingadditionalloadsontherenderingprocess.Intheearlynineties,Crawsetal.15,aswellasEbertetal.18appliedvolumerenderingtechniquestovectorelds.Littlelater,Frühaufappliedraycastingtovectorelds22.Recently,Westermann,presentedarelativelyfast3DvolumerenderingmethodusingaresamplingtechniqueforvectorelddatafromunstructuredtoCartesiangrids160.AresultfromthistechniqueisillustratedinFigure2(middle).Recently,ClyneandDennis14aswellasGlau24presentedvolumerenderingfortime-varyingvectoreldsusingalgo-rithmswhichmakespecialuseofgraphicshardware.Onoetal.usedirectvolumerenderingtovisualisethermalowsinthepassengercompartmentofanautomobile90.Theirgoalistoattaintheabilitytopredictthethermalcharacteristicsoftheautomotivecabinthroughsimulation.Swanetal.ap-plydirectvolumerenderingtechniquesinowvisualisationinasystemthatsupportscomputationalsteering137.TheirvisualisationresultsareextendedtotheCAVEenvironment.Recently,EbertandRheingansdemonstratedtheuseofnonphotorealisticvolumerenderingtechniquesfor3Dowdata17.Theyapply,forexample,silhouetteenhancementortoneshadingtoimproverenderingsof3Dows.Arrowplotsin3DTheuseofarrowsfordirect3DFlowVisposesatleasttwoproblems:(1)thepositionandorientationofavectorisof-tendifculttounderstandbecauseofitsprojectionontoa2Dscreen—using3Drepresentationsofarrows(likeacylin-derplusacone)decreasestheseproblemswithperceptionand(2)glyphsoccludingoneanotherbecomeaproblem—carefulseedingisrequired(incontrasttothedefaultofdensedistributions).Inactualapplications,arrowplotsareusuallybasedonselectiveseeding,forexample,allarrowsstartingfromoneoutofafewsectionalslicesthroughthe3Dow.BoringandPangaddresstheproblemofclutterin3Ddi-rectFlowVisbyhighlightingthosepartsofa3Darrowplot,whichpointinasimilardirectioncomparedtoauser-deneddirection8.Theirmethodologyreducestheamountofdatabeingdisplayedthusresultsinlessclutter.Theirmethodscanbecombinedwithothertechniquesthatuseglyphrep-resentationsandowgeometriessuchasstreamlinesforFlowVis.Theyapplythemethodstobothanalyticandsim-ulationdatasetstohighlightowreversals.3.Texture-basedVisualisationWemakeadistinctionbetweengeometricowvisualisation(seeSection4)anddense,texture-basedowvisualisation,however,thesetwotopicsarecloselycoupled:conceptually,thepathfromusinggeometricobjectstotexture-basedvi-sualisationisobtainedviaadenseseedingstrategy.Thatis,denselyseededgeometricobjectsresultinanimagesimilartothatobtainedbydense,texture-basedtechniques.Like-wise,thepathfromdense,texture-basedvisualisationtovi-sualisationusinggeometricobjectsisobtainedusingsome-thingsuchasasparsetexturefortextureadvection.Texture-basedtechniquesinowvisualisationcanpro-videdensespatialresolutionimages.Texture-basedalgo-rithmsareeffective,versatile,andapplicabletoawidespec-trumofapplications.Sannaetal.presentasummaryofthisresearchinasurveypaper117.3.1.Texture-basedFlowVisin2DInthissubsection,wedescribetexture-basedFlowVissolu-tionsfor2Dowdata,i.e.,spotnoise,lineintegralconvolu-tion(LIC),andrelatedapproaches.Spotnoisein2DSpotnoise,introducedbyVanWijk162,wasamongstthersttexture-basedtechniquesforvectoreldvisualisation.Spotnoisegeneratesatexturebydistributingasetofintensityfunctions,orspots,overthedomain.Eachspotrepresentsaparticlemovingoverasmallstepintimeandresultsinastreakinthedirectionofthelocalowfromwheretheparticleisseeded.c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsOnelimitationoftheoriginalspotnoisealgorithmwasthelackofvelocitymagnitudeinformationintheresultingtexture.Enhancedspotnoise70,byDeLeeuwandVanWijkwasintroducedtoaddressthisproblem.Spotnoisehasalsobeenappliedtothevisualisationofturbulentow67byDeLeeuwetal.Aspotnoisealgorithmforinteractivevisuali-sationisproposedbyDeLeeuw65,also.DeLeeuwandVanLierealsocomparespotnoisetoLIC68.Spotnoisein2DcombinedwithcolourcodingisshowninFigure2(right).Lineintegralconvolutionin2DLineintegralconvolution(LIC),rstintroducedbyCabralandLeedom12isaverypopulartechniqueforthedensecov-erageofvectoreldswithowvisualisationcues.Theorig-inalmethodologybehindLICtakesasinputavectoreldonaCartesiangridandawhitenoisetextureofthesamesize.Thenoisetextureislocallyltered(smoothed)alongthepathofstreamlinestoacquireadensevisualisationoftheoweld.SeeFigure6(middle)foranexample.TheresearchinowvisualisationbasedonLICdescribedhereextendsLICinseveralways:(1)addingdirectionalcues,(2)showingvelocitymagnitudes,(3)addedsupportfornon-Cartesiangrids,(4)allowingreal-timeandinteractiveexploration,(5)extendingLICto3D,and(6)extendingLICtounsteadyvectoreldvisualisationwithtimecoherency.Shenetal.addresstheproblemofdirectionalcuesinLICbycombininganimationandintroducingdyeadvectionintothecomputation126.KiuandBanksproposedtouseamul-tifrequencynoiseforLIC58.Thespatialfrequencyofthenoiseisafunctionofthemagnitudeofthelocalvelocityintheeld.Khouasetal.synthesiseLIC-likeimagesin2Dwithfur-liketextures56.Theirtechniqueisabletolocallycontrolattributesoftheoutputtexturesuchasorientation,length,density,andcolour.MuchresearchhasbeendedicatedtobringingLICcom-putationtointeractiverates.StallingandHegepresentsig-nicantimprovementsinLICperformancebyexploitingco-herencealongstreamlines135;29.ParallelimplementationsofLICarepresentedbyCabralandLeedom11,andZöckleretal.170.OLICfor2DFlowVisWegenkittletal.alsoaddresstheproblemoforientationofowwiththeirOLIC(OrientedLineIntegralConvolution)approach157.Conceptually,theOLICalgorithmmakesuseofasparsetextureconsistingofmanyseparatedspotswhicharemoreorlesssmearedinthedirectionofthelocalvec-toreldthroughintegration.AfastversionofOLIC(calledFROLIC)ispresentedbyWegenkittlandGröller156viaatrade-offofaccuracyfortime.BergerandGröllerpresentanalgorithmforanimating2DFROLICimagesovertheworldwideweb7.Löffelmannetal.usevirtualinkdroplets,likestreamlets,tovisualise2Ddynamicalsystems74.Similartoorientedlineintegralconvolution(OLIC),thevirtualinkdropletmethodiscapableofvisualisingnotonlydirectionandve-locityofow,butalsotheorientationofvectors.SeeFig-ure6foracomparisonbetweenstreamlets(right)andLIC(middle).TextureAdvectionJobardandLeferuseamotionmapdatastructureforanimat-ing2D,steady-stateowelds47.Themotionmapcontainsbothadenserepresentationoftheowandtheinformationrequiredtoanimatetheow.Itofferstheadvantageofsav-ingmemoryandcomputationtimesinceonlyoneimageoftheowhastobecomputedandstoredinthemotionmapdatastructure.Jobardetal.proposeatechniquetovisualisedenserep-resentationsofunsteadyvectoreldsbasedonwhattheycallaLagrangian-EulerianAdvectionscheme45.Thealgo-rithmcombinesadense,time-dependent,integration-basedrepresentationofthevectoreldwithinteractiveframerates.SomeresultsfromthetechniqueareshowninFigure3.Unsteadyowvisualisationtechniquesmayaddresstheproblemofinteractiveperformancetimethroughtheuseoftexturemappingsupportedbythegraphicshardware.BeckerandRumpfillustratehardware-supportedtexturetransportfor2D,unsteadyowdata6.Jobardetal.43;44presentadditional2D,unsteadyowvi-sualisationtechniques.Theyachievehighperformanceviatheuseofgraphicshardware.Theyalsodetailspatialandtemporalcoherencetechniques,dyeadvectiontechniques,andfeatureextraction.3.2.Texture-basedFlowVisonsurfacesorboundariesTexture-basedtechniquesare,ingeneral,bettermethodsforconveyingowinformationonsectionalslicesthantech-niquesusing(long)geometricobjects.Thisisbecausetheconnectionalongthepathofwhatwouldbeastreamlineislostwithdense,texture-basedtechniques.Thusthedepictionoftheowisnotmisleadingintermsofapotentialsugges-tionsofparticlepaths.Letusrecallthatthevectorcompo-nentorthogonaltothesliceisremovedwhenusingtexture-basedandgeometricmethodsforvisualisationresults.SpotnoiseonboundariesorslicesDeLeeuwetal.extendthespotnoisealgorithmtosurfacesinastudythatcomparesexperimentalsurfaceowvisuali-sation(withoil)tothatofspotnoiseonsurfaces66.Acombinationofbothtexture-basedFlowVis(onslices)and3Darrowsfor3DFlowVisisemployedbyTeleaandVanWijk144wherearrowsdenotethemaincharacteristicsofthe3Dow(afterclustering)anda2Dslicewithspotnoiseorc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsFigure3:ThreeimagestakenfromananimationofanunsteadyvectoreldcreatedwiththeLagrangian-Eulerianadvectionalgorithm45.LICisusedtovisualisetherestofthevectoreld(onasliceonly).forboundaryowsAlargebodyofresearchliteratureisdedicatedtotheexten-sionofLIContoboundarysurfaces,surveyed,forexample,byStalling134.TheextensionofLICtonon-CartesiangridsandsurfacesispresentedbyresearcherssuchasForssell20.ForssellandCohen21extendLICtocurvilinearsurfaceswithanimationtechniques,addmagnitudeanddirectioninformation,andshowhowtouseLICtodepicttime-dependentows.Theiralgorithmalsoutilisestexturemappinghardwaretoimproveperformancetimetowardsinteractiverates.Teitzeletal.142presentanapproachthatworksonboth2Dunstructuredgridsanddirectlyontriangulatedsurfacesinthree-dimensionalspace.Maoetal.82presentanalgo-rithmforconvolvingsolidwhitenoiseontrianglemeshesin3Dspace,andextendLICforvisualisingavectoreldonarbitrary3Dsurfaces.Battkeetal.4describeanextensionofLICforarbitrarysurfacesin3D.Someapproachesarelimitedtocurvilinearsurfaces,i.e.,surfaceswhichcanbeparameterisedbyusing2D-coordinates.Theirmethodalsohandlesthecaseofgen-eral,multiplyconnectedsurfaces.Scheuermannetal.presentamethodforvisualising3Dvectoreldsthataredenedona3Dmanifold118.Theirworkaddressesthenormalvectorcomponenttothesurfacethatothermethodsdonot.AproblemwithmanycurvilineargridLICalgorithmsisthattheresultingLICtexturesmaybedistortedafterbeingmappedontothegeometricsurfaces,sinceacurvilineargridusuallyconsistsofcellsofdifferentsizes.Maoetal.proposeasolutiontotheproblembyusingmultigranularitynoiseastheinputimageforLIC81.UFLIC,PLIC,etceteraShenandKaopresentUFLIC(UnsteadyFlowLIC),whichincorporatestimeintotheconvolution127;125.SeeFigure4(left).Theiralgorithmaddressesproblemswithtemporalcoherencybysuccessivelyupdatingtheconvolutionresultsovertime.TheyalsoproposeaparallelUFLICalgorithm.Vermaetal.presentamethodforcomparativeanalysisofstreamlinesandLICcalledPLIC149.Avisualcompari-sonbetweenELIC(enhancedLIC)89,PLIC,andUFLICisshowninFigure4.3.3.Texture-basedFlowVisin3DHighcomputationalcosts,demandingmemoryrequire-ments,occlusion,andvisualcomplexitycanallbeinhibi-tantsfortexture-basedowvisualisationin3D.Figure5:3DLIC38.LICin3DOcclusionandinteractiveperformancearenontrivialchal-lengeswhenimplementingLICin3D(showninFigure5).Rezk-Salamaetal.tackletheproblemofinteractiveperfor-manceusinga3D-texturemappingapproachcombinedwithc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsFigure4:Acomparisonof3LICtechniques:(left)UFLIC,(middle)ELIC,and(right)PLIC149.Figure6:ExampleofcomparingFlowVistechniquesfromSections2,3,and472.FlowVisbytheuseofarrows(left)iscomparedtotexture-basedFlowVisbytheuseofLIC(middle)andFlowVisbasedongeometricobjects(right).aninteractiveclippingplanetoaddresstheproblemsofoc-clusionandinteraction103.AcombinedapproachofdirectvolumerenderingandLICistakenbyInterrante40forextendingLICto3D.InterranteandGroschaddresssomeperceptualdifcultiesencounteredwithdense,3Dvisualisations38;39;40.Techniquesforselec-tivelyemphasisingimportantregionsofinterestintheow,enhancingdepthperception,andimprovingorientationper-ceptionofoverlappingstreamlinesarediscussed.Textureadvectionin3DKaoetal.discusstheuseof3Dand4Dtextureadvectionforthevisualisationof3Duidows51.Formidablechal-lengesareintroducedbythememoryrequirementsinvolvedinusing3Dand4Dtextures.Theyalsoapplyasteady-stateanimationtothese3Dand4Dtextures.4.GeometricFlowVisualisationGeometricFlowVisentailsextractinggeometricobjectsforwhichtheirshapeisdirectlyrelatedtotheunderlyingdata.Inwhatfollows,wediscussgeometricowvisualisationtech-niquessuchascontouringinboth2Dand3Daswellasgeo-metricFlowVisusingintegralobjects(suchasstreamlines).Contouringin2DContouringisanaturalextensiontocolourcodingin2D.Acontourisaboundarybetweentwodistinctregions.Often,theuserishighlyinterestedintransitionareasinthevectoreld.Inacolourplot,transitionsareshownbyachangeofcolour.Withcontouring,anexplicitlineorcurveisdrawn.Isosurfacesfor3DFlowVisExtendingcontouringfrom2Dto3D,resultsintheuseofisosurfacesfor3Dowvisualisation.Specialcareneedstobetakenwithisovalueselection,mostlybecauseoftheusu-allysmoothnatureofowdata—incasesofnosharptran-sitionswithinthedata,anyisovaluelacks(atleastpartially)c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsintuitiveinterpretation.Neverthelessthereareusefulappli-cationsofisosurfacestoowdata,e.g.,inthevisualisationofshockwaves139orburningfrontsinsimulatedcombus-tiondata.Furthermore,whenscalarclippingisusedtogetherwithcolourcodingofslices,thisnaturallycombineswithisosurfacesaslongasisovalueandclippingvaluecoincide.Röttgeretal.presentahardwareacceleratedvolumeren-deringtechniquewhichallowstousemultiple(semitrans-parent)isosurfacesforvisualisation109.Treinishappliesiso-surfacingtovisualise(unsteady)weatherdata145.Weberetal.155presentcrack-freeisosurfaceextractionforadaptive(multiresolution)grids.LarameeandBergeronprovideiso-surfacesforsuperadaptiveresolutiongrids63.4.1.Geometric2DFlowVisusingintegralobjectsInthissubsectionweshortlydiscussgeometricFlowVistechniquesin2Dbasedonintegralobjectssuchasstream-lets,streamlines,andtheirrelativeswithinunsteadyows.Also,theseedingproblemisaddressed,whichrequiresaso-lutioninordertorealisebetterdistributionsofintegralob-jects.eamletsin2DIfowvectorsareintegratedforaveryshorttime,streamletsaregenerated.Eventhoughshort,streamletsalreadycom-municatetemporalevolutionalongtheow.Figure6showsanexample,whereseveralstreamletsareusedtovisualisea2Doweld.Streamlinesin2DIflongerintegrationisperformed(ascomparedtostream-lets),streamlinesaregained.Theyareanaturalextensionofglyph-basedtechniquesandofferintuitivesemantics:userseasilyunderstandthatowsevolvealongintegralobjects.Streaklines,timelines,andpathlinesWhenunsteadyowdataareinvestigated,severaldistinctintegralobjectsareusedforowvisualisation.Apathlineorparticletraceisthetrajectorythataparticlefollowsinauidow121.Atimelinejoinsthepositionsofparticlesreleasedatthesameinstantintimefromdifferentinsertionpoints,i.e.,joinspointsataconstanttimet88.Astreaklineistracedbyasetofparticlesthathavepreviouslypassedthroughauniquepointinthedomain121.Streaklinesrelatetocontinuousin-jectionofforeignmaterialintorealow.Sannaetal.presentanadaptivevisualisationmethodusingstreaklineswheretheseedingofstreaklinesisafunctionoflocalvorticity116.Streamlineseedingin2DOneimportantaspectofstreamlines,orintegralcurves,whenusedforvisualisingcontinuousvectoreldsisthebestchoiceofinitialconditions.Since,ingeneral,evenlydis-tributedseedpointsdonotresultinevenlyspacedstream-lines,specialalgorithmsneedtobeemployed.TurkandBanks146aswellasJobardandLefer46developedtech-niquesforautomaticallyplacingseedpointstoachieveauni-formdistributionofstreamlinesona2Dvectoreld.Streamlineseedingstrategiesin2Dmayalsobetopology-based.Vermaetal.150presentaseedplacementstrategyforstreamlinesbasedonowfeaturesinthedataset.Theirgoalistocaptureowpatternsnearcriticalpointsintheoweld.Buildingontheirpreviouswork,JobardandLeferpre-sentedamultiresolution(MR)methodforvisualisinglarge,2D,steady-statevectorelds49.TheMRhierarchysupportsenrichmentandzooming.Theuserisabletointeractivelysetthedensityofstreamlineswhilezoominginandoutofthevectoreld(Figure7).Thedensityofstreamlinescanbecomputedautomaticallyasafunctionofvelocityorvorticity.Seedingofintegralobjectsbecomesaspecialchallengewhendealingwithtime-dependentdata.JobardandLeferpresentedanunsteadyFlowVisalgorithmbycorrelatingin-stantaneousvisualisationsofthevectoreldatthestream-linelevel48.Foreachframe,afeedforwardalgorithmcom-putesasetofevenly-spacedstreamlinesasafunctionofthestreamlinesgeneratedforthepreviousframe.Theirmethodalsoprovidesfullcontroloftheimagedensitysothatsmoothanimationsofarbitrarydensitycanbeproduced.4.2.FlowVisusinggeometricobjectsonslicesorboundariesAfterdiscussing2DFlowVisbasedongeometricobjects,thissubsectionshortlyaddressessimilarapproachesonsub-setsof3Dowssuchasboundaryows.Interpretationofin-tegralcurvesonsectionalslicesrequiresspecialcare,again.IntegratedtuftsWegenkittletal.useintegratedtufts(similartostreamlets),seededonspecicequilibriumsurfaces,forthevisualisationofacomplexdynamicalsystem158,alsoovervariationsofthatsysteminafourthdimension.GeometricobjectsonslicesorboundariesSimilarto2DFlowVis,geometricobjectssuchasstream-linesarealsousedforvisualisingboundaryowsorsec-tionalslicesthrough3Dow19.However,itisimportanttonotethattheuseoftheseobjectsonslicesmaybemislead-ing,evenwithinsteadyowdatasets.Astreamlineonaslicemaydepictaclosedloop,eventhoughnoparticlewouldevertraversetheloop.Thereasonagainliesinthefact,thatowcomponentswhichareorthogonaltothesliceareomittedduringowintegration.c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsFigure7:ThreeimagesfromaninteractiveexplorationofavectoreldusingtheMRviewer49.Asuitablelevelofresolutioncanbechosenwhilemaintainingaroughlyconstantstreamlinedensity.StreamlineseedingonboundarysurfacesMaoetal.80extendthestreamlineseedingofTurkandBanks146inordertogenerateevenlydistributedstreamlinesonboundarysurfaceswithincurvilineargrids.4.3.3DFlowVisusinggeometricobjectsWhendealingwith3Dow,arichvarietyofgeometricobjectsisavailableforowvisualisation.Thissubsectionaddressesaseriesofobjects,fromstreamletstoowvol-umes,primarilysortedaccordingtotheirdimensionality,andwithinequaldimensionalityroughlywithrespecttowhichtechniqueextendstoanother.Streamletsin3DStreamletseasilyextendto3D,althoughperceptualprob-lemsmayariseduetodistortionsresultingfromtheren-deringprojection.Also,seedingbecomesmoreimportantin3D,again.LöffelmannandGrölleruseathreadofstreamletsalongcharacteristicstructuresof3Dowtogainselective,butimportance-basedseedingaswellasanenhancementofabstractowtopologythroughdirectvisualisationcues73.Streamlinesin3DAtNASAtheFlowAnalysisSoftwareToolkit(FAST)1isusedtovisualiseCFDdatabasedonstreamlinesin3D.Care-fulseedingisnecessarytoobtainusefulresults,sincevisualcluttercaneasilybecomeaproblem.IlluminatedstreamlinesZöckleretal.presentilluminatedstreamlinestoimproveperceptionofstreamlinesin3Dbytakingadvantageofthetexturemappingcapabilitiessupportedbygraphicshard-ware169.Theirshadingtechniqueincreasesdepthinforma-tion.Bymakingthestreamlinespartiallytransparent,theyalsoaddresstheproblemofocclusion,asshowninFigure8(left).Forseeding,theauthorsproposeaninteractiveseed-ingprobewhichcanbemovedaroundtostartstreamlinesatspecicplacesofinterest.Also,seedingnearpotentialob-jectsofinterestsisdemonstrated.Particletracingin3DKenwrightandLanepresentanefcient,3Dparticletracingalgorithmthatisalsoaccurateforinteractiveinvestigationoflarge,unsteady,aeronauticalsimulations55.Aperformancegainisobtainedbyapplyingtetrahedraldecompositiontospeeduppointlocationandvelocityinterpolationincurvi-lineargrids.Teitzeletal.analysedifferentintegrationmethodsinordertoevaluatethetrade-offbetweentimeandaccuracy141;143.Theypresenta3Dparticletracingalgorithmtargetedatsparsegridsthatisveryefcientwithrespecttostoragespaceandcomputingtime.Theauthorsrecommendusingsparsegridsasadatacompressionmethodinordertovisu-alisehugedatasets.Nielsonpresentsefcientandaccuratemethodsforcom-putingtangentcurvesfor3Dows87.Themethodsworkdirectlywithphysicalcoordinates,eliminatingtheneedtoswitchbackandforthtocomputationalcoordinates.EfcientparticletracingmethodologiesarealsoaddressedbySadar-joenetal.111.Sincestreamlinesareusuallyeasilycomputedinrealtime,theyoffer(togetherwiththeirintuitivesemantics)anoftenchosentoolforinteractiveowanalysis.BrysonandLevit10demonstrateseedingofintegralobjectsinavirtual3Denvironmentbyuseofaso-calledrake.StreamribbonsandstreamtubesArstextensionofstreamlinesin3Darestreamribbonsandstreamtubes.Astreamribbonisbasicallyastreamlinec\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldswithawinglikestripadded,toalsovisualiserotationalbe-haviourofthe3Dow(whichisnotpossiblewithstream-linesalone)148.Astreamtubeisathickstreamlinethatcanbeextendedtoshowtheexpansionoftheow148.Streamribbonsandstreamtubesofferadvantagesoverstreamlinesinthatway,thattheycanencodemoreproperties,suchasdivergenceandconvergenceofthevectoreld,inthegeo-metricpropertiesoftherespectiveintegralobjects.Uengetal.presenttechniquesforefcientstreamline,streamribbon,andstreamtubeconstructionsonunstructuredgrids148.AspecialisedRunge-Kuttamethodisemployedtospeedupstreamlinecomputation.Explicitsolutionsarecal-culatedfortheangularrotationratesofstreamribbonsandtheradiiofstreamtubes.Theresultingspeedupinoverallperformanceaidsintheexplorationoflargeowelds.FuhrmannandGröller23useso-calleddashtubes,i.e.,animated,opacity-mappedstreamtubes,asavisualisationicon.Analgorithmisdescribedwhichplacesthedashtubesevenlyin3Dspace.Theyalsoapplyamagiclensandmagicboxasinteractiontechniquesforinvestigatingdenselylledareaswithoutllingtheimagewithvisualdetailandcom-plexity.Larameeintroducesthestreamrunnerasanextensionofstreamtubes—aninteractivelycontrolled3Dowvi-sualisationtechniquethatattemptstominimiseocclusion,minimisevisualcomplexity,maximisedirectionalcues,andmaximisedepthcuesbylettingtheusercontrolthelengthofthestreamtubes62.StreampolygonsAnotherextensionofstreamlinesarestreampolygonsusedbySchroederetal.120.Streampolygonsaretoolstovisu-alisevectorsandtensorsusingtubeswithapolygonalcrosssection.Thepropertiesofthepolygonssuchastheradius,thenumberofsides,theshapeandtherotationreectprop-ertiesofthevectoreldincludingstrain,displacement,androtation.eamballsandstreakballsStreamballsareausefulowvisualisationtechniqueusedbyBrilletal.9,whichvisualisesdivergenceandaccelerationinuidow.Streamballssplitormergedependingoncon-vergence/divergenceandacceleration/deceleration,respec-tively.TeitzelandErtlintroducestreakballswhentheypresentandcomparetwodifferentapproachestoaccelerateparticletracingonsparsegridsandcurvilinearsparsegridsforun-steadyowdata140.StreamsurfacesYetanotherextensiontostreamlinesarestreamsurfaces,whicharesurfacesthatareeverywheretangenttoavectoreld.Astreamsurfacecanbeapproximatedbyconnectingasetofstreamlinesalongtimelines(andvaryingthenumberofstreamlinesusedaccordingtoconvergenceordivergenceoftheow)36.Streamsurfacesareverygoodfortexture-basedvisualisationtechniquessuchasSpotNoiseandLIC,becausethereisnocross-owcomponentnormaltothesur-faces,i.e.thevectoreldisnotprojectedlikeitisfor2Dslicesthrougha3Ddomain.Streamsurfacespresentchal-lengesrelatedtoocclusion,visualcomplexity,andinterpre-tation.Hultquistpresentsaninteractiveowvisualisationtech-niqueusingstreamsurfaces35.VanWijkpresentstwofollow-uptechniquesforgeneratingimplicitstreamsur-faces164.CaiandHeng13addresstheissuesassociatedwiththeplacementandorientationofstreamsurfacesin3D.Löffelmannetal.presentstreamarrows(seeFigure8,middle)asanenhancementofstreamsurfacesbyseparatingarrow-shapedportionsfromastreamsurface76;75.Streamarrowsaddresstheproblemofocclusionassociatedwith3Dowvisualisation,butespeciallywithstreamsurfaces.Streamarrowsalsoprovideadditionalinformationabouttheow,usuallynotseenwithstreamsurfaces,suchasowdi-rection,convergence/divergence,etcetera.VanWijksimulatesstreamsurfacesbyalargesetofso-calledsurfaceparticles163.Surfaceparticlesexhibitlessoc-clusionwhencomparedtostreamsurfaces.Interestingly,VanWijk'sapproachinawayanticipatedrecentadvancesinpixel-basedrenderingtechniques.Timesurfacesin3DAnaturalextensionoftimelines(in2Dor3D)aretimesurfaces,whenconstant-timeinstantsofmovingparticlesareassumed,whichpreviouslyhavebeenreleasedfromatwo-dimensionalpatch.Anexampleofanapplicationofthisprinciple,arelevel-setsurfacesusedbyWestermannetal.161.FlowvolumesThelast(direct)extensionofastreamlineinto3Ddescribedhereareowvolumes(seeFigure8,right).Aowvolumeisaspecicsubsetofa3Dowdomain,whichistracedoutbyaparticularinitial2DpatchovertimeasdescribedbyMaxetal.83.Theresultingvolumeisdividedupintoasetofsemitransparenttetrahedra,whicharevolumerenderedinhardwareinawayderivedfromthemethodofShirleyandTuchmann128.Beckeretal.extendowvolumestounsteadyow5.Theresultingunsteadyowvolumesarethe3Danalogueofstreaklines.Considerationsaremadewhenextendingthevisualisationtechniquetounsteadyowssinceparticlepathsmaybecomeconvolutedintime.Theauthorspresentsomesolutionstotheproblemswhichoccurinsubdivision,ren-dering,andsystemdesign.Theresultingalgorithmsareap-pliedtoavarietyofowtypesincludingcurvilineargrids.c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsFigure8:Examplesofowvisualisationusinggeometricobjects—illuminatedstreamlines(left)169,streamarrows(middle)76,andowvolumes(right)83.5.FeatureExtractionFeature-basedowvisualisationisanapproachforvisual-isingtheowdataatahighlevelofabstraction.Theowdataisdescribedbyfeatures,whichrepresenttheinterest-ingobjectsorstructuresinthedata.Theoriginaldatasetisthennolongerneeded.Becauseoften,onlyasmallper-centageofthedataisofinterest,andthefeaturescanbede-scribedverycompactly,anenormousdatareductioncanbeachieved.Thismakesitpossibletovisualiseevenverylargedatasetsinteractively.Therststepinfeature-basedvisualisationisfeatureex-traction.Thegoaloffeatureextractionisdetermining,quan-tifyinganddescribingthefeaturesinadataset.Afeaturecanbelooselydenedasanyobject,structureorregionthatisofrelevancetoaparticularresearchproblem.Ineachapplication,ineachdatasetandforeachresearcher,adifferentfeaturedenitioncouldbeused.Commonexam-plesinuiddynamicsarevortices,shockwaves,separationandattachmentlines,recirculationzonesandboundarylay-ers.Inthenextsectionanumberoffeature-specicdetectiontechniqueswillbediscussed.Althoughmostfeaturedetec-tiontechniquesarespecicforaparticulartypeoffeature,ingeneralthetechniquescanbedividedintothreeapproaches:basedonimageprocessing,ontopologicalanalysis,andonphysicalcharacteristics.5.1.ImageProcessingImageprocessingtechniqueswereoriginallydevelopedforanalysisof2Dand3Dimagedata,usuallyrepresentedasscalar(greyscale)valuesonaregularrectangulargrid.Theproblemofanalysinganumericaldataset,representedonagrid,issimilartoanalysinganimagedataset.Therefore,ba-sicimageprocessingtechniquescanbeusedforfeatureex-tractionfromscienticdata.Afeaturemaybedistinguishedbyatypicalrangeofdatavalues,justasdifferenttissuetypesaresegmentedfrommedicalimages.Edgesorbound-ariesofobjectsarefoundbydetectingsuddenchangesinthedatavalues,markedbyhighgradientmagnitudes.Thus,basicimagesegmentationtechniques,suchasthresholding,regiongrowing,andedgedetectioncanbeusedforfeaturedetection.Also,objectsmaybequantitativelydescribedus-ingtechniquessuchasskeletonisationorprincipalcompo-nentanalysis.However,aproblemis,thatincomputationaluiddynamicssimulations,oftengridtypesareusedsuchasstructuredcurvilineargrids,orunstructuredtetrahedralgrids.Manytechniquesfromimageprocessingcannotbeeasilyadaptedforusewithsuchgrids.5.2.VectorFieldTopologyAsecondapproachtofeatureextractionisthetopologicalanalysisof2Dlinearvectorelds,asintroducedbyHel-manandHesselink30;32,whichisbasedondetectionandclassicationofcriticalpoints.Thesearethepointswherethevectormagnitudeiszero.Bycomputingtheeigenvaluesandeigenvectorsofthevelocitygradienttensor,thecriticalpointscanbeclassiedandtangentcurvescanbecomputed.(SeeFigure9.)Usingthisinformation,aschematicvisuali-sationofthevectoreldcanbegenerated.(SeeFigure15.)HelmanandHesselinkhavealsoextendedtheiralgorithmto2Dtime-dependentandto3Dows.Scheuermannetal.presentedanalgorithmforvisualis-ingnonlinearvectoreldtopology119,becauseotherknownalgorithmsareallbasedon(piecewiseorbi-)linearinterpo-lation,whichdestroysthetopologyincaseofnonlinearbe-haviour.TheiralgorithmmakesuseofCliffordalgebraforcomputingpolynomialapproximationsinareaswithnonlin-earlocalbehaviour,especiallyhigher-ordersingularities.DeLeeuwandVanLierepresentedatechniqueforvisu-alisingowstructuresusingmultilevelowtopology69.Inhigh-resolutiondatasetsofturbulentows,thehugenum-berofcriticalpointscaneasilyclutteraowtopologyim-age.Thealgorithmpresentedattemptstosolvethisproblembyremovingsmall-scalestructuresfromthetopology.Thisisachievedbyapplyingapairdistancelterwhichremovesc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsRepelling Focus\rR1, R2 � 0\rI1, I2 � 0Attracting Focus\rR1, R2 0\rI1, I2 � 0Center\rR1, R2 = 0\rI1, I2 � 0Attracting Node\rR1, R2 0\rI1, I2 = 0Repelling Node\rR1, R2 � 0\rI1, I2 = 0Saddle Point\rR1 * R2 0\rI1, I2 = 0Figure9:Vectoreldtopology:criticalpointsclassiedbytheeigenvaluesoftheJacobian30.pairsofcriticalpoints,thatareneareachother.Thisremovessmalltopologicalstructuressuchasvortices,butdoesnotaf-fecttheglobaltopologicalstructure.Thethresholddistance,whichdetermineswhichcriticalpointsareremoved,canbeadapted,makingitpossibletovisualisethestructureatdif-ferentlevelsofdetailatdifferentzoomlevels.5.3.SelectiveVisualisationAgenericapproachtofeatureextractionisSelectiveVisual-isation,whichisdescribedbyVanWalsum152.Thefeatureextractionprocessisdividedintofoursteps(seeFigure10).Therststepisthesegmentationstep.Inprinciple,anyseg-DataGenerationSelectionClusteringAttributeCalculationIconicMappingDisplayRaw DataSelectedNodesRegions of InterestAttributeSetsIconsSelectionExpressionConnectivityCriteriaCalculationMethodMappingFunctionScientist's knowledge andconceptual modelFigure10:Thefeatureextractionpipeline102.mentationtechniquecanbeused,thatresultsinabinaryseg-mentationoftheoriginaldataset.Averysimplesegmenta-tionisobtainedbythresholdingoftheoriginalorderiveddatavalues;also,multiplethresholdscanbecombined.Thedatasetresultingfromthesegmentationstepisabinarydatasetwiththesamedimensionsastheoriginaldataset.Thebinaryvaluesinthisdatasetdenotewhetherornotthecor-respondingpointsintheoriginaldatasetareselected.Thenextstepinthefeatureextractionprocessistheclusteringstep,inwhichallpointsthathavebeenselectedareclusteredintocoherentregions.Inthenextstep,theattributecalcu-lationstep,theseregionsarequantied.Attributes,suchasposition,volumeandorientation,oftheregionsarecalcu-lated.Wenowspeakofobjects,orfeatures,withanumberofattributes,insteadofclustersofpoints.Oncewehavede-terminedthesequantiedobjects,wedon'tneedtheorigi-naldataanymore.Withthis,wemayaccomplishadatare-ductionfactorof1000ormore.Inthefourthandnalstep,iconicmapping,thecalculatedattributesaremappedontotheparametersofcertainparametricicons,whichareeasytovisualise,suchasellipsoids.6.Feature-basedowvisualisationInthissection,anumberoffeatureextractiontechniqueswillbediscussedthathavebeenspecicallydesignedforcertaintypesoffeatures.Thesetechniquesareoftenbasedonphysi-calormathematical(topological)propertiesoftheow.Fea-turesthatoftenoccurinowsarevortices,shockwavesandseparationandattachmentlines.6.1.VortexextractionFeaturesofgreatimportanceinowdatasets,bothinthe-oreticalandinpracticalresearch,arevortices.(SeeFig-ure11.)Insomecases,vortices(turbulence)havetobeim-pelled,forexampletostimulatemixingofuids,ortore-ducedrag.Inothercases,vorticeshavetobeprevented,forexamplearoundaircraft,wheretheycanreducelift.ThereFigure11:Reconstructionofahairpinvortextube,withgroovesindicatingvelocity2.aremanydifferentdenitionsofvorticesandlikewisemanydifferentvortexdetectionalgorithms.Adistinctioncanbemadeinalgorithmsforndingvortexregionsandalgorithmsthatonlyndthevortexcores.OtheroverviewsofalgorithmsaregivenbyRothandPeikert107andbyBanksandSinger2.Thereareanumberofalgorithmsforndingregionswithvortices:Oneideaistondregionswithahighvorticitymagni-tude.Vorticityisthecurlofthevelocity,thatis,rv,andrepresentsthelocalowrotation,bothinspeedanddirection.However,althoughavortexmayhaveahighc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsvorticitymagnitude,thereverseisnotalwaystrue168.Vil-lasenorandVincentpresentanalgorithmforconstructingvortextubesusingthisidea151.Theycomputetheaveragelengthofallvorticityvectorscontainedinsmall-radiuscylinders,andusethecylinderwiththemaximumaver-ageforconstructingthevortextubes.Anotherideaistomakeuseofhelicityinsteadofvortic-ity71;167.Thehelicityofaowistheprojectionofthevorticityontothevelocity,thatis(rv)v.Thisway,thecomponentofthevorticityperpendiculartotheveloc-ityiseliminated.Anothersimpleideaistosearchforregionsoflowpres-sure104.JeongandHussaindeneavortexasaregionwheretwoeigenvaluesofthesymmetricmatrixS2+W2arenegative,whereSandWarethesymmetricandantisymmetricpartsoftheJacobianofthevectoreld,respectively41:S=12(V+VT),andW=12(VVT).Thismethodisknownasthel2method.Theabovemethodsmayallworkincertainsimpleowdatasets,buttheydonothold,forexample,inturbomachineryows107,suchasshowninFigure12.Figure12:Visualisationofaturbomachineryow107.Therearealsosomealgorithmsspecicallyforndingvortexcorelines:GlobusandLevitpresentedamethodforndingcorelinesbyintegratingstreamlinesfromthecriticalpointsinthevelocityeld25.Itisalsopossibletousestreamlinesofthevorticityeld84,butsuchanalgorithmisverysensitivetothestart-inglocation.BanksandSingeralsousestreamlinesofthevorticityeld,withacorrectiontothepressureminimumintheplaneperpendiculartothevortexcore133;3.Combiningtheaboveideas,RothandPeikertsuggestthatavortexcorelinecanbefoundwherevorticityisparalleltovelocity107.Thissometimesresultsincoherentstruc-tures,butinmostdatasetsitdoesnotgivetheexpectedfeatures.Inthesamearticle,RothandPeikertsuggestthat,inlinearelds,thevortexcorelineislocatedwheretheJacobianhasonereal-valuedeigenvector,andthiseigenvectorisparalleltotheow107.However,intheirownapplicationofturbomachineryows,theassumptionofalinearowistoosimple.ThesamealgorithmispresentedbySujudiandHaimes136.Recently,Jiangetal.presentedanewalgorithmforvortexcoreregiondetection42,whichisbasedonideasderivedfromcombinatorialtopology.Thealgorithmdeterminesforeachcellifitbelongstothevortexcore,byexaminingitsneighbouringvectors.Afewofthesealgorithmswillbereviewedindetail,next.BanksandSingerdevelopedapredictor-correctoralgo-rithmforndingvortexcores3.Afterinitialisation,vortexcoresaretrackedbypredictinginthedirectionofthevor-ticityvectorandcorrectingtothepressureminimumintheplaneperpendiculartothatvorticityvector.Next,theycreatevortextubes,bycomputingcrosssectionsofthevortices,inaplaneperpendiculartothevortexcore.Theyuseathresh-oldofthepressureasaselectioncriterion,incombinationwiththerestrictionthattheanglebetweenthevorticityvec-toratanypointonthecrosssectionandthevorticityvectoratthevortexcoreisnomorethanninetydegrees.SujudiandHaimesdevelopedanalgorithmforndingthecentreofswirlingowin3Dvectoreldsandimple-mentedthisalgorithminpV3136.AlthoughpV3canusemanytypesofgrids,thealgorithmhasbeenimplementedfortetrahedralcells.Whenusingdatasetswithothertypesofcells,thesersthavetobedecomposedintotetrahedralcells.Thisisdoneforefciency,becauselinearinterpolationforthevelocitycanbeusedinthecaseoftetrahedralcells.Thealgorithmisbasedoncritical-pointtheoryandusestheeigenvaluesandeigenvectorsofthevelocitygradienttensororrate-of-deformationtensor.Thealgorithmworksoneachpointinthedatasetseparately,makingitverysuitableforparallelprocessing.Thealgorithmsearchesforpointswherethevelocitygradienttensorhasonerealandtwocomplex-conjugateeigenvaluesandthevelocityisinthedirectionoftheeigenvector,correspondingtotherealeigenvalue.Thealgorithmresultsinlargecoherentstructureswhenastrongswirlingowispresent,andthegridcellsarenottoolarge.Thealgorithmissensitivetothestrengthoftheswirlingow,resultinginincoherentstructuresorevennostructuresatallinweakswirlingows.Also,ifthegridcellsarelarge,orirregularlysized,thealgorithmhasdifcultiesndingco-herentstructuresoranystructuresatall.c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsKenwrightandHaimesalsostudiedtheeigenvectormethodandconcludedthatithasproventobeeffectiveinmanyapplications53.Thedrawbacksofthealgorithmarethatitdoesnotproducecontiguouslines.Linesegmentsaredrawnforeachtetrahedralelement,buttheyarenotneces-sarilycontinuousacrosselementboundaries.Furthermore,whentheelementsarenottetrahedra,theyhavetobede-composedintotetrahedrarst,introducingapiecewiselin-earapproximationforanonlinearfunction.Anotherprob-lemisthatowfeaturesarefoundthatarenotvortices.In-stead,swirlingowisdetected,ofwhichvorticesareanex-ample.However,swirlingowalsooccursintheformationofboundarylayers.Finally,theeigenvectormethodissen-sitivetoothernonlocalvectorfeatures.Forexample,iftwoaxesofswirlexist,thealgorithmwillindicatearotationthatisacombinationofthetwoswirldirections.Theeigenvectormethodhassuccessfullybeenintegratedintoaniteelementsolverforguidingmeshrenementaroundthevortexcore16.RothandPeikerthavedevelopedamethodforndingcorelinesusinghigher-orderderivatives,makingitpossibletondstronglycurvedorbentvortices108.Theyobservethattheeigenvectormethodisequivalenttondingpointswheretheaccelerationaisparalleltothevelocityv,orequivalently,tondingpointsofzerocurvature.Theaccelerationaisde-nedas:a=DvDt;(6)wherethenotationDfDtisusedforthederivativefollowingaparticle,whichisdened,inasteadyow,asrfv.There-fore:a=DvDt=rvv=Jv;(7)withJtheJacobianofv,thatisthematrixofitsrstderiva-tives.RothandPeikertimprovethealgorithmbydeningvortexcoresaspointswhereb=DaDt=D2vDt2(8)isparalleltov,thatis,pointsofzerotorsion.Themethodinvolvescomputingahigher-orderderivative,introducingproblemswithaccuracy,butitperformsverywell.Incom-parisonwiththeeigenvectormethod,thisalgorithmndsstronglycurvedvorticesmuchmoreaccurately.RothandPeikertalsointroducetwoattributesforthecorelines:thestrengthofrotationandthequalityofthesolution.Thismakesitpossiblefortheusertoimposeathresholdonthevortices,toeliminateweakorshortvortices.PeikertandRothhavealsointroducedanewoperator,the“parallelvec-tors”operator93,withwhichtheyareabletomathematicallydescribeanumberofpreviouslydevelopedmethodsunderonecommondenominator.Usingthisoperatortheycande-scribemethodsbasedonzerocurvature,ridgeandvalleylines,extremumlinesandmore.Jiangetal.recentlypresentedanewapproachfordetect-ingvortexcoreregions42.ThealgorithmisbasedonanideawhichhasbeenderivedfromSperner'slemmaincombina-torialtopology,whichstatesthatitispossibletodeducethepropertiesofatriangulation,basedontheinformationgivenattheboundaryvertices.Thealgorithmusesthisfacttoclas-sifypointsasbelongingtoavortexcore,basedonthevectororientationattheneighbouringpoints.In2D,thealgorithmisverysimpleandstraightforward,andhasonlylinearcom-plexity.In3D,thealgorithmissomewhatmoredifcult,be-causeitrstinvolvescomputingthevortexcoredirection,andnext,the2Dalgorithmisappliedtothevelocityvectorsprojectedontotheplaneperpendiculartothevortexcoredi-rection.Still,alsothe3Dalgorithmhasonlylinearcomplex-ity.Theabovedescribedmethodsallusealocalcriterionfordeterminingonapoint-to-pointbasiswherethevorticesarelocated.Thenextalgorithmsuseglobal,geometriccriteriafordeterminingthelocationofthevortices.Thisisaconse-quenceofusinganothervortexdenition.SadarjoenandPostpresenttwogeometricmethodsforextractingvorticesin2Delds112.Therstisthecurva-turecentremethod.Foreachsamplepoint,thealgorithmcomputesthecurvaturecentre.Inthecaseofvortices,thiswouldresultinahighdensityofcentrepointsnearthecentreofthevortex.Themethodworksbuthasthesamelimitationsastraditionalpoint-basedmethods,withsomefalseandsomemissingcentres.Thesecondmethodisthewinding-anglemethod,whichhasbeeninspiredbytheworkofPortela94.Themethoddetectsvorticesbyselectingandclusteringloopingstreamlines.Thewindingangleawofastreamlineisdenedasthesumoftheanglesbetweenthedifferentstreamlinesegments.Streamlinesareselectedthathavemadeatleastonecompleterotation,thatis,aw2p.Asecondcriterionchecksthatthedistancebetweenthestartingandendingpointsisrelativelysmall.Theselectedstream-linesareusedforvortexattributecalculation.Thegeometricmeaniscomputedofallpointsofallstreamlinesbelongingtothesamevortex.Anellipsettingiscomputedforeachvortex,resultinginanapproximatesizeandorientationforeachvortex.Furthermore,theangularvelocityandrotationaldirectioncanbecomputed.Alltheseattributescanbeusedforvisualisingthevortices.(SeeFigure13.)6.2.ShockwaveextractionShockwavesarealsoimportantfeaturesinowdatasets,andcanoccur,forexample,inowsaroundaircraft.(SeeFigure14.)Shockwavescouldincreasedragandcausestructuralfailure,andtherefore,areimportantphenomenatostudy.Shockwavesarecharacterisedbydiscontinuitiesinphysicalowquantitiessuchaspressure,densityandve-locity.Therefore,shockdetectioniscomparabletoedgede-tection,andsimilarprinciplescouldbeusedasinimageprocessing.However,innumericalsimulations,thediscon-c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsFigure13:FlowintheAtlanticOcean,withstreamlinesandellipsesindicatingvortices.Blueandredellipsesindi-catevorticesrotatingclockwiseandcounterclockwise,re-spectively113.Figure14:ShockwavesaroundamodelofaX-15inawindtunnelwithanairowatMach3.5.ImagefromtheNASAwebsite.tinuitiesareoftensmearedoverseveralgridpoints,duetothelimitedresolutionofthegrid.Maetal.haveinvesti-gatedanumberoftechniquesfordetectingandforvisual-isingshockwaves79.Detectingshocksintwodimensionshasbeenextensivelyinvestigated64;86;105.However,thesetechniquesareingeneralnotapplicabletoshocksinthreedimensions.Theyalsodescribeanumberofapproachesforvisualisingshockwaves.TheapproachofHaimesandDar-mofal28istocreateisosurfacesoftheMachnumbernormaltotheshock,usingacombineddensitygradient/Machnum-bercomputation.VanRosendalepresentsatwo-dimensionalshock-ttingalgorithmforunstructuredgrids105.Theideareliesonthecomparisonofdensitygradientsbetweengridnodes.Maetal.compareanumberofalgorithmsforshockex-tractionandalsopresenttheirowntechnique79:TherstideaistocreateanisosurfaceofthepointswheretheMachnumberisone.However,thisresultsinthesonicsurface,which,ingeneral,doesnotrepresentashock.Theoretically,abetterideaistocreateanisosurfaceofthepointswherethenormalMachnumberisequaltoone.However,ifthesurfaceisunknown,itisimpossibletocomputetheMachnumber,normaltothesurface.Thisproblemcanberesolved,byapproximatingtheshocknormalwiththedensitygradient,sinceashockisalsoassociatedwithalargegradientofthedensity.There-fore,rris(roughly)normaltotheshocksurface.Thus,thealgorithmcomputestheMachnumberinthedirec-tionof,orprojectedonto,thedensitygradient.TheshocksurfaceisconstructedfromthepointswherethisMachnumberequalsone.ThisalgorithmisalsousedbyLovelyandHaimes78,buttheydenetheshockregionasthere-gionwithintheisosurfaceofMachnumberone,anduselteringtechniquestoreconstructasharpsurface.Pagendarmpresentedanalgorithmthatsearchesformax-imainthedensitygradient91.Therstandsecondderiva-tivesofthedensityinthedirectionofthevelocityarecomputed.Next,zero-levelisosurfacesareconstructedofthesecondderivative,tondtheextremainthedensitygradient.Finally,therstderivativeisusedtoselectonlythemaxima,whichcorrespondtoshockwaves,anddis-cardtheminima,whichrepresentexpansionwaves.Thiscanbedonebyselectingonlypositivevaluesoftherstderivative.However,thesecondderivativecanalsobezeroinsmoothregionswithfewdisturbances.Inthesere-gionstherstderivativewillbesmall,therefore,thesere-gionscanbeexcludedbydiscardingallpointswheretherstderivativeisbelowacertainthresholde.Ofcourse,thisposestheproblemofndingthecorrecte.Whenthevalueistoosmall,erroneousshockswillbefound,butifthevalueistoolarge,partsoftheshockscoulddisappear.Thisalgorithmcanalsobeusedforndingdiscontinu-itiesinothertypesofscalarelds,andthusforndingothertypesoffeatures.Maetal.presentanadaptedversionofthisalgorithm,whichusesthenormalMachnumbertodotheselectioninthethirdstep79.Again,intherstandsecondstep,thezero-levelisosurfacesoftheseconddirectionalderiva-tiveofthedensityareconstructed.Butfordiscriminat-ingshockwavesfromexpansionwavesandsmoothre-gions,thenormalMachnumberisused.Moreprecisely,thosepointsareselectedwherethenormalMachnumberisclosetoone.Herealso,asuitableneighbourhoodofonehastobechosen.6.3.SeparationandattachmentlineextractionOtherfeaturesinowdatasetsareseparationandattach-mentlinesontheboundariesofbodiesintheow.Thesearec\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsthelineswheretheowabruptlymovesawayfromorreturnstothesurfaceofthebody.Theseareimportantfeaturesinaerodynamicdesignbecausetheycancauseincreaseddragandreducedlift106,andtherefore,theiroccurrenceshouldbepreventedoratleastminimised.HelmanandHesselinkuseFigure15:Vectoreldtopology:atopologicalskeletonofaowaroundacylinder32.vectoreldtopologytovisualiseowelds31;32.Inadditiontothecriticalpoints,theattachmentanddetachmentnodesonthesurfaceofabodydeterminethetopologyoftheow.(SeeFigure15.)Theattachmentanddetachmentnodesarenotcharacterisedbyazerovelocity,becausetheyonlyoccurinowswithano-slipcondition,thatis,allpointsontheboundariesofobjectsareconstrainedtohavezerovelocity.Instead,theyarecharacterisedbyazerotangentialvelocity.Therefore,streamlinesimpingingonthesurfaceterminateattheattachmentordetachmentnode,insteadofbeingde-ectedalongthesurface.Globusetal.designedandimplementedasystemforanalysingandvisualisingthetopologyofaoweldwithiconsforthecriticalpointsandintegralcurvesstartingclosetothecriticalpoints25.Thesystemisalsoabletovisualiseattachmentanddetachmentsurfacesandvortexcores.PagendarmandWalter92andDeLeeuwetal.66usedskin-frictionlinesforvisualisingattachmentanddetachmentlinesinthebluntndataset.Forvisualisingtheselines,thewallshearvectortwiscomputed,whichisthegradientofthevelocitymagnitudejvj,projectedalongthenormalontothewall:tw=rjvj(rjvjn)n;(9)wherenistheunitvectornormaltothewall.Next,astandardstreamlinealgorithmisusedtointegratetheskin-frictionlinesfromtheshearvectoreld.Theseskin-frictionlinesshowthelocationofseparationandattachmentoftheowatthewall.(SeeFigure16.)Kenwrightgivesanoverviewofexistingtechniquesforvisualisingseparationandattachmentlinesandpresentsanewautomaticfeaturedetectiontechniqueforlocatingtheselines,basedonconceptsfrom2Dphaseplaneanalysis52.Somecommonapproachesare:Particleseedingandcomputationofintegralcurves,suchasstreamlinesandstreaklines,whichareconstrainedtoFigure16:Skin-frictiononabluntnfromaowsimulationatMach5,visualisedwithspotnoise66.thesurfaceofthebody.Thesecurvesmergealongsepara-tionlines.Skin-frictionlinescanbeused,analogoustosurfaceoilowtechniquesfromwindtunnelexperiments92.(Seeabove.)Texturesynthesistechniquescanbeusedtocreatecontin-uousowpatternsratherthandiscretelines66.HelmanandHesselinkcanautomaticallygeneratesepa-rationandattachmentlinesfromtheirvectoreldtopol-ogy31.Theselinesaregeneratedbyintegratingcurvesfromthesaddleandnodetypecriticalpointsinthedirec-tionoftherealeigenvector.However,onlyclosedsepara-tionsarefound,thatis,thecurvesstartandendatcriticalpoints.Openseparationdoesnotrequireseparationlinestostartorendatcriticalpoints,andisthereforenotdetectedbyowtopology.Openseparationhasbeenobservedinexper-iments,buthadnotpreviouslybeenstudiedinowsimula-tions.However,thealgorithmpresentedbyKenwrightdoesdetectbothclosedandopenseparationlines.Thetheoryforthisalgorithmisbasedonconceptsfromlinearphaseplaneanalysis.Itisassumedthatthecomputationaldomainonthesurfacecanbesubdividedintotrianglesandthevectorcom-ponentsaregivenatthevertices.Thealgorithmisexecutedforeachtriangle,makingitsuitableforparallelisation.Foreachtriangle,alinearvectoreldisconstructedsatisfyingthevectorsatthevertices.IfthedeterminantoftheJaco-bianmatrixisnonzero,thealgorithmcontinuesbycalculat-ingtheeigenvaluesandeigenvectorsoftheJacobian.Everytrianglehasacriticalpointsomewhereinitsvectoreld.Thelinearvectoreldistranslatedtothiscriticalpointandthecoordinatesystemischangedsothattheeigenvectorsareorthogonal.This(x;y)planeisalsoreferredtoasthePoincaréphaseplane.Bycomputingtangentcurvesinthephaseplane,weobtainthephaseportraitofthesystem.Forc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsasaddle,thetangentcurvesorstreamlinesconvergealongthexandyaxes.Forarepellingnode,theyconvergealongthexaxisandforanattractingnode,theyconvergealongtheyaxis.Ifthephaseportraitisasaddleorarepellingnode,theintersectionofthexaxiswiththetriangleiscomputed.Ifitintersects,thelinesegmentwillformpartofanattachmentline.Ifthephaseportraitisasaddleoranattractingnode,theintersectionoftheyaxiswiththetriangleiscomputed,andifitdoesintersect,thelinesegmentwillformpartofaseparationline.Aproblemwiththisalgorithmisthatdisjointedlineseg-mentsarecomputedinsteadofcontinuousattachmentandseparationlines.Otherproblemsoccurwhentheowsepa-rationorattachmentisrelativelyweak,orwhentheassump-tionoflocallylinearowisnotcorrect.Kenwrightetal.presenttwoalgorithmsfordetectingsep-arationandattachmentlines54.Therstisthealgorithmdiscussedabove,thesecondistheparallelvectoralgorithm.Bothalgorithmsuseeigenvectoranalysisofthevelocitygra-dienttensor.However,therstiselement-basedandresultsindisjointedlinesegments,whilethesecondispoint-basedandwillresultincontinuouslines.Intheparallelvectoralgorithm,pointsarelocatedwhereoneoftheeigenvectorseiofthegradientrvisparalleltothevectoreldv,thatis,pointswherethestreamlinecurvatureiszero,orinformula:eiv=0:(10)Thevelocityvectorsandtheeigenvectorscanbedeterminedattheverticesofthegridandinterpolatedwithintheele-ments.Atthevertices,eiviscalculatedforbotheigen-vectors,butonlyifbotheigenvectorsarereal,thatis,theclassicationofrvatthevertexiseitherasaddleoranode.Ifthecrossproducteivchangessignacrossanedge,thatmeansanattachmentorseparationlineintersectstheedge.Theintersectionpointcanthenbefoundbyinterpolationalongtheedge.Theattachmentandseparationlinescanbeconstructedbyconnectingtheintersectionpointsineachel-ement.Thedistinctionbetweenattachmentandseparationcanbemadeeasily,becauseattachmentwilloccurwherevisparalleltothesmallesteiandseparationwherevisparal-leltothelargestei.Anothersetoflinesisdetectedwiththisalgorithm,theinectionlines.Thesecaneasilybelteredoutbycheckingif:r(eiv)v=0:(11)Thiswillnotbetrueforinectionlines.BothalgorithmsdiscussedbyKenwrightetal.correctlyidentifymanyseparationandattachmentlines,butmayfailinidentifyingcurvedseparationlines54.Theparallelvectoralgorithmwillresultincontinuouslines,whereasthephaseplanealgorithmresultsindiscontinuouslinesegments.Bothalgorithmsdodetectopenseparationlines,whichdonotstartorendatcriticalpoints.6.4.OthertypesoffeaturesThereareothertypesoffeatures,suchasrecirculationzonesandboundarylayers.Workhasbeendoneinextractingthesefeatures,forexamplebyHaimes27andbySadarjoenandPost110.Huntetal.givequantitativecriteriafordividingaowintothreeareas,withspeciccharacteristics:eddies,streams,andconvergencezones37.7.FeaturetrackingandeventdetectionIntime-dependentdatasets,featuresareobjectsthatevolveintime.Determiningthecorrespondencebetweenfeaturesinsuccessivetimesteps,thatactuallyrepresentthesameob-jectatdifferenttimes,iscalledthecorrespondenceprob-lem.Featuretrackingisinvolvedwithsolvingthiscorre-spondenceproblem.Thegoaloffeaturetrackingistobeabletodescribetheevolutionoffeaturesthroughtime.Duringtheevolution,certaineventscanoccur,suchastheinterac-tionoftwoormorefeatures,orsignicantshapechangesoffeatures.Eventdetectionistheprocessofdetectingsuchevents,inordertodescribetheevolutionofthefeaturesevenmoreaccurately.Therearetwobasicapproachestosolvingthecorrespon-denceproblem.Therstisbasedonregioncorrespondence,thesecondonattributecorrespondence.7.1.RegioncorrespondenceRegioncorrespondenceinvolvescomparingtheregionsofinterestobtainedbyfeatureextraction.Basically,thebinaryimagesfromsuccessivetimesteps,containingthefeaturesfoundinthesetimesteps,arecomparedonacell-to-cellbasis.Correspondencecanbefoundusingaminimumdis-tanceoramaximumcross-correlationcriterion26orbymin-imisinganafnetransformationmatrix50.Itisalsopossi-bletoextractisosurfacesfromthefour-dimensionaltime-dependentdataset159,wheretimeisthefourthdimension.Thecorrespondenceisthenimplicitlydeterminedbyspatialoverlapbetweensuccessivetimesteps.Thiscriterionissim-ple,butnotalwayscorrect,asobjectscanoverlapbutnotcorrespond,orcorrespondbutnotoverlap.SilverandWangexplicitlyusethecriterionofspatialoverlapinsteadofcre-atingisosurfacesinfourdimensions130;131;132.Theypreventcorrespondencebyaccidentaloverlap,bycheckingthevol-umeofthecorrespondingfeaturesandtakingthebestmatch.Thisisalsotheideaofattributecorrespondence,whichisdiscussednext.Byusingspatialoverlap,certaineventsareimplicitlydetected,suchasabifurcationwhenafeatureinonetimestepoverlapswithtwofeaturesinthenexttimestep.Eventdetectionisalsodiscussedmoreelaboratelylater,inSection7.3.7.2.AttributecorrespondenceWithattributecorrespondence,thecomparisonoffeaturesfromsuccessiveframesisperformedonthebasisoftheat-c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldstributesofthefeatures,suchastheposition,size,volume,andorientation.Theseattributescanbecomputedinthefea-tureextractionphase,(seeSection5.3,)andcanbeusedfordescriptionandforvisualisationofthefeatures,andalsoforfeaturetracking,asdescribedhere.Theoriginalgriddataisnotneededanymore.Samtaneyetal.usetheattributevaluestogetherwithuser-providedtolerancestocreatecorrespon-dencecriteria115.Forexample,forpositionthefollowingcouldbeused:dist(pos(Oi+1);pos(Oi))Tdist;(12)wherepos(Oi)andpos(Oi+1)arethepositionsoftheob-jectsintimestepsiandi+1,respectively,andTdististheuser-providedtolerance.Forscalarattributes,thedifferenceortherelativedifferencecouldbeused.Forexample,totesttherelativedifferenceofthevolume,thefollowingformulacanbeused:vol(Oi+1)vol(Oi)max(vol(Oi+1);vol(Oi))Tvol;(13)wherevol(Oi)andvol(Oi+1)arethevolumesofthefeaturesinthetwotimesteps,andTvolisthetolerancegivenbytheuser.Eventssuchasabifurcationcanalsobetested.Ifafeatureintimestepisplitsintotwofeaturesintimestepi+1,thetotalvolumeaftertheeventhastobeapproximatelythesameasbeforetheevent.Thesameformulacanbeusedasforthenormalvolumetest,exceptthatvol(Oi+1)inthiscaseequalsthesumofthevolumesoftheseparatefeatures.Thepositioncriterionincaseofabifurcationeventcouldinvolvetheweightedaverageoftheindividualpositionsaftertheevent,wherethepositionsareweightedwiththevolume:dist(pos(Oi);å(vol(Oi+1)pos(Oi+1))å(vol(Oi+1)))Tdist;(14)whereOi+1nowrepresentsallobjectsintimestepi+1thatareinvolvedintheevent.Sethietal.presentamethodforimage-basedmotionanal-ysis,withtheuseofmarkersortokens123.Thebasiccon-ceptissmoothnessofmotionoffeaturepointtrajectoriesinpropertyspace.Propertiesorattributesoffeaturesarerepresentedbypointsinpropertyspace.Thesepointsmovethroughthepropertyspaceovertime,andthealgorithmtriestondthesmoothestpathsortrajectoriesinthispropertyspace.Thenotionofpropertycoherenceisused,thatis,thepropertiesaresupposedtochangegradually.Twoalgorithmsaredescribedtondthesmoothesttrajectories:ModiedGreedyExchangeandSimulatedAnnealing.Wewillde-scribetheformerhere.Thebasicideaofbothalgorithmsistocreateinitialtrajectoriesbyconnectingtheclosestpointsinpropertyspace,andthentoiterativelyrenethetrajecto-riestomaximisethetotalsmoothnessofalltrajectories.IntheGreedyExchangealgorithm,thisoptimisationisdonebyexchangingtokensbetweentrajectoriesandcomputingthegaininsmoothness.Theexchangewiththemaximumgainischosen.Theprocessisrepeated,bothforwardandbackwardintime,untilnomoreexchangesaremade.Thepropertyco-herenceisameasureforthreeconsecutivepointsinpropertyspace.Whenwecallthesepoints,fromthreeconsecutivetimesteps,a,bandc,thepropertycoherenceisdenedas:F(a;b;c)=w11~ab~bck~abkk~bck+w2 12qk~abkk~bckk~abk+k~bck!(15)Thersttermontherighthandsidegivesameasureforthechangeindirectionbetweenthevectors~aband~bc,andthesecondtermgivesameasureforthechangeinlengthofthesevectors.Boththesemeasuresarecombinedwithuser-providedweightsw1andw2.Becausedifferentpropertiescanhavedifferentcharacteristics,theaxesinthepropertyspacecanbescaledusingsuitablescalingfactors.Thenor-malformulasforcomputingtheinnerproductoftwovectorsandthelengthofavectorarethereforeadaptedasfollows:~ab~bc=kåi=1si(biai)(cibi)(16)k~abk=vkåi=1si(biai)2;wheresiisthescalingfactorfortheithaxis,withåsi=1,andaiistheithcomponentofthek-dimensionalpropertyvectora.Reindersetal.describeanalgorithmforfeaturetracking,thatisbasedonpredictionandverication99;100.Thisalgo-rithmisbasedontheassumptionthatfeaturesevolvepre-dictably.Thatmeans,ifapartoftheevolutionofafeature(path)hasbeenfound,apredictioncanbemadeintothenexttimestep(frame).Then,inthatnexttimestep,afea-tureissought,thatcorrespondstotheprediction.Ifafea-tureisfoundthatmatchesthepredictionwithincertainuser-providedtolerances,thefeatureisaddedtotheevolutionandthesearchiscontinuedtothenexttimestep.Whennomorefeaturescanbeaddedtothepath,anewpathisstarted.Inthismanner,allframesaresearchedforstartingpoints,bothinforwardandbackwardtimedirection,untilnomorepathscanbecreated.Apathisstartedbytryingallpossiblecombinationsoffeaturesfromtwoconsecutiveframesandcomputingthepredictiontothenextframe.Then,thepredictioniscom-paredtothecandidatefeaturesinthatframe.Ifthereisamatchbetweenthepredictionandthecandidate,apathisstarted.Toavoidanyerroneousorcoincidentalpaths,thereisaparameterfortheminimalpathlength,whichisusuallysetto4or5frames.Acandidatefeaturecanbedenedintwoways.Allfeaturesintheframecanbeusedascandidates,oronlyunmatchedfeaturescanbeused,thatis,thosefeaturesthathavenotyetbeenassignedtoanypath.Therstdeni-tionensuresthatallpossiblecombinationsaretestedandthatc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsthebestcorrespondenceischosen.However,itcouldalsoresultinfeaturesbeingaddedtomorethanonepath.Thishastoberesolvedafterwards.Usingtheseconddenitionismuchmoreefcient,becausethemorepathsarefound,thelessunmatchedfeatureshavetobetested.However,inthiscase,theresultsdependontheorderinwhichthefeaturesaretested.Thisproblemcanbesolvedbystartingthetrack-ingprocesswithstricttolerancesandrelaxingthetolerancesinsubsequentpasses.Thepredictionofafeatureisconstructedbylinearex-trapolationoftheattributesofthefeaturesfromthelasttwoframes.Otherpredictionschemescouldalsobeused,forex-ample,ifa-prioriknowledgeoftheowisavailable.Thepredictionismatchedagainstrealfeaturesusingcor-respondencecriteria,similartotheonesusedbySamtaneyetal.asdiscussedabove115.Foreachattributeofthefeatures,acorrespondencefunctioncanbecreated,whichreturnsapos-itivevalueforacorrespondencewithinthegiventolerance,withavalueof1foranexactmatch,andanegativevaluefornocorrespondence.Eachcorrespondencefunctionisas-signedaweight,besidesthetolerance.Usingthisweight,aweightedaverageiscalculatedofallcorrespondencefunc-tions,resultinginthecorrespondencefactorbetweenthetwofeatures.Forthiscorrespondencefactor,thesameappliesasfortheseparatecorrespondencefunctions,thatis,apositivevalueindicatesacorrespondence,with1indicatingaperfectmatch.Anegativecorrespondencefactormeansnomatch.7.3.EventdetectionAfterfeaturetrackinghasbeenperformed,eventdetectionisthenextstep.Eventsarethetemporalcounterpartsofspatialfeaturesintheevolutionoffeatures.Forexample,ifthepathorevolutionofafeatureends,itcanbeinterestingtodeter-minewhythathappens.Itcouldbethatthefeatureshrinksandvanishes,orthatthefeaturemovestotheboundaryofthedatasetanddisappears,orthatthefeaturemergeswithanotherfeatureandthetwocontinueasone.Samtaneyetal.introducedthefollowingevents:continuation,creation,dissipation,bifurcation,amalgamation115.(SeeFigure17.)Reindersetal.developedafeaturetrackingsystemthatisabletodetecttheseandotherevents100.Theterminologytheyuseisbirthanddeathinsteadofcreationanddissipa-tion,andsplitandmergeforbifurcationandamalgamation.Furthermore,theycandetectentryandexitevents,whereafeaturemovesbeyondtheboundaryofthedataset.Finally,foraspecic,graph-typefeature,thesystemisabletode-tectchangesintopology.Itdiscriminatesloopandjunctionevents.(SeeFigure18.)Manyothertypesofeventscanbeenvisioned,butforeachtypespecicdetectioncriteriahavetobeprovided.Foreventdetection,justasforfeaturetracking,onlythefeatureattributesareused.Analogoustothecorrespondencefunctions,foreventdetection,eventfunctionsarecomputed.1234123amalgamationbifurcationcontinuation21534dissipationcreationabc4Figure17:ThedifferenttypesofeventsasintroducedbySamtaneyetal.115.Forexample,todetectadeathevent,twoconditionsmusthold.First,thevolumeofthefeaturemustdecrease.Andsecond,thevolumeofthepredictionmustbeverysmallornegative.Theeventfunctionforthiseventreturnsaposi-tivevalueifthevolumeofthepredictioniswithintheuser-providedtolerance,and1ifthevolumeofthepredictionisnegative.Ifthevolumeisnotwithinthetolerance,there-turnedvaluewillbenegative.Theeventfunctionsfortheseparateattributesarecombinedintoasinglefactor,whichdeterminesiftheeventisadeathevent.Abirtheventcanbedetectedbydoingthesametestsinthebackwardtimedirection.Similarly,thetestsforsplitandmergeevents,andforen-tryandexiteventsareeachother'sreverseintime.8.VisualisationoffeaturesandeventsThenalstepinthefeatureextractionprocessis,ofcourse,thevisualisationofthefeatures.Anumberoftechniqueswillbecoveredinthissection.Themoststraightforwardvisual-isationistoshowthenodesinthedataset,thathavebeenc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsFigure18:Aloopeventhasoccurred.Inthetopgure,thefeaturecontainsaloop,inthebottomgure,thenextframe,theloophasdisappeared97.selectedintherststepofthefeatureextractionpipeline,theselection.Thisstepresultsinabinarydataset,witheachvalueindicatingwhetherthecorrespondingnodehasbeenselectedornot.Thisbinarydatasetcanbevisualised,forexample,withcrossesattheselectednodes.InFigure19,Figure19:Visualisationoftheselectedpointsinthebackward-facing-stepdataset114.suchavisualisationisshown.Thevisualisationisofasim-ulationoftheowbehindabackward-facingstep.Thefea-turethatisvisualisedhereisarecirculationzone,behindthestep.Thepointswereselectedwiththecriterion:normalisedhelicityH�0:6.Anothersimplevisualisationtechniqueistouseisosur-faces.Thiscanbedoneonthebinarydataset,resultingfromtheselectionstep,or,iftheselectionexpressionisasimplethreshold,directlyontheoriginaldataset.Thisresultsinisosurfacesenclosingtheselectedregions.Also,otherstandardvisualisationtechniquescanbeusedincombinationwiththebooleandatasetresultingfromtheselectionstep.Forexample,ina3Dowdataset,usingthestandardmethodsforseedingstreamlinesorstreamtubes,willnotprovidemuchinformationaboutthefeaturesandwillpossiblyresultinvisualclutter.However,iftheselectedpointsareusedtoseedstreamlines,bothbackwardandfor-wardintime,thiscanprovideusefulinformationaboutthefeaturesandtheirorigination.SeeFigure20,foranexample,Figure20:Visualisationwithstreamtubesoftherecircula-tioninthebackward-facing-stepdataset153.wheretwostreamtubesareshowninthebackward-facing-stepdataset.Theradiusofthetubesisinverselypropor-tionaltothesquarerootofthelocalvelocitymagnitude,andthecolourofthetubescorrespondstothepressure.If,insteadoftheseparateselectedpoints,theattributesareused,thathavebeencomputedinthefeatureextractionprocess,thenparametriciconscanbeusedforvisualisingthefeatures.Ifanellipsoidttingoftheselectedclustershasbeencomputed,therearethreeattributevectors:thecentrepo-sition,theaxislengths,andtheaxisorientations,whichcanbemappedontotheparametersofanellipsoidicon.Thisisasimpleicon,butveryefcientandaccurate.Itcanberep-resentedwith9oating-pointvalues,andisthereforespace-efcient.Furthermore,itcanbeveryquicklyvisualised,andalthoughitissimple,itgivesanaccurateindicationofthepositionandvolumeofafeature.InFigure21,anellipsoidttingiscomputedfromtheselectedpointsinFigure19.InFigure22,vorticesareshownfromaCFDsimulationwithturbulentvortexstructures.Thefeatureshavebeenselectedbyathresholdonvorticitymagnitude.Theyarebeingvi-sualisedwithisosurfacesandellipsoids.Itisclearlyvisiblethat,inthisapplication,withthestronglycurvedfeatures,theellipsoidsdonotgiveagoodindicationoftheshapeofthefeatures.But,asmentionedabove,thepositionandvol-umeattributesoftheellipsoidswillbeaccurate,andcanbec\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsFigure21:Anellipsoidttingcomputedfromtheselectedpointsinthebackward-facing-stepdataset114.Figure22:Vorticesinadatasetwithturbulentvortexstruc-tures,visualisedusingisosurfacesandellipsoids97.usedforfeaturetracking.InFigure23,theowpastata-peredcylinderisshown.Streamlinesindicatetheowdi-rection,androtatingstreamlinesindicatevortices.Thevor-ticesareselectedbylocatingtheserotatingstreamlines,us-ingthewinding-anglemethod112.Ellipsoidsareusedtovi-sualisethevortices,withthecolourindicatingtherotationaldirection.Greenmeansclockwiserotation,redmeanscoun-terclockwiserotation.Thesliceiscolouredwithl2,whichisthesecond-largesteigenvalueofthetensorS2+W2.(SeeSection6.1.)Thetaperedcylinderdatasetconsistsofanumberofhor-izontalslices,suchastheoneinFigure23,butthevor-ticesarenaturallythree-dimensionalstructures.ReindersFigure23:Vorticesbehindataperedcylinder.Thecolouroftheellipsoidsrepresentstherotationaldirection112.etal.createdthesevortexstructuresbyperformingfea-turetrackinginaspatialdimensioninsteadoftrackingintime101.First,featureextractionwasperformedinthetwo-dimensionalslices.Thisresultedintwo-dimensionalvor-tices,whichwererepresentedbyaspecialtypeofellipseicon.Next,these2Dfeaturesweretrackedinthez-direction,forming3Dvortexstructures.Figure24showsanimageoftheresultingfeatures.The2Diconsareellipseswithanum-berofcurvedspokes.Thecurvatureofthespokesindicatestherotationaldirectionofthevortices,andthenumberofspokesrepresentstherotationalspeed.The3Diconsarecon-structedbyconnectingthecentrepointsofthe2Dellipses.Forthe3DvorticesinFigure22,anothertypeoficonhastobeused,ifwewanttovisualisethestronglycurvedshapeofthefeatures.Reindersetal.presenttheuseofskeletongraphdescriptionsforfeatures,withwhichtheycancreateiconsthataccuratelydescribethetopologyofthefeatures,andapproximatelydescribetheshapeofthefeatures98.ComparetheuseofellipsoidiconswiththeuseofskeletoniconsinFigure25.Forvisualisingtheresultsoffeaturetracking,itisofcourseessentialtovisualisethetimedimension.Themostobviouswayistoanimatethefeatures,andtogivetheusertheopportunitytobrowsethroughthetimesteps,bothback-wardandforwardintime.Figure26showstheplayerfromthefeaturetrackingprogram,developedbyReinders100.Ontheleftofthegure,thegraphviewerisshown,whichgivesanabstractoverviewoftheentiredataset,withthetimestepsonthehorizontalaxis,andthefeaturesrepresentedbynodes,ontheverticalaxis.Thecorrespondencesbetweenfeaturesfromconsecutiveframesarerepresentedbyedgesinthegraph,andtherefore,theevolutionofafeatureintime,isrepresentedbyapathinthegraph.Ontherightoftheg-ure,thefeatureviewerisshown,inwhichthefeatureiconsfromthecurrentframearedisplayed.Also,acontrolpanelc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsFigure25:Turbulentvortexstructuresrepresentedbyellipsoidicons(left)andskeletonicons(right)97.isvisible,withwhichtheanimationcanbestarted,paused,andplayedforwardandbackward.Thegraphviewercanalsobeusedforvisualisingevents97.Foreachevent,aspeciciconhasbeencreated,whichismappedontothenodesofthegraph,sothattheusercanquicklyseewhicheventsoccurwhere,andhowof-tentheyoccur.InFigure27,thegraphviewerisshown,withapartofthegraph,containinganumberofevents.Eacheventisclearlyrecognisablebyitsicon.InFigure28,twoframesareshown,betweenwhichaspliteventhasoccurred.Inbothframes,thefeaturesareshownwithbothellipsoidandskeletonicons.Theadvantageoftheuseofskeletoniconsinthisapplicationisobvious.Becausetheshapeofthefeaturesismuchmoreaccuratelyrepresentedbytheskeletonicons,changesinshapeandeventssuchasthesearemuchmoreeasilydetected.9.ConclusionsandfutureprospectsAstate-of-the-artreportmustendwithanassessment:whathasbeenachievedinowvisualisationduringthelast15years?Havetheproblemsbeensolved?Aretheresultsap-pliedinpractice?Whataretheremainingchallenges?Alargenumberoftechniqueshasbeendevelopedandrened.Ingeneral,whichtechniquesarethebest,dependsstronglyonthepurposeofthevisualisation:theresearchproblemsaddressed,themethodsandapproachesused,andthepersonalinterestoftheresearcherorengineer.Usersmayalsohavedifferentpurposes,suchasexploration,detailedanalysis,orpresentation.Therefore,webelievethatalargevarietyoftechniquesmustbeavailabletoallowresearcherstochoosethemostsuitabletechniquefortheirpurpose.Inthissense,goodprogresshasbeenmade.Averysuccessfulgroupisthetexture-basedtechniques(seeSection3),mainlyusedfor2Dowsandsurfaceowelds.Theyareverysuitableforanimation,bothofstation-aryandtime-dependentows.Performancelimitationsseemtobeovercome165,andinteractiveusewithunsteadyowsisnowfeasible.However,generalisationto3Doweldsisstillproblematic.Techniquesbasedonintegrationforgener-atinggeometriesandparticleanimation(seeSection4)arealsoverysuccessful,andgeneralisebetterto3Delds.Oneoftheoriginalkeyproblemsinowvisualisationwasthedirectvisualisationofdirectionalstructuresina3Deld,possiblyvaryingintime.Despitesomeheroicattempts,thisproblemhasnotbeensolved,asperceivingthreespatialandthreedatadimensionsdirectlyseemsaverytoughjobforthehumaneyeandbrain.Atthesametime,thescaleofnumer-icalowsimulations,andthusthesizeoftheresultingdatasets,continuestogrowrapidly.Forthesereasons,simplica-tionstrategieshavetobeconceived,suchasspatialselection(slicing,regionsofinterest),datadimensionreduction,ge-ometrysimplication,andfeatureextraction.Slicingina3Deldreducestheproblemto2D,allowinguseofgood2Dtechniques,butcaremustbetakenwithin-terpretation,asthelossofthethirddimensionmayleadtophysicallyirrelevantresultsandwronginterpretation.Tak-ingasingle3Dtimeslicefroma3Dtime-dependentdatasethassimilardangers.Otherspatialselectionssuchas3Dregion-of-interestselectionarelessrisky,butmayleadtolossofcontext.Reductionofdatadimension,suchasre-ducingvectorquantitiestoscalarswillgivemorefreedomofchoiceinvisualisationtechniques(suchasusingvolumerendering),butwillnotleadtomuchdatareduction.Geom-etrysimplicationtechniquessuchaspolygonmeshdeci-mation,levels-of-detail,ormultiresolutiontechniqueswillbeeffectiveinmanagingverylargedatasetsandinteractiveexploration,enablinguserstotradeaccuracywithresponsetime.Featureextraction(Section5)isselectionandsimplica-tionbasedoncontent:extractingimportanthigh-levelinfor-mationfromadataset,visualisingthedatafromaproblem-orientedpointofview.Thisleadstoalargereductionofthedatasize,andtofullyorsemiautomaticgenerationofsim-pleandclearimages.Thetechniquesaregenerallyveryspe-cicforacertaintypeofproblem(suchasvortexdetection),c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsFigure28:Asplitevent,before(left)andafter(right).Thefeaturesarevisualisedwithbothanellipsoidandaskeletonicon97.andtherelationwiththeoriginalrawdataisindirect,andthereductionisachievedatthecostoflossofotherinfor-mation,whichisconsideredirrelevantforthepurpose.Butthetechniquesgeneralisewelltoanalysisoftime-dependentdatasets,leadingtocondensedepisodicvisualsummaries.Agoodpossibilityiscombiningfeatureextractiontech-niqueswithdirectorgeometrictechniques.Forexample,se-lectivevisualisationhasbeenusedeffectivelywithstream-linegeneration,toplaceseedpointsinselectedareas,andshowimportantstructureswithonlyasmallnumberofstreamlines.Combiningsimpleadvection-basedtechniqueswithiconicfeaturevisualisationcanalsoclarifytherelationbetweentherawdataandthederivedinformationusedinfeaturedetection.Theworkofvisualisationandsimulationexpertswillinthefuturebecomeinseparable:thedistinc-tionbetweensimulationandvisualisationwillbeincreas-inglyblurred.Agoodexampleisthetrackingofphasefronts(separationbetweentwodifferentuidsinmultiuidows)usinglevelsetmethods124,wherethefeatureextractionisapartofbothsimulationandvisualisation.Howaboutpracticalapplication?Manytechniqueshavebeenincorporatedincommercialvisualisationsystems,in-cludingfeature-basedtechniquesy.Thepracticaluseofowvisualisationismosteffectivewhenvisualisationex-pertscloselycooperatewithuiddynamicsexperts.Thisisespeciallytrueinfeature-basedvisualisation,wheredevel-opingdetectioncriteriaiscloselyconnectedtothephysi-calphenomenastudied.Butalsootherdisciplinescancon-tributetothiscomputationalscienceeffort:mathematicians,artistsanddesigners,experimentalscientists,imagepro-cessingspecialists,andalsoperceptualandcognitivescien-tists96.Someareasthatneedadditionalworkare:yhttp://www.ensight.com/products/flow-feature.htmlcomparativevisualisationandmultisourcecomparativedataanalysisvisualisationofmultivariateoweldswithscalar,vector,andtensordatahandlingandexploringhugetime-dependentowdatasetsdetectionandtrackingofnewtypesoffeatures,suchassurfacefeatures(shockwaves,phasefronts)intime-dependentdatasetstheuseofvirtualenvironmentsforvisualdataexplorationandcomputationalsteering:problemsofperformanceand3Dinteractionuserstudiesforevaluation,validation,andeldtestingofowvisualisationtechniquesvisualisationofinaccuracyanduncertainty.Overlookingthewholelandscapeofowvisualisationtechniques,wecansaythatvisualisationof2Dowshasreachedahighlevelofperfection,andfor3Darichsetoftechniquesisavailable.Inthefuture,wewillconcentrateontechniquesthatscalewellwitheverincreasingdatasetsizes,andthereforeselectionandsimplicationtechniqueswillgetmoreattention.10.AcknowledgementsTheauthorsthankallthosewhohavecontributedtothisresearchincludingAVL(www.avl.com),theAustriangovernmentalresearchprogramcalledKplus(www.kplus.at),andtheVRVisResearchCenter(www.VRVis.at).Furthermore,theauthorsthankallthepermissionholdersofimagesshowninthisreport.ThisprojectwaspartlysupportedbytheNetherlandsOr-ganizationforScienticResearch(NWO)ontheNWO-EWComputationalScienceProject“DirectNumericalSimula-tionofOil/WaterMixturesUsingFrontCapturingTech-niques”.c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsFigure24:3DVortexstructuresbehindataperedcylin-der97.References1.G.V.Bancroft,F.J.Merritt,T.C.Plessel,P.Kelaita,R.K.McCabe,andA.Globus.FAST:Amultipro-cessedenvironmentforvisualizationofcomputationaluiddynamics.InProc.Visualization'90,pages14–27,1990.112.D.C.BanksandB.A.Singer.Vortextubesinturbulentows:Identication,representation,reconstruction.InProc.Visualization'94,pages132–139,1994.143.D.C.BanksandB.A.Singer.Apredictor-correctortechniqueforvisualizingunsteadyow.IEEETVCG,1(2):151–163,June1995.154.H.Battke,D.Stalling,andH.Hege.Fastlineintegralconvolutionforarbitrarysurfacesin3D.InVisualiza-tionandMathematics,pages181–195,1997.8Figure26:Playingthroughtheturbulentvortexdataset.Figure27:Eventsarevisualisedinthegraphviewerwithspecial,characteristicicons.5.B.G.Becker,D.A.Lane,andN.L.Max.Unsteadyowvolumes.InProc.Visualization'95,1995.126.J.BeckerandM.Rumpf.Visualizationoftime-dependentvelocityeldsbytexturetransport.InVi-sualizationinSienticComputing'98,Eurographics,pages91–102,1998.77.S.BergerandE.Gröller.Color-tableanimationoffastorientedlineintgralconvolutionforvectoreldvisual-ization.InWSCG2000ConferenceProceedings,pages4–11,2000.78.E.BoringandA.Pang.Directionalowvisualizationofvectorelds.InProc.Visualization'96,pages389–392,1996.69.M.Brill,H.Hagen,H.-C.Rodrian,W.Djatschin,andS.V.Klimenko.Streamballtechniquesforowvisu-c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsalization.InProc.Visualization'94,pages225–231,1994.1210.S.BrysonandC.Levit.Thevirtualwindtunnel.IEEECGA,12(4):25–34,July1992.1111.B.CabralandC.Leedom.Highlyparallelvectorvi-sualenvironmentsusinglineintegralconvolution.InProceedingsoftheSeventhSIAMConferenceonPar-allelProcessingforScienticComputing,pages802–807,Feb.1995.3,712.B.CabralandL.C.Leedom.Imagingvectoreldsus-inglineintegralconvolution.InComputerGraphics(SIGGRAPH'93Proceedings),volume27,pages263–272,Aug.1993.713.W.CaiandP.A.Heng.Principalstreamsurfaces.InProc.Visualization'97,pages75–80,1997.1214.J.ClyneandJ.Dennis.Interactivedirectvolumeren-deringoftime-varyingdata.InDataVisualization'99,Eurographics,pages109–120.May1999.615.R.Craws,N.Max,B.Becker,andB.Cabral.Volumerenderingof3DscalarandvectoreldsatLLNL.InProceedings,Supercomputing'93:Portland,Oregon,November15–19,1993,pages570–576,1993.616.M.Dindar,A.Lemnios,M.S.Shephard,K.Jansen,andD.Kenwright.Effectoftipvortexresolutiononuh-60arotor-bladehoverperformancecalculations.In54thAHSAnnualForumandTechnologyDisplay.AmericanHelicopterSociety,Alexandria,Va.,1998.1617.D.S.EbertandP.Rheingans.Volumeillustration:Non-photorealisticrenderingofvolumemodels.InIEEETVCG,volume7(3),pages253–264,2001.618.D.S.Ebert,R.Yagel,J.Scott,andY.Kurzion.Vol-umerenderingmethodsforcomputationaluiddynam-icsvisualization.InProc.Visualization'94,pages232–239,1994.619.A.J.FenlonandT.David.Anintegratedvisualizationanddesigntoolkitforexibleprostheticheartvalves.InProc.Visualization'00,pages453–456,2000.5,1020.L.K.Forssell.Visualizingowovercurvilineargridsurfacesusinglineintegralconvolution.InProc.Visu-alization'94,pages240–247,1994.821.L.K.ForssellandS.D.Cohen.Usinglineintegralconvolutionforowvisualization:Curvilineargrids,variable-speedanimation,andunsteadyows.IEEETVCG,1(2):133–141,June1995.822.T.Frühauf.Raycastingvectorelds.InProc.Visual-ization'96,pages115–120,1996.623.A.L.FuhrmannandE.Gröller.Real-timetechniquesfor3Dowvisualization.InProc.Visualization'98,pages305–312,1998.1224.T.Glau.Exploringinstationaryuidowsbyinterac-tivevolumemovies.InDataVisualization'99,Euro-graphics,pages277–283.May1999.625.A.Globus,C.Levit,andT.Lasinski.Atoolforvisual-izingthetopologyof3dvectorelds.InProc.Visual-ization'91,pages33–39,1991.15,1826.M.indenHaak,H.J.W.Spoelder,andF.C.A.Groen.Matchingofimagesbyusingautomaticallyselectedre-gionsofinterest.InComputingScienceintheNether-lands'92,pages27–40,1992.1927.R.Haimes.Usingresidencetimefortheextractionofrecirculationregions.AIAAPaper99-3291,Depart-mentofAeronauticsandAstronautics,MassachusettsInstituteofTechnology,June1999.1928.R.HaimesandD.Darmofal.Visualizationincomputa-tionaluiddynamics:Acasestudy.InProc.Visualiza-tion'91,pages392–397,1991.1729.H.HegeandD.Stalling.FastLICwithpiecewisepoly-nomiallterkernels.InMathematicalVisualization,pages295–314.1998.730.J.L.HelmanandL.Hesselink.Representationanddisplayofvectoreldtopologyinuidowdatasets.IEEEComputer,22(8):27–36,Aug.1989.13,1431.J.L.HelmanandL.Hesselink.Surfacerepresentationsoftwo-andthree-dimensionaluidowtopology.InProc.Visualization'90,pages6–13,1990.1832.J.L.HelmanandL.Hesselink.Visualizingvectoreldtopologyinuidows.IEEECGA,11(3):36–46,May1991.13,1833.L.Hesselink,F.H.Post,andJ.vanWijk.Researchissuesinvectorandtensoreldvisualization.IEEECGA,14(2):76–79,Mar.1994.134.W.HibbardandD.Santek.Interactivityisthekey.InProceedingsoftheChapelHillWorkshoponVolumeVisualization,pages39–43,May1989.335.J.P.M.Hultquist.Interactivenumericalowvisual-izationusingStreamSurfaces.ComputingSystemsinEngineering,1(2-4):349–353,1990.1236.J.P.M.Hultquist.ConstructingStreamSurfacesinSteady3DVectorFields.InProc.Visualization'92,pages171–178,1992.1237.J.C.R.Hunt,A.A.Wray,andP.Moin.Eddies,streams,andconvergencezonesinturbulentows.InProceedingsoftheSummerProgramCenterforTurbu-lenceResearch,pages193–208,1988.1938.V.InterranteandC.Grosch.Strategiesforeffectivelyvisualizing3DowwithvolumeLIC.InProc.Visual-ization'97,pages421–424,1997.8,9c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFields39.V.InterranteandC.Grosch.Visualizing3Dow.IEEECGA,18(4):49–53,1998.940.V.L.Interrante.Illustratingsurfaceshapeinvolumedataviaprincipaldirection-driven3Dlineintegralcon-volution.InSIGGRAPH97ConferenceProceedings,AnnualConferenceSeries,pages109–116,Aug.1997.941.J.JeongandF.Hussain.Ontheidenticationofavor-tex.J.FluidMechanics,285:69–94,1995.1542.M.Jiang,R.Machiraju,andD.Thompson.Anovelapproachtovortexcoreregiondetection.InDataVisu-alization2002.Proc.VisSym'02,2002.15,1643.B.Jobard,G.Erlebacher,andM.Y.Hussaini.Hardware-acceleratedtextureadvection.InProc.Vi-sualization'00,pages155–162,2000.744.B.Jobard,G.Erlebacher,andM.Y.Hussaini.Tiledhardwareacceleratedtextureadvectionforunsteadyowvisualization.InProceedingsofGraphicon2000,pages189–196,August2000.745.B.Jobard,G.Erlebacher,andM.Y.Hussaini.Lagrangian-eulerianadvectionforunsteadyowvisu-alization.InIEEEVisualization,2001.7,846.B.JobardandW.Lefer.Creatingevenly–spacedstreamlinesofarbitrarydensity.InProc.8thEGWork-shoponVisualizationinScienticComputing,vol-ume7,April28-301997.1047.B.JobardandW.Lefer.Themotionmap:Efcientcomputationofsteadyowanimations.InProc.Vi-sualization'97,pages323–328,1997.748.B.JobardandW.Lefer.Unsteadyowvisualiza-tionbyanimatingevenly-spacedstreamlines.InCom-puterGraphicsProceedings(Eurographics2000),vol-ume19(3),2000.1049.B.JobardandW.Lefer.Multiresolutionowvisual-ization.InWSCG2001,InternationalConferenceinCentralEuropeonComputerGraphics,VisualizationandDigitalInteractiveMedia,February2001.10,1150.D.S.KalivasandA.A.Sawchuk.Aregionmatch-ingmotionestimationalgorithm.ComputerVision,Graphics,andImageProcessing:ImageUnderstand-ing,54(2):275–288,Sept.1991.1951.D.Kao,B.Zhang,K.Kim,andA.Pang.3dowvi-sualizationusingtextureadvection.InInternationalConferenceonComputerGraphicsandImaging'01,August2001.952.D.N.Kenwright.Automaticdetectionofopenandclosedseparationandattachmentlines.InProc.Visu-alization'98,pages151–158,1998.1853.D.N.KenwrightandR.Haimes.Automaticvortexcoredetection.IEEECGA,18(4):70–74,July1998.1654.D.N.Kenwright,C.Henze,andC.Levit.Featureextractionofseparationandattachmentlines.IEEETVCG,5(2),Apr.1999.1955.D.N.KenwrightandD.A.Lane.InteractiveTime-DependentParticleTracingUsingTetrahedralDecom-position.IEEETVCG,2(2):120–129,June1996.1156.L.Khouas,C.Odet,andD.Friboulet.2Dvectoreldvisualizationusingfurliketexture.InDataVisualiza-tion'99.Proc.VisSym'99,Eurographics,pages35–44.1999.757.R.M.Kirby,H.Marmanis,andD.H.Laidlaw.Visu-alizingmultivalueddatafrom2Dincompressibleowsusingconceptsfrompainting.InProc.Visualization'99,pages333–340,1999.558.M.KiuandD.C.Banks.Multi-frequencynoiseforLIC.InProc.Visualization'96,pages121–126,1996.759.R.V.KlassenandS.J.Harrington.Shadowedhedge-hogs:Atechniqueforvisualizing2Dslicesof3Dvec-torelds.InProc.Visualization'91,pages148–153,1991.560.D.A.Lane.Parallelizingaparticletracerforowvisu-alization.InProceedingsoftheSeventhSIAMConfer-enceonParallelProcessingforScienticComputing,pages784–789,Feb.1995.361.D.A.Lane.ScienticVisualizationofLarge-ScaleUn-steadyFluidFlows,chapter5,pages125–145.Sci-enticVisualization:Overviews,Methodologies,andTechniques.1997.462.R.S.Laramee.Interactive3DFlowVisualizationUs-ingaStreamrunner.InCHI2002,ConferenceonHumanFactorsinComputingSystems,ExtendedAb-stracts,pages804–805,April20-252002.1263.R.S.LarameeandR.D.Bergeron.AnIsosurfaceCon-tinuityAlgorithmforSuperAdaptiveResolutionData.InCGI2002,ComputerGraphicsInternational,July1-52002.(toappear).1064.B.vanLeer.Thecomputationofsteadysolutionstotheeulerequations:aperspective.Technicalreport,Uni-versityofMichigan,1986.1765.W.C.deLeeuw.Divideandconquerspotnoise.InPro-ceedingsofSupercomputing'97(CD-ROM),Nov.1997.5,766.W.C.deLeeuw,H.-G.Pagendarm,F.H.Post,andB.Walter.Visualsimulationofexperimentaloil-owvisualizationbyspotnoiseimagesfromnumericalowsimulation.InProc.6thEGWorkshoponVisualizationinScienticComputing,pages135–148,1995.7,1867.W.C.deLeeuw,F.H.Post,andR.W.Vaatstra.Visu-c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsalizationofturbulentowbyspotnoise.InVirtualEn-vironmentsandScienticVisualization'96,pages286–295.Apr.1996.768.W.C.deLeeuwandR.vanLiere.ComparingLICandspotnoise,.InProc.Visualization'98,pages359–366,1998.769.W.C.deLeeuwandR.vanLiere.Visualizationofglobalowstructuresusingmultiplelevelsoftopology.InDataVisualization'99.Proc.VisSym'99,pages45–52,1999.1370.W.C.deLeeuwandJ.vanWijk.Enhancedspotnoiseforvectoreldvisualization.InProc.Visualization'95,pages233–239,Oct.1995.771.Y.Levy,D.Degani,andA.Seginer.Graphicalvisu-alizationofvorticalowsbymeansofhelicity.AIAAJournal,28(8):1347–1352,Aug.1990.1572.H.Löffelmann.VisualizingLocalPropertiesandChar-acteristicStructuresofDynamicalSystems.PhDthesis,TechnicalUniversityofVienna,1998.973.H.LöffelmannandE.Gröller.Enhancingthevisu-alizationofcharacteristicstructuresindynamicalsys-tems.InVisualizationinScienticComputing'98,Eu-rographics,pages59–68,1998.1174.H.Löffelmann,A.König,andE.Gröller.Fastvisual-izationof2Ddynamicalsystemsbytheuseofvirtualinkdroplets.In13thSpringConferenceonComputerGraphics,pages111–118,June1997.775.H.Löffelmann,L.Mroz,andE.Gröller.Hierarchicalstreamarrowsforthevisualizationofdynamicalsys-tems.InVisualizationinScienticComputing'97,Eu-rographics,pages155–164,1997.1276.H.Löffelmann,L.Mroz,E.Gröller,andW.Purgath-ofer.Streamarrows:Enhancingtheuseofstreamsur-facesforthevisualizationofdynamicalsystems.TVC,13:359–369,1997.12,1377.H.Löffelmann,Z.Szalavári,andM.E.Gröller.Lo-calanalysisofdynamicalsystems–conceptsandinter-pretation.InProceedingsofTheFourthInternationalConferenceinCentralEuropeonComputerGraphicsandVisualization,pages170–180,1996.478.D.LovelyandR.Haimes.Shockdetectionfromcom-putationaluiddynamicsresults.InProceedingsofthe14thAIAAComputationalFluidDynamicsConfer-ence.AmericanInstituteofAeronauticsandAstronau-tics,1999.AIAApaper99-3285.1779.K.-L.Ma,J.vanRosendale,andW.Vermeer.3dshockwavevisualizationonunstructuredgrids.InProc.SymposiumonVolumeVisualization,pages87–94,104,1996.1780.X.Mao,Y.Hatanaka,H.Higashida,andA.Imamiya.Image-guidedstreamlineplacementoncurvilineargridsurfaces.InProc.Visualization'98,pages135–142,1998.1181.X.Mao,L.Hong,A.Kaufman,N.Fujita,andM.Kikukawa.Multi-granularitynoiseforcurvilineargridLIC.InGraphicsInterface,pages193–200,June1998.882.X.Mao,M.Kikukawa,N.Fujita,andA.Imamiya.Lineintegralconvolutionfor3Dsurfaces.InVisual-izationinScienticComputing'97.ProceedingsoftheEurographicsWorkshopinBoulogne-sur-Mer,France,pages57–70,1997.883.N.Max,B.Becker,andR.Craws.Flowvolumesforinteractivevectoreldvisualization.InProc.Visual-ization'93,pages19–24,1993.12,1384.P.MoinandJ.Kim.Thestructureofthevorticityeldinturbulentchannelow.part1.analysisofinstantan-iouseldsandstatisticalcorrelations.J.FluidMechan-ics,155:441,1985.1585.P.Moran,C.Henze,D.Ellsworth,S.Bryson,andD.Kenwright.TheFieldEncapsulationLibrary(FEL).586.K.W.MortonandM.A.Rudgyard.Shockrecoveryandthecellvertexschemeforthesteadyeulerequa-tions.InD.L.Dowyer,M.Y.Hussaini,andR.G.Voigt,editors,Lecturenotesinphysics,pages424–428.Springer-Verlag,1989.1787.G.M.Nielson.Toolsforcomputingtangentcurvesforlinearlyvaryingvectoreldsovertetrahedraldomains.IEEETVCG,5(4):360–372,Oct.–Dec.1999.1188.G.M.Nielson,H.Hagen,andH.Müller.ScienticVisualization:Overviews,Methodologies,andTech-niques.1997.1089.A.OkadaandD.L.Kao.Enhancedlineintegralcon-volutionwithowfeaturedetection.InSPIEVol.3017VisualDataExplorationandAnalysisIV,pages206–217,Feb.1997.890.K.Ono,H.Matsumoto,andR.Himeno.Visualizationofthermalowsinanautomotivecabinwithvolumerenderingmethod.InDataVisualization2001.Proc.VisSym'01,pages301–308,2001.691.H.-G.PagendarmandB.Seitz.Analgorithmforde-tectionandvisualizationofdiscontinuitiesinscien-ticdataeldsappliedtoowdatawithshockwaves.InP.Palamidese,editor,ScienticVisualization:Ad-vancedSoftwareTechniques,pages161–177.EllisHor-woodLimited,1993.1792.H.-G.PagendarmandB.Walter.Featuredetectionfromvectorquantitiesinanumericallysimulatedhypersonicc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldsoweldincombinationwithexperimentalowvisu-alization.InProc.Visualization'94,pages117–123,1994.1893.R.PeikertandM.Roth.Theparallelvectorsoperator-avectoreldvisualizationprimitive.InProc.Visual-ization'99,pages263–270,1999.1694.L.M.Portela.OntheIdenticationandClassicationofVortices.PhDthesis,StanfordUniversity,SchoolofMechanicalEngineering,1997.1695.F.H.PostandT.vanWalsum.Fluidowvisualization.InFocusonScienticVisualization,pages1–40.1993.496.F.H.PostandJ.J.vanWijk.Visualrepresentationofvectorelds:Recentdevelopmentsandresearchdi-rection.InL.R.etal.,editor,ScienticVisualization:AdvancesandChallenges,chapter23,pages367–390.AcademicPress,London,1994.4,2597.F.Reinders.Feature-BasedVisualizationofTime-DependentData.PhDthesis,DelftUniversityofTech-nology,TheNetherlands,Mar.2001.22,23,24,25,2698.F.Reinders,M.E.D.Jacobson,andF.H.Post.Skele-tongraphgenerationforfeatureshapedescription.InDataVisualization2000.Proc.VisSym'00,pages73–82,2000.2399.F.Reinders,F.H.Post,andH.J.W.Spoelder.Attribute-basedfeaturetracking.InDataVisualization'99.Proc.VisSym'99,pages63–72,1999.20100.F.Reinders,F.H.Post,andH.J.W.Spoelder.Visu-alizationoftime-dependentdatausingfeaturetrackingandeventdetection.TheVisualComputer,17(1):55–71,Feb.2001.20,21,23101.F.Reinders,I.A.Sadarjoen,B.Vrolijk,andF.H.Post.Vortextrackingandvisualisationinowpastataperedcylinder.ComputerGraphicsForum,2002.Toappear.23102.F.Reinders,H.J.W.Spoelder,andF.H.Post.Exper-imentsontheaccuracyoffeatureextraction.InProc.9thEGWorkshoponVisualizationinScienticCom-puting,pages49–58.1998.14103.C.Rezk-Salama,P.Hastreiter,C.Teitzel,andT.Ertl.Interactiveexplorationofvolumelineintegralconvolu-tionbasedon3D-texturemapping.InProc.Visualiza-tion'99,pages233–240,1999.9104.S.K.Robinson.Coherentmotionsintheturbulentboundarylayer.Ann.Rev.FluidMech.,23:601–639,1991.15105.J.vanRosendale.Floatingshockttingvialagrangianadaptivemeshes.TechnicalReport94-89,InstituteforComputerApplicationsinScienceandEngineering,1994.17106.M.Roth.AutomaticExtractionofVortexCoreLinesandOtherLine-TypeFeaturesforScienticVisualiza-tion.Diss.ethno.13673,SwissFederalInstituteofTechnology,ETHZürich,2000.18107.M.RothandR.Peikert.Flowvisualizationforturbo-machinerydesign.InProc.Visualization'96,pages381–384,1996.14,15108.M.RothandR.Peikert.Ahigher-ordermethodforndingvortexcorelines.InProc.Visualization'98,pages143–150,1998.16109.S.Röttger,M.Kraus,andT.Ertl.Hardware-acceleratedvolumeandisosurfacerenderingbasedoncell-projection.InProc.Visualization'00,pages109–116,2000.10110.I.SadarjoenandF.H.Post.Deformablesurfacetech-niquesforeldvisualization.InProceedingsofEu-rographics'97,volume16(3),pagesC–109–C–116,1997.19111.I.A.Sadarjoen,A.J.deBoer,F.H.Post,andA.E.Mynett.Particletracingins-transformedgridsusingtetrahedral6-decomposition.InVisualizationinScien-ticComputing'98,Eurographics,pages71–80,1998.11112.I.A.SadarjoenandF.H.Post.Geometricmethodsforvortexdetection.InDataVisualization'99.Proc.Vis-Sym'99,pages53–62,1999.16,23113.I.A.SadarjoenandF.H.Post.Detection,quantica-tion,andtrackingofvorticesusingstreamlinegeome-try.Computers&Graphics,24(3):333–341,June2000.17114.I.A.SadarjoenandF.H.Post.Techniquesandappli-cationsofdeformablesurfaces.InH.Hagen,G.M.Nielson,andF.H.Post,editors,ScienticVisualization,ProceedingsDagstuhl'97,pages277–286.IEEECS,2000.22,23115.R.Samtaney,D.Silver,N.Zabusky,andJ.Cao.Visu-alizingfeaturesandtrackingtheirevolution.IEEEC,27(7):20–27,July1994.20,21116.A.Sanna,B.Montrucchio,andR.Arinaz.Visualizingunsteadyowsbyadaptivestreaklines.InWSCG2000ConferenceProceedings,2000.10117.A.Sanna,B.Montrucchio,andP.Montuschi.Asurveyonvisualizationofvectoreldsbytexture-basedmeth-ods.ResearchDevelopmentsinPatternRecognition,1(1),2000.6118.G.Scheuermann,H.Burbach,andH.Hagen.Visual-izingplanarvectoreldswithnormalcomponentusingc\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFieldslineintegralconvolution.InProc.Visualization'99,pages255–262,1999.8119.G.Scheuermann,H.Kruger,M.Menzel,andA.P.Rockwood.Visualizingnonlinearvectoreldtopology.IEEETVCG,4(2):109–116,Apr.1998.13120.W.Schroeder,C.R.Volpe,andW.E.Lorensen.Thestreampolygon:Atechniquefor3Dvectoreldvisu-alization.InProc.Visualization'91,pages126–132,1991.12121.W.J.Schroeder,K.M.Martin,andW.E.Lorensen.TheVisualizationToolkit.2ndedition,1998.5,10122.M.Schulz,F.Reck,W.Bartelheimer,andT.Ertl.In-teractivevisualizationofuiddynamicssimulationsinlocallyrenedcartesiangrids.InProc.Visualization'99,pages413–416,1999.5123.I.K.Sethi,N.V.Patel,andJ.H.Yoo.Ageneralap-proachfortokencorrespondence.PatternRecognition,27(12):1775–1786,Dec.1994.20124.J.A.Sethian.LevelSetMethodsandFastMarch-ingMethods.CambridgeMonographsonAppliedandComputationalMathematics.CambridgeUniver-sityPress,2edition,June1999.25125.H.ShenandD.L.Kao.Anewlineintegralconvolu-tionalgorithmforvisualizingtime-varyingowelds.IEEETVCG,4(2),Apr.–June1998.8126.H.W.Shen,C.R.Johnson,andK.L.Ma.Visualizingvectoreldsusinglineintegralconvolutionanddyead-vection.InProc.SymposiumonVolumeVisualization,pages63–70,1996.7127.H.W.ShenandD.L.Kao.UFLIC:Alineintegralconvolutionalgorithmforvisualizingunsteadyows.InProc.Visualization'97,pages317–323,1997.8128.P.ShirleyandA.Tuchman.Apolygonalapproxima-tiontodirectscalarvolumerendering.InComputerGraphics(SanDiegoWorkshoponVolumeVisualiza-tion),volume24,pages63–70,Nov.1990.12129.D.Silver,F.Post,andI.Sadarjoen.FlowVisualiza-tion,volume7ofWileyEncyclopediaofElectricalandElectronicsEngineering,pages640–652.1999.4130.D.SilverandX.Wang.Volumetracking.InProc.Visualization'96,pages157–164,1996.19131.D.SilverandX.Wang.Trackingandvisualizingturbu-lent3dfeatures.IEEETVCG,3(2),June1997.19132.D.SilverandX.Wang.Visualizingevolvingscalarphenomena.FutureGenerationComputerSystems,15(1):99–108,Feb.1999.19133.B.SingerandD.Banks.Apredictor-correctorschemeforvortexidentication.ICASEReportNo.94-11,ICASE,Mar.1994.15134.D.Stalling.LIConsurfaces.InTextureSynthesiswithLineIntegralConvolution,pages51–64,1997.8135.D.StallingandH.Hege.Fastandresolutionindepen-dentlineintegralconvolution.InSIGGRAPH95Con-ferenceProceedings,AnnualConferenceSeries,pages249–256,August1995.7136.D.SujudiandR.Haimes.Identicationofswirlingowin3dvectorelds.AIAAPaper95-1715,June1995.15137.J.E.Swan,M.Lanzagorta,D.Maxwell,E.Kou,J.Uhlmann,W.Anderson,H.Shyu,andW.Smith.Acomputationalsteeringsystemforstudyingmicrowaveinteractionswithmissilebodies.InProc.Visualization'00,pages441–444,2000.6138.Y.Tamura,K.Fujii,andT.Ogawa.Parallelcompu-tationsandvisualizationsofowsaroundhigh-speedtrains.InMechatronicsandsupercomputingapplica-tionsinthetransportationindustries:ISATAInterna-tionalSymposiumonAutomotiveTechnologyandAu-tomation(27th:1994:Aachen,Germany),pages771–778,1994.3139.C.K.TangandG.G.Medioni.Extremalfeatureex-tractionfrom3Dvectorandnoisyscalarelds.InProc.Visualization'98,pages95–102,1998.10140.C.TeitzelandT.Ertl.Newapproachesforparticletrac-ingonsparsegrids.InDataVisualization'99,Euro-graphics,pages73–84.May1999.12141.C.Teitzel,R.Grosso,andT.Ertl.Efcientandreli-ableintegrationmethodsforparticletracinginunsteadyowsondiscretemeshes.InVisualizationinScienticComputing'97,Eurographics,pages31–42,1997.11142.C.Teitzel,R.Grosso,andT.Ertl.Lineintegralconvo-lutionontriangulatedsurfaces.InProceedingsoftheFifthInternationalConferenceinCentralEuropeonComputerGraphicsandVisualization'97,number8,pages572–581,1997.8143.C.Teitzel,R.Grosso,andT.Ertl.Particletracingonsparsegrids.InVisualizationinSienticComputing'98,Eurographics,pages81–90,1998.11144.A.TeleaandJ.vanWijk.Simpliedrepresentationofvectorelds.InProc.Visualization'99,pages35–42,1999.7145.L.A.Treinish.Multi-resolutionvisualizationtech-niquesfornestedweathermodels.InProc.Visualiza-tion'00,pages513–516,2000.6,10146.G.TurkandD.Banks.Image-guidedstreamlineplace-ment.InSIGGRAPH96ConferenceProceedings,An-nualConferenceSeries,pages453–460,Aug.1996.10,11c\rTheEurographicsAssociation2002. Post,Vrolijk,Hauser,Laramee,Doleisch/FeatureExtractionandVisualisationofFlowFields147.S.Ueng,C.Sikorski,andK.Ma.Out-of-CoreStream-lineVisualizationonLargeUnstructuredMeshes.IEEETVCG,3(4):370–?,Oct.1997.3148.S.K.Ueng,C.Sikorski,andK.L.Ma.EfcientStreamline,Streamribbon,andStreamtubeConstruc-tionsonUnstructuredGrids.IEEETVCG,2(2):100–110,June1996.12149.V.Verma,D.Kao,andA.Pang.PLIC:BridgingthegapbetweenstreamlinesandLIC.InProc.Visualization'99,pages341–348,1999.8,9150.V.Verma,D.Kao,andA.Pang.Aow-guidedstream-lineseedingstrategy.InProc.Visualization'00,pages163–170,2000.10151.J.VillasenorandA.Vincent.Analgorithmforspacerecognitionandtimetrackingofvorticitytubesintur-bulence.ComputerVision,Graphics,andImagePro-cessing:ImageUnderstanding,55(1):27–35,Jan.1992.15152.T.vanWalsum.SelectiveVisualizationonCurvilinearGrids.PhDthesis,DelftUniversityofTechnology,TheNetherlands,Dec.1995.14153.T.vanWalsum,F.H.Post,D.Silver,andF.J.Post.Fea-tureextractionandiconicvisualization.IEEETVCG,2(2):111–119,June1996.22154.C.WareandG.Franck.Evaluatingstereoandmotioncuesforvisualizinginformationnetsinthreedimen-sions.ACMTransactionsonGraphics,15(2):121–140,Apr.1996.3155.G.H.Weber,O.Kreylos,T.J.Ligocki,J.M.Shalf,H.Hagen,B.Hamann,andK.I.Joy.Extractionofcrack-freeisosurfacesfromadaptivemeshrenementdata.InDataVisualization2001.Proc.VisSym'01,pages25–34,2001.10156.R.WegenkittlandE.Gröller.FastorientedlineintegralconvolutionforvectoreldvisualizationviatheInter-net.InProc.Visualization'97,pages309–316,1997.7157.R.Wegenkittl,E.Gröller,andW.Purgathofer.Ani-matingowelds:Renderingoforientedlineintegralconvolution.InComputerAnimation'97Proceedings,pages15–21,June1997.7158.R.Wegenkittl,E.Gröller,andW.Purgathofer.Visu-alizingthedynamicalbehaviorofWonderland.IEEECGA,17(6):71–79,Nov./Dec.1997.10159.C.WeigleandD.C.Banks.Extractingiso-valuedfea-turesin4-dimensionalscalarelds.InProc.Sympo-siumonVolumeVisualization,pages103–110,1998.19160.R.Westermann.Therenderingofunstructuredgridsrevisited.InDataVisualization2001.Proc.VisSym'01,pages65–74,2001.5,6161.R.Westermann,C.Johnson,andT.Ertl.Topology-preservingsmoothingofvectorelds.InIEEETVCG,volume7(3),pages222–229,2001.12162.J.J.vanWijk.Spotnoise-texturesynthesisfordatavi-sualization.InComputerGraphics.Proc.SIGGRAPH91,pages309–318,1991.6163.J.J.vanWijk.Flowvisualizationwithsurfaceparticles.IEEECGA,13(4):18–24,July1993.12164.J.J.vanWijk.ImplicitStreamSurfaces.InProc.Visu-alization'93,pages245–252,1993.12165.J.J.vanWijk.Imagebasedowvisualization.InPro-ceedingsSIGGRAPH2002,2002.24166.C.Yang,T.Mitra,andT.Chiueh.On-the-yrender-ingoflosslesslycompressedirregularvolumedata.InProc.Visualization'00,pages101–108,2000.3167.L.A.YatesandG.T.Chapman.Streamlines,vortic-itylines,andvortices.TechnicalReportAIAA-91-0731,AmericanInstituteofAeronauticsandAstronau-tics,1991.15168.N.J.Zabusky,O.N.Boratav,R.B.Pelz,M.Gao,D.Silver,andS.P.Cooper.Emergenceofco-herentpatternsofvortexstretchingduringreconnec-tion:Ascatteringparadigm.PhysicalReviewLetters,67(18):2469–2472,1991.15169.M.Zöckler,D.Stalling,andH.Hege.Interactivevisu-alizationof3D-vectoreldsusingilluminatedstream-lines.InProc.Visualization'96,pages107–113,1996.11,13170.M.Zöckler,D.Stalling,andH.Hege.ParallelLineIntegralConvolution.ParallelComputing,23(7):975–989,July1997.3,7c\rTheEurographicsAssociation2002.

Related Contents


Next Show more