/
Galois descent Galois descent

Galois descent - PDF document

cheryl-pisano
cheryl-pisano . @cheryl-pisano
Follow
416 views
Uploaded On 2017-04-08

Galois descent - PPT Presentation

1Amongotherthingsthethirdpropertymakessenseforthezerovectorspacewithoutneedingaseparatede nitioninthatcase2TheconceptofaKformdoesnotrequireLKtobeGaloisbutintheGaloiscasewecansayalotaboutalltheKf ID: 337233

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Galois descent" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

GALOISDESCENTKEITHCONRAD1.IntroductionLetL=Kbea eldextension.AK-vectorspaceWcanbeextendedtoanL-vectorspaceL KW,andWembedsintoL KWbyw7!1 w.Underthisembedding,whenW6=0aK-basisfeigofWturnsintoanL-basisf1 eigofL KW.PassingfromWtoL KWiscalledascent.Intheotherdirection,ifwearegivenanL-vectorspaceV6=0,wemayaskhowtodescribetheK-subspacesWVsuchthataK-basisofWisanL-basisofV.De nition1.1.ForanL-vectorspaceV,aK-subspaceWsuchthataK-basisofWisanL-basisofViscalledaK-formofV.Forcompleteness,whenV=0(sothereisnobasis),weregardW=0asaK-formofV.ThepassagefromanL-vectorspaceVtoaK-formofViscalleddescent.Whetherwecandescendisthequestionof llinginthequestionmarkinthe gurebelow.LL KWVK WOO ?OO Example1.2.AK-formofLnisKnsincethestandardK-basisofKnisanL-basisofLn.Example1.3.AK-formofMn(L)isMn(K)sincethestandardK-basisofMn(K)isanL-basisofMn(L).Example1.4.AK-formofL[X]isK[X]sincetheK-basisf1;X;X2;:::gofK[X]isanL-basisofL[X].Example1.5.EveryL-vectorspaceVhasaK-form:whenV6=0,pickanyL-basisfeigofVanditsK-spanisaK-formofVsincetheei'sarelinearlyindependentoverKandthusareabasisoftheirK-span.WhenK=RandL=C,ascent(passingfromWtoC RW)istheprocessofcomplexi cationanddescentisrelatedtoconjugationsoncomplexvectorspaces:anR-formofacomplexvectorspaceisthe xedsetofaconjugation.Ourde nitionofaK-forminvolvesachoiceofbasis.Let'scheckthischoicedoesn'treallymatter:Theorem1.6.LetVbeanonzeroL-vectorspaceandWbeanonzeroK-subspaceofV.Thefollowingconditionsareequivalent:(1)anyK-basisofWisanL-basisofV,(2)someK-basisofWisanL-basisofV.1 2KEITHCONRAD(3)theL-linearmapL KW!Vgivenbya w7!awisanisomorphismofL-vectorspaces.Proof.(1))(2):Obvious.(2))(3):SupposetheK-basisfeigofWisanL-basisofV.ThentheL-linearmapL KW!Vgivenbya w7!awsends1 eitoeisoitidenti esL-basesoftwoL-vectorspaces.Thereforethismapisanisomorphism.(3))(1):SupposeL KW=VasL-vectorspacesbya w7!aw.ForanyK-basisfeigofW,f1 eigisanL-basisofL KWandthereforeundertheindicatedisomorphismthevectors1ei=eiareanL-basisofV.ThesecondpropertyofTheorem1.6ishowwede nedaK-form.The rstpropertyshowstheconceptofaK-formisindependentofthechoiceofbasis.Thethirdpropertyisthe\right"de nitionofaK-form,1althoughtheotherpropertiesarearguablyabetterwaytounderstandwhattheconceptisallabout(oreventorecognizeitinconcretecaseslikeExamples1.2,1.3,and1.4.)IntheC=R-case,R-formsofacomplexvectorspaceareparametrizedbytheconjugationsonV.Generalizingthis,wewillseethatwhenL=Kisa niteGaloisextension,wecanparametrizetheK-formsofanL-vectorspaceVbykeepingtrackofhowGal(L=K)canactina\semilinear"wayonV.2Wewill ndthatforanysemilinearactionofGal(L=K)onanonzeroL-vectorspaceV,thereisanL-basisofGal(L=K)-invariantvectors:thatmeans(v)=vforall2Gal(L=K).Referencesonthismaterialare[1,pp.295{296],[3,Chap.17],and[5,pp.66{68].2.GaloisdescentonvectorspacesFromnowonwesupposeL=Kisa niteGaloisextensionandwriteG=Gal(L=K).WewillintroduceanorganizedwayforGtoactonanL-vectorspace(whichwewillcallaG-structure),whereGinteractsinareasonablewaywithscalarmultiplicationbyL.De nition2.1.ForanL-vectorspaceVand2G,a-linearmapr:V!VisanadditivefunctiononVsuchthat(2.1)r(av)=(a)r(v)forallainLandvinV.WhenistheidentityautomorphismofL,risL-linear.ForgeneralinG,risK-linear(takea2Kin(2.1)),butitisnotquiteL-linear;thee ectofscalingbyLonVis\twisted"bywhenrisapplied.Whenthereferencetoin(2.1)isnotneeded,thelabelsemilinearisused,butitshouldbekeptinmindthatasemilinearmapisalwaysrelativetoachoiceof eldautomorphismofL.Example2.2.IfVisacomplexvectorspaceand:C!Ciscomplexconjugation,a-linearmaponVisaconjugate-linearmap.Example2.3.OnLn,r(a1;:::;an)=((a1);:::;(an))is-linear.Example2.4.OnMn(L),r(aij)=((aij))is-linear. 1Amongotherthings,thethirdpropertymakessenseforthezerovectorspacewithoutneedingaseparatede nitioninthatcase.2TheconceptofaK-formdoesnotrequireL=KtobeGalois,butintheGaloiscasewecansayalotaboutalltheK-forms. GALOISDESCENT3Example2.5.OnL[X],r(Pdi=0aiXi)=Pdi=0(ai)Xiis-linear.Example2.6.WhenWisaK-vectorspace,wecanapplytothe\ rstcomponent"inL KW:thefunctionr= idWmappingL KWtoitselfbyr(a w)=(a) wonsimpletensorsis-linear,sincer(a0(a w))=r(a0a w)=(a0a) w=(a0)(a) w=(a0)((a) w),sor(a0t)=a0r(t)foralltinL KWbyadditivity.Sincer(1 w)=1 wandtheconditionr(a w)=(a) wisequivalenttor(a(1 w))=(a)r(1 w),thissemilinearactionofGonL KWistheuniqueonethat xes1 Wpointwise.De nition2.7.AG-structureonanL-vectorspaceVisasetoffunctionsr:V!V,oneforeachinG,suchthatris-linear,r1=idV,andrr0=r0.WhenVisgivenaG-structure,wesayGactssemilinearlyonV.Example2.8.WhenK=RandL=C,soG=Gal(C=R)istheidentityandcomplexconjugation,todescribeaG-structureonacomplexvectorspaceVweonlyneedtodescribethemapr:V!Vassociatedtocomplexconjugation,sincebyDe nition2.1themapassociatedtotheidentityofGhastobetheidentity.Theconditionsrmustsatisfyare:risadditive,r(zv)= zr(v),andr2=idV.ThisisnothingotherthanaconjugationonV,soachoiceofGal(C=R)-structureonacomplexvectorspaceisthesameasachoiceofconjugationonit.Example2.9.ThemapsrinExamples2.3,2.4,2.5,and2.6,asrunsoverG,areaG-structureonLn,Mn(L),L[X],andL KW.TheG-structureinExample2.6iscalledthestandardG-structureonL KW.Example2.10.If':V!V0isanL-vectorspaceisomorphismandVhasaG-structurefrg,thereisauniqueG-structurefr0gonV0compatiblewith':r0(v0)='(r'�1(v0)):V'// r V0r0 V'// V0Justasitissimplertowritegroupactionsonsetsasgxinsteadofg(x)(wheregisthepermutationonXassociatedtog),itissimplertowriter(v)asjust(v).Inthisnotation,theequationr(av)=(a)r(v)becomes(av)=(a)(v).SoaG-structureonanL-vectorspaceVisawayofmakingthegroupGactsemilinearlyonV:each2Gis-linearonV,idL2GactsasidV,and(0(v))=(0)(v)foralland0inGandv2V.OnacomplexvectorspaceVthereisaone-to-onecorrespondencebetweenR-formsofVandconjugationsonV.WewillgeneralizethiscorrespondencetoonebetweenK-formsofanL-vectorspaceandG-structuresonthevectorspace.(ThisisageneralizationsinceExample2.8saysconjugationsonacomplexvectorspacearebasicallythesamethingasGal(C=R)-structuresonthevectorspace.)Firstweneedseverallemmas.Lemma2.11.LetVbeanL-vectorspacewithaG-structureandletV0beanL-subspacethatispreservedbyG:forall2G,(V0)V0.ThenthequotientvectorspaceV=V0hasaG-structurede nedby(v+V0)=(v)+V0. 4KEITHCONRADProof.WecheckthattheactionofGonV=V0iswell-de ned:ifv1v2modV0thenv1�v22V0,soforany2Gwehave(v1�v2)2(V0)V0.Thus(v1)�(v2)2V0,so(v1)(v2)modV0.Thateachacts-linearlyonV=V0isclear,becausetherelevantconditionsarealreadysatis edonVandthusworkoutoncosetrepresentatives.Furtherdetailsarelefttothereader.Lemma2.12.LetAbeanabeliangroupand1;:::;n:A!Lbedistincthomomor-phisms.ForanL-vectorspaceVandv1;:::;vn2V,if1(a)v1++n(a)vn=0foralla2Athenallviare0.Proof.ThespecialcaseV=Listhelinearindependenceofcharacters.Itisleftasanexercisetorereadtheproofofthatspecialcaseandgeneralizetheargument.WhenVisanL-vectorspacewithaG-structure,the xedsetofGinVisVG=fv2V:(v)=vforall2Gg:ThisisaK-subspace.WhenK=RandL=C,soaG-structureonVisachoiceofconjugationconV,VG=fv2V:c(v)=vg.Lemma2.13.LetVbeanL-vectorspacewithaG-structure.De neacorrespondingtracemapTrG:V!VbyTrG(v)=X2G(v):ThenTrG(V)VG,andwhenv6=0inVthereisa2LsuchthatTrG(av)6=0.Inparticular,ifV6=0thenVG6=0.Proof.ToshowthevaluesofTrGareinVG,forany02G0(TrG(v))=X2G0((v))=X2G(0)(v)=X2G(v)=TrG(v):Toshowifv6=0thatTrG(av)6=0forsomea2L,weprovethecontrapositive.Assumefora xedv2VthatTrG(av)=0foralla2L.Then0=X2G(av)=X2G(a)(v)foralla2L.ByLemma2.12withA=L,every(v)is0.Inparticular,at=idLwegetv=0.NextisourmainresultlinkingK-formsandG-structures.WewillusethetensorproductdescriptionofaK-form(fromTheorem1.6):aK-subspaceWofanL-vectorspaceVisaK-formexactlywhenthenaturalL-linearmapL KW!VisanisomorphismofL-vectorspaces.Theorem2.14.LetVbeanL-vectorspace.ThereisabijectionbetweenthefollowingdataonV:(1)K-formsofV,(2)G-structuresonV.Inbrief,thecorrespondencefrom(1)to(2)isW L KWwithitsstandardG-structureandthecorrespondencefrom(2)to(1)isV VG. GALOISDESCENT5Proof.ThisisclearifV=0sincef0gistheonlyK-form(eventheonlyK-subspace)andthereisonlyoneG-structure.SofromnowontakeV6=0.IfwestartwithaK-formWofV,so':L KW!Vbya w7!awisanL-linearisomorphism,wegetaG-structureonVbyusing'totransportthestandardG-structurefrgonL KW(Example2.6)toaG-structurefWg2GonV(Example2.10).WesimplyinsistthediagramsL KW'// r VW L KW'// Vcommuteforall2G.Explicitly,setW Xiaiwi!=Xi(ai)wi;whereai2Landwi2W.(Thewell-de nednessofthisformula,wherethewi'sareanyelementsofW,dependson'beinganisomorphismofL-vectorspaces.)Conversely,ifVhasaG-structurethentheK-subspaceVGturnsouttobeaK-formonV:theL-linearmapf:L KVG!Vbya w7!awisanisomorphism.Toshowfisone-to-one,supposef(t)=0forsomet2L KVG.Writetasasumofsimpletensors,sayt=Pai wi.This nitesumcanbearrangedtohavewi'sthatarelinearlyindependentoverK:hereweneedtoknowVG6=0(Lemma2.13).Then0=f(t)=Paiwi.WewillshowK-linearlyindependentvectorsinVGareL-linearlyindependentinV,henceallaiare0andthiswouldmeant=0sofisinjective.ToproveeveryK-linearlyindependentsetinVGisL-linearlyindependent,assumeotherwise:thereisaK-linearlyindependentsetinVGthatisL-linearlydependent:suchadependencerelationlookslike(2.2)a1w1++anwn=0;wherew1;:::;wn2VGandtheai'sinLarenotall0.Take(2.2)tobeanontrivialL-linearrelationamongK-linearlyindependentvectorsinVGofleastlength(leastnumberofterms).Theneveryaiisnonzeroandn2.Byscaling,wemaysupposean=1.Applying2Gto(2.2),weget(2.3)(a1)w1++(an)wn=0:Subtract(2.3)from(2.2):(a1�(a1))w1++(an�(an))wn=0:Thelasttermis0sincean=1,sothisL-linearrelationhasn�1terms.Bytheminimalityofn,suchanL-linearrelationamongK-linearlyindependentvectorsw1;:::;wn�1hastobethetrivialrelation:ai�(ai)=0fori=1;2;:::;n�1.Soeachaiis xedbyallinG,henceai2Kfori=1;2;:::;n�1.Alsoan=12K.Butthatmeans(2.2)isanontriviallineardependencerelationamongthewi'soverK,thatisimpossible(thewi'sarelinearlyindependentoverK).Sowehaveacontradiction,whichprovesfisone-to-one.Toshowfisonto,welookattheimagef(L KVG),whichisanL-subspaceofV.ThisimageisstableundertheactionofG:onsimpletensorsa winL KVG,(f(a w))=(aw)=(a)(w)=(a)w=f((a) w); 6KEITHCONRADsobyadditivityofonVwehave(f(L KVG))f(L KVG).Thereforethequotientspace V:=V=f(L KVG)inheritsaG-structurefromVby( v)= (v)(Lemma2.11).Forv2V,TrG(v)2VGf(L KVG),soon VwehaveTrG( v)= TrG(v)= 0.Sinceallelementsof Vhavetrace 0, Vhastobe 0byLemma2.13.(Anonzeroelementof VwouldhaveanonzeroL-multiplewithnonzerotrace.)Since V= 0,V=f(L KVG),sofisonto.IntheC=R-case,thesurjectivityoff:C RVc!VforanycomplexvectorspaceVwithaconjugationcisbasedontheequation(2.4)v=v+c(v) 2+iv�c(v) 2i;wherethevectors1 2(v+c(v))and1 2i(v�c(v))are xedbyc.Theformula(2.4)canbegeneralizedtotheL=K-caseusingTrG:iff 1;:::; dgisaK-basisofLthentherearef 1;:::; dginLsuchthatv=Pj jTrG( jv)forallv2V.Thatwouldgiveasecondproofofsurjectivityoff.ItremainstocheckthatourcorrespondencesbetweenK-formsofVandG-structuresonVareinversesofoneanother.K-formtoG-structureandback :PickaK-formWofV.ThecorrespondingG-structurefW:2GgonVisgivenbyW(Piaiwi):=Pi(ai)wiforai2Landwi2W.WeneedtocheckthesubspaceVG=fv2V:W(v)=vforall2GgassociatedtothisG-structureisW.CertainlyWVG.ToshowVGW,pickaK-basisfeigofW.SinceWisaK-formofV,anyv2Vhastheformv=Paieiwithai2L(allbut nitelymanycoecientsaiare0).ThenW(v)=Pi(ai)ei.IfW(v)=vforall2GthenXi((ai)�ai)ei=0forall2G.Theei'sarelinearlyindependentoverL(becausetheyarethebasisofaK-formofV),so(ai)�ai=0forallaiandall2G.ThusallaiareinK,sov2W.ThusVGW.3G-structuretoK-formandback :GivenaG-structureonV,whichwewritesimplyasv (v),thecorrespondingK-formisVG.WehavetocheckthattheisomorphismL KVG!Vgivenbya w7!awtransportsthestandardG-structureonL KVGtotheoriginalG-structurewestartedwithonV(ratherthantosomeotherG-structureonV).UndertheisomorphismL KVG!V,atensorPiai wiinL KVGisidenti edwithPiaiwiinV,andthestandardG-structureonthetensorproductisgivenby(Piai wi)=Pi(ai) wi(forall2G),whichgoesovertoPi(ai)wiinVbytheisomorphism.Sincethewi'sareinVG,Pi(ai)wi=(Piaiwi),sotheisomorphismfromL KVGtoVdoesidentifythestandardG-structureonL KVGwiththeoriginalG-structureonV.Thedown-to-earthcontentofTheorem2.14isthatwhenGactssemilinearlyonV,thereisaspanningsetofVoverLconsistingofG-invariantvectors.UsingthisiscalledGaloisdescent.Remark2.15.Theorem2.14istruewhenL=Kisanin niteGaloisextensionandthesemilinearactionGV!Viscontinuous,whereGhasitspro nitetopologyandVhasthediscretetopology.See[2,Lemma5.8.1]. 3ThatVGWcanalsobeprovedusingthenormalbasistheorem. GALOISDESCENT7Corollary2.16.IfVhasaG-structure,K-independentvectorsinVGareL-independent.Proof.AK-independentsubsetofVGcanbeextendedtoaK-basisofVG,whichisanL-basisofV(sinceVGisaK-formofV),soitislinearlyindependentoverL.Corollary2.17.ForanyK-vectorspaceW,withL KWgivenitsstandardG-structure,(L KW)G=1 W.Proof.Exercise.Example2.18.LetXbea nitesetonwhichtheGaloisgroupG=Gal(L=K)acts(bypermutations).ThenthespaceV=Map(X;L)ofallfunctionsX!LisanL-vectorspaceunderpointwiseoperations.AbasisofVoverLisfx:x2Xg.ThegroupGactssemilinearlyonV:foranyfunctionf:X!LinVand2G,de ne(f):X!LsothediagramXf//  L X(f)// Lcommutes.Thismeans(f)((x))=(f(x))forallx2X,so(f)(x)=(f(�1(x))):Thisequationde nes(f)asafunctionX!L.Let'scheck:V!Vis-linear.Fora2L,wewanttocheckthat(af)=(a)(f).Well,ateachx2X,((af))(x)=((af)(�1(x)))=(af(�1(x)))=(a)(f(�1(x)))=(a)((f)(x));so(af)=(a)(f)asfunctionsinMap(X;L).Check(x)=(x).WhatisVG?ItisnaturaltoguessthatVGequalsMap(X;K),whichistheK-spanoffx:x2Xg.Asasmallpieceofevidence,Map(X;K)isaK-subspaceofVwithK-dimension#XanddimK(VG)=dimL(V)=#Xtoo.However,thedelta-functionsxlieinMap(X;K)and(x)=xonlywhen(x)=x.Thereforeallthex'sareinVGonlywhenGactstriviallyonX.SoVGisnotMap(X;K)ifGactsnontriviallyonX.Infact,VG=ff:(f)=fg=ff:(f(�1(x)))=f(x)forall;xg=ff:(f(x))=f((x))forall;xg;soVGconsistsofthefunctionsX!LthatcommutewiththeG-actionsonXandL.Functionssatisfying(f(x))=f((x))forall2Gandx2XarecalledG-maps(theyrespecttheG-actions).BecauseVGspansVoverL,everyfunctionX!LisanL-linearcombinationofG-mapsX!L.IfGactstriviallyonXthenVG=ff:(f(x))=f(x)forall;xg=Map(X;K),soaG-mapX!LinthiscaseisjustafunctionX!K. 8KEITHCONRADWeconcludethissectionbyshowinghowtointerpretTheorem2.14intermsofrepre-sentations.(Ifyoudon'tknowrepresentationsof nitegroups,youmaywanttoskiptherestofthissection.)Firstlet'srecallhowyoucoulddiscoverthattheringC[G]shouldberelevanttorepresentationsofGoncomplexvectorspaces.Let'sstareattheformulas(2.5)()(cv)=c()(v)and()(()v)=()(v)forarepresentationofGonacomplexvectorspaceV(herec2Candv2V).Nowabstracttheseformulasbywritingsomeneutralsymbolefor()andtakingawayv:introducetheC-vectorspaceC[G]=L2GCewithmultiplicationrules(2.6)ec=ceandee=einspiredby(2.5).NowC[G]isanassociativeringwithidentity,andevenaC-algebrasinceCcommuteswithallthebasisvectorse.WecanconsideranyrepresentationofGonVasawayoflettingthebasisvectorseactasC-linearmapsV!V,byev=()(v),andtheconditions(2.5)and(2.6)saypreciselythatthismakesVintoa(left)C[G]-module.Conversely,anyleftC[G]-modulestructureonVprovidesarepresentationofGonVbyfocusingattentiononhowthee'sinsideC[G]actonV(whichdoesn'tloseanyinformationsincethee'sspanV).Nowlet'slookatG-structuresonanL-vectorspaceV,whereG=Gal(L=K),withthegoalof ndinganabstractringwhosemodulestructuresonanyL-vectorspaceVarethesamethingasG-structuresonV.AnyG-structureonVprovidesuswith-linearmapsr:V!Vforall2G,whichmeansther'sareadditiveand(2.7)r1(v)=v;r(cv)=(c)r(v);andr(r(v))=r(v)forallc2Landv2V.Nowlet'swipevoutoftheseequationsandturnthemapsrintobasisvectorse.De netheL-vectorspaceC(G)=L2GLeanddeclaremultiplicationinC(G)tobegivenbytherules(2.8)e1=1;ec=(c)e;andee=eforandinGandc2L.4ThismakesC(G)anassociativeringwithidentitye1(check!)andC(G)isaK-algebra(sinceec=cewhenc2K).IfGisnottrivial(thatis,L6=K),ecisnotceforc2L�K,soC(G)isnotanL-algebra(inthesamewaythequaternionsHareanR-algebrabutnotaC-algebraeventhoughCH).Themultiplicationrules(2.8)inC(G)areanabstractformofthewayaG-structurebehaves,asdescribedin(2.7):aG-structureonVisthesamethingasaleftC(G)-modulestructureonV,whereeactsonVasthe-linearmapr.Explicitly,ifwehaveaG-structurefrgonVthenmakeVintoaC(G)-modulebytheformula X2Gae!(v)=X2Gar(v)and,conversely,ifVhasaC(G)-modulestructurethenfocusingonhowthebasisvectorseactonVgivesusaG-structure(checkspeci callywhyeacheisa-linearmaponVfromthede nitionofaC(G)-modulestructureonV).Theorem2.14thereforesays,intermsofC(G),thattheK-formsofVareessentiallythesamethingastheC(G)-modulestructuresonV. 4UnlikethegroupringC[G],theconstructionofC(G)dependsessentiallyonGbeingaGaloisgroupsinceweuseitsactiononLinthede nitionofthemultiplicationin(2.8). GALOISDESCENT9ThemostbasicexampleofaC(G)-moduleisL,onwhichG=Gal(L=K)actsbyitsverynatureasaGaloisgroupandthisextendstoaC(G)-modulestructureviatheformula(P2Gae)(x)=P2Ga(x)forallx2L.ThateveryG-structurehasanassociatedK-formtellsussomethingaboutC(G)-submodulesofaC(G)-module.LetVbeanonzeroC(G)-module(whichisaconcisewayofsayingVisanonzeroL-vectorspacewithaG-structure).TheexistenceofaK-formmeansVhasanL-basisfvigofG-invariantvectors:V=Li2ILviand(vi)=viforall2G.ThelineLviispreservedundertheactionofGandL,henceundertheactionofC(G)=L2GLe.ThereforeeachLviisaC(G)-submodule,andvibeingG-invariantmakesLviisomorphictoLasC(G)-modulesbythenaturalmapxvi7!x.(Warning:aC(G)-linearmapisnotL-linearsincethee'sdon'tcommutewithL,unlessGistrivial.)ThusallnonzeroC(G)-modulesaredirectsumsofcopiesofLasaC(G)-module.ThisinfactisanotherwayofthinkingabouttheexistenceofK-forms.Indeed,supposeweknew(bysomeothermethod)thateverynonzeroC(G)-moduleisadirectsumofC(G)-submodulesthatareeachisomorphictoLasaC(G)-module.ThenforanynonzeroL-vectorspaceVwithaG-structure,viewVasaC(G)-moduleandbreakitupasLi2IViwhereVi=LasC(G)-modules.Letfi:L!VibeaC(G)-moduleisomorphismandsetvi=fi(1).Thenforany2G,(vi)=(fi(1))=fi((1))=fi(1)=vi,soviisaG-invariantvector.SinceLviViandbothareL-vectorspacesofthesame niteK-dimension(becausefiisaK-linearisomorphism,forgettingalittlestructureintheprocess),Lvi=Vi.NowthedirectsumdecompositionV=Li2ILvirevealsaK-formforV,namelyW=Li2IKvi.3.ApplicationstoVectorSpacesOur rstapplicationofGaloisdescentistosystemsoflinearequations.IftheequationshavecoecientsinKandthereisanonzerosolutionoverLthenthereisalsooneoverK.Theorem3.1.Foranyhomogeneoussystemoflinearequationsinnunknownswithco-ecientsinK,thesolutionsinLnareL-linearcombinationsofthesolutionsinKn.Inparticular,ifthereisanonzeroL-solutionthenthereisanonzeroK-solution.Proof.WritethesystemoflinearequationsintheformAx=0,whereAisanmnmatrixwithentriesinK(mbeingthenumberofequations).LetVLnbetheL-solutionsofthesystem:V=fv2Ln:Av=0g.Thereisastandardsemilinear(coordinatewise)actionofGonLn,andbecauseAhasentriesinKtheG-actionpreservesV:ifv2Vthen(v)2Vbecause(Av)=A((v))and(0)=0.SowegetacoordinatewiseG-structureonV,andbyTheorem2.14VisspannedoverLbyitsG- xedsetVG=V\(Ln)G=V\Kn,whicharethesolutionstoAx=0inKn.Theorem3.1istruewithoutL=KbeingGalois:foraK-linearmapA:Kn!Km,themap1 A:Ln!Lmsatis esim(1 A)=Lim(A).Nextwedescribehowdescentbehavesonsubspaces:ifV0VandwehaveaG-structureonV,whendoesV0haveaK-forminVG?TheanswerisconnectedtothepreservationofV0bytheG-structureonV.Theorem3.2.LetVbeanL-vectorspacewithaG-structure.ForanL-subspaceV0V,thefollowingconditionsareequivalent:(1)V0hasanL-spanningsetinVG,(2)(V0)V0forall2G, 10KEITHCONRAD(3)(V0)=V0forall2G,(4)V0hasaK-forminVG.Whenthesehold,theonlyK-formofV0inVGisV0\VG.IfdimL(V0)1,theseconditionsarethesameasdimK(V0\VG)=dimL(V0).Proof.EverythingisobviousifV0=0,sowemaytakeV06=0.(1))(2):SupposeV0=PLviwherevi2VG.Thenfor2G,(V0)P(L)vi=PLvi=V0.(2))(1):Suppose(V0)V0forall2G.ThenthegivenG-structureonVisaG-structureonV0,sobyTheorem2.14V0hasanL-spanningsetin(V0)GVG.(2))(3):Using�1inplaceof,wehave�1(V0)V0soV0(V0).Thus(V0)=V0forall2G.(3))(2):Obvious.(3))(4):TheG-structureonVisaG-structureonV0,so(V0)GisaK-formofV0and(V0)GVG.(4))(2):ForaK-formW0ofV0inVG,V0=LW0,so(V0)L(W0)=LW0=V0.Whentheseconditionshold,(V0)GisaK-formofV0,and(V0)G=V0\VG.SupposeW0isanyK-formofV0inVG.WewanttoshowW0=(V0)G.ThenaturalmapL KW0!V0givenbya w07!aw0isanL-vectorspaceisomorphism,andthetransportedG-structureonV0fromthestandardG-structureonL KW0throughthisisomorphismisW0(aw0)=(a)w0fora2Landw02W0.SinceW0VG,intermsoftheoriginalG-structureonVwehave(a)w0=(a)(w0)=(aw0)=VG(aw0)=(V0)G(aw0),soW0=(V0)G.Bytheone-to-onecorrespondencebetweenK-formsandG-structuresonV0,W0=(V0)G.NowassumedimL(V0)is nite.WewanttoshowthefourconditionsareequivalenttodimK(V0\VG)=dimL(V0).Wewillshowthisdimensionconstraintisequivalentto(1).Letd=dimL(V0).Suppose(1)holds.IfV0hasanL-spanningsetinVGithasanL-basisinVG,sayv1;:::;vd.Thenforv02V0,writev0=Pdi=1aiviwithai2L.Ifv02VGtoo,thenforany2G,v0=(v0)=dXi=1(ai)vi;solinearindependenceofthevi'soverLimpliesai=(ai)foralli(and),soai2Kforalli.Thusv02Pdi=1Kvi,soV0\VGPdi=1Kvi.Thereverseinclusionisclear,sodimK(V0\VG)=d=dimL(V0).Conversely,assumedimK(V0\VG)=dimL(V0)andletfv1;:::;vdgbeaK-basisofV0\VG.Thisbasishassizedbecauseofthedimensionconstraint.Thevi'sareaK-linearlyindependentset,sotheyareL-linearlyindependentsinceVGisaK-formofV.ThenPiLvihasL-dimensiondandliesinV0,whoseL-dimensionisd,soPiLvi=V0,whichiscondition(1).Remark3.3.SinceK-independentvectorsinVGareL-independent,forallV0wehavedimK(V0\VG)dimL(V0).ThusthedimensionconditioninTheorem3.2saysV0\VGhasitsbiggestpossibleK-dimension. GALOISDESCENT11Anytwoconjugationsonacomplexvectorspacearerelatedtoeachotherbyanauto-morphismofthevectorspace.Moregenerally,anytwoG-structuresonanL-vectorspacearelinkedtooneanotherbyanautomorphismofthevectorspace:Theorem3.4.Letfrgandfr0gbetwoG-structuresonanL-vectorspaceV6=0.Thereisa'2GL(V)suchthatr0='r'�1forall2G:thediagram(3.1)V'// r Vr0 V'// Vcommutesforall2G.Hereandlater,GL(V)meansautomorphismsofVasanL-vectorspace.Proof.LetW=fv2V:r(v)=vforall2GgbetheK-formofVforfrg.(ItwouldbebadtowritethisasVGsincetherearetwoG-structureswearedealingwithonVandthusthenotationVGwouldbeambiguous.)LetW0=fv2V:r0(v)=vforall2GgbetheK-formofVforfr0g.ThetwodiagramsL KWf// W Vr L KWf// VL KW0f0// W0 Vr0 L KW0f0// Vcommuteforall2G,wherefandf0arethenaturalL-linearmaps(isomorphisms).Sincefandf0areisomorphisms,dimK(W)=dimL(V)=dimK(W0)(thesemightbein nitecardinalnumbers).ThereforethereisaK-linearisomorphism :W!W0,itsbaseextension1 :L KW!L KW0isanL-linearisomorphism,andthediagramL KW1 // W L KW0W0 L KW1 // L KW0commutesforall2G:onanysimpletensora w,goingalongthetopandrightoralongtheleftandbottomsendsthissimpletensorto(a) (w).NowcombinethethreecommutativediagramstogetthecommutativediagramVf�1// r L KWW 1 // L KW0W0 f0// Vr0 Vf�1// L KW1 // L KW0f0// Vforevery2G.Themapsalongthetopandbottomdon'tinvolve,andareallL-linearisomorphisms.Callthe(common)compositemapalongthetopandbottom',so'2GL(V),andremovethemiddleverticalmapstobeleftwithacommutativediagramoftheform(3.1). 12KEITHCONRADCorollary3.5.LetVbeanL-vectorspacewithtwoK-formsWandW0.LetfWgandfW0gbethecorrespondingG-structuresonV.Thereis'2GL(V)suchthat'(W)=W0andthediagramV'// W VW0 V'// Vcommutesforall2G.Proof.ByTheorem3.4,thereis'2GL(V)suchthatV'// W VW0 V'// Vcommutesforall2G.Itremainstocheck'(W)=W0.WehaveW=fv2V:W(v)=vforall2GgandW0=fv2V:W0(v)=vforall2Gg.Soforw2Wand2G,W0('(w))='(W(w))='(w).Thus'(w)2W0,so'(W)W0.Forw02W0,writew0='(v)withv2V.FromW0(w0)=w0,W0('(v))='(v),so'(W(v))='(v).Since'isinjective,W(v)=vforall,sov2W.ThusW0'(W).Theorem3.6.LetV1andV2beL-vectorspacesequippedwithG-structures.LetW1andW2bethecorrespondingK-formsofV1andV2.AnL-linearmap:V1!V2istheL-linearbaseextensionofaK-linearmap':W1!W2ifandonlyifthediagramV1// W1 V2W2 V1// V2commutesforall2G.Equivalently,theL-vectorspaceHomL(V1;V2)hasaG-structuregivenby():=W2�1W1withcorrespondingK-formHomK(W1;W2).Proof.Exercise.WeconcludethissectionwithareinterpretationofTheorem3.4intermsofmodules,usingtheringC(G)=L2GLeintroducedattheendofSection2.WesawtherethatanynonzeroC(G)-moduleisadirectsumofcopiesofLasaC(G)-module.Bytheinvarianceofdimensionofvectorspaces,thismeansaC(G)-moduleiscompletelydetermineduptoisomorphismbyitsL-dimension.Inotherwords,theendofSection2showsthatanytwoC(G)-modulestructuresonanonzeroL-vectorspaceVareisomorphic:thereisaC(G)-linearmap':V!VthatturnsoneC(G)-modulestructureintotheother.Thisisthesameassaying'isaL-linearautomorphismofVsuchthat'(ev)=e'(v)(becarefulonlytoviewVasaleftL-vectorspace,consideringhowmultiplicationofitwithGinsideofC(G)istwisted),andthatequationforallispreciselytheconclusionofTheorem3.4exceptitisgivenintheterminologyofG-structuresratherthanC(G)-modules.Sowe GALOISDESCENT13alreadyhadaproofofTheorem3.4attheendofSection2andit'salotmoreconceptualthantheproofwewroteoutforTheorem3.4.ThisillustrateshowusefulitcanbetointerpretG-structuresasC(G)-modulestructures.4.ApplicationstoIdealsOurnextsetofapplicationsofGaloisdescentconcernidealsinL[X1;:::;Xn],whichwewillabbreviatetoL[X ].AbasicquestioniswhetheranidealinthisringisgeneratedbypolynomialsinK[X ].LetV=L[X ]andletGactonVbyactingoncoecients.ThisactionisaG-structureonVwithcorrespondingK-formW:=VG=K[X ].ForanyidealIofL[X ],IG=I\K[X ]isanidealinK[X ].SayanidealIL[X ]isde nedoverKifithasageneratingset(asanideal!)inK[X ].Example4.1.InC[X;Y],I=(X+iY2;X�iY2)isde nedoverRsinceI=(X;Y2).Theorem4.2.ForanidealIL[X ],thefollowingconditionsareequivalent:(1)Iisde nedoverK,(2)(I)Iforall2G,(3)(I)=Iforall2G.Proof.Itistrivialthat(1)implies(2)sinceageneratingsetofIinK[X ]isnotchangedby.Since(2)isstatedoverall,from�1(I)IforallwegetI(I)forall,so(I)=Iforall,whichis(3).Finally,assuming(3),since(I)=ItheGaloisgroupGactssemilinearlyonIasanL-vectorspace,sobyGaloisdescentonI,IhasaspanningsetasanL-vectorspaceinIG=I\K[X ]K[X ].SinceIisanidealinL[X ],anL-vectorspacespanningsetofIisalsoageneratingsetofIasanideal.HereisanexamplewhereL=Kisnon-GaloisandTheorem4.2breaksdown.LetK=Fp(T),L=Fp(pp T),andI=(X�pp T)inL[X].Then(I)=Iforall2AutK(L)(whichisatrivialgroup),butIhasnogeneratorinK[X].Infact,I\K[X]=(Xp�T),sotheidealinL[X]generatedbyI\K[X]issmallerthanI.Remark4.3.ByHilbert'sbasistheorem,I\K[X ]=(f1;:::;fr)=rXi=1K[X ]fiforsomefi'sinK[X ].IfIisde nedoverKthenbytheproofofTheorem4.2,IisspannedasanL-vectorspacebypolynomialsinI\K[X ]:I=PjLhjwherehj2I\K[X ].EachhjisaK[X ]-linearcombinationofthefi's,soIPri=1L[X ]fiandthereverseinclusionholdssinceIisanideal,soI=Pri=1L[X ]fi.Thatis,anidealinL[X ]de nedoverKis nitelygeneratedoverL[X ]byany nitesetofidealgeneratorsofI\K[X ].Thespecialcaseof(3))(1)inTheorem4.2inonevariablecanbeprovedusingHilbert'sTheorem90insteadofGaloisdescent.LetIbeanidealinL[X].SinceL[X]isaPID,I=(f)forsomef2L[X].Then(I)=((f))forall2G.Saying(I)=Iforall2Gisequivalentto(f)=fforsome2L.Thenapplyany2Gtoget((f))=()(f),so()(f)=()f.Also()(f)=f,sof=()f,so=()sincef6=0.Hencethenumbersf:2Ggarea1-cocycleG!L.BythemultiplicativeformofTheorem90,=( )= forsome 2Landall2G,so(f)=(( )= )f,so(f= )=f= forall2G.Thusf= 2K[X]and(f= )=(f)asidealsinL[X].So(f)isde nedoverK. 14KEITHCONRADTherelationsbetweenGaloisdescentandcohomologygofurther.LetVbeanL-vectorspacewithaG-structure.A1-cocycleonVisafunctionc:G!Vsuchthatc()=c()+(c()).Example4.4.Fixingv2V,c()=(v)�visa1-cocyclesincec()+(c())=((v)�v)+((v)�v)=()(v)�v=c():TheadditiveformofTheorem90saysall1-cocyclesc:G!Llookliketheexample:c()=( )� forsome 2L.Let'srecallaproof.Forx2L,sety=P2Gc()(x).Forany2G,(y)=P(c())()(x)=P(c()�c())()(x)=P(c()�c())(x)=y�c()TrL=K(x).ChoosexsoTrL=K(x)6=0.Thenc()=z�(z)forz=y=TrL=K(x).Set =�z,soc()=( )� .UsingGaloisdescentwecanextendthisfromcocyclesinLtococyclesinL-vectorspaceswithaG-structure.Theorem4.5.ForanyL-vectorspaceVwithaG-structure,every1-cocycleonVhastheformc()=(v)�vforsomev2V.Proof.WemaysupposeV6=0.LetfvigbeaK-basisofVG,sobyGaloisdescentV=MiLvi:Forany1-cocyclec:G!V,writec()=Pia;ivi,wherea;i2L.Thenthecocycleconditionc()=c()+(c())meansXia;ivi=Xia;ivi+ Xia;ivi!=Xia;ivi+Xi(a;i)vi=Xi(a;i+(a;i))vi;soforeachi,a;i=a;i+(a;i).Thusforeachi,7!a;iisa1-cocycleinL.ByTheorem90,foreachithereisbi2Lsuchthata;i=(bi)�biforall.Sincea;i=0forallbut nitelymanyi,wecanusebi=0forallbut nitelymanyi.Thenc()=Xi((bi)�bi)vi=Xi(bi)vi�Xibivi=(v)�v;wherev=Pibivi.HereisanimportantapplicationofTheorem4.5totheGaloisactiononquotientringsofL[X ].Theorem4.6.LetIL[X ]beanidealde nedoverK,soL[X ]=IhasaG-structureby(f+I)=(f)+I(Lemma2:11).Foreachf2L[X ],thefollowingareequivalent:(1)(f)fmodIforall2G,(2)fgmodIforsomeg2K[X ].Proof.Itistrivialthatthesecondconditionimpliesthe rst.Forthemoreinterestingreversedirection,assume(f)fmodIforall2G.De nec:G!Ibyc()=(f)�f. GALOISDESCENT15Byacomputation,c()+(c())=c()forallandinG,socisa1-cocycleintheL-vectorspaceI.ByTheorem4.5,c()=(h)�hforsomeh2I,so(f)�f=(h)�hforall2G.Thereforef�his xedbyall2G,sof�h2K[X ].Setg=f�h,sofgmodIandg2K[X ].EventhoughidealsinL[X ]are nitelygeneratedasideals,theyarein nite-dimensionalasL-vectorspaces(exceptforthezeroideal),soitiscrucialthatTheorem4.5appliestogeneralvectorspaces,notjust nite-dimensionalvectorspaces.TheseGaloisdescentfeaturesonidealsleadtoapplicationsinalgebraicgeometry.Wepresenttwoofthem.Theorem4.7.LetVLdbethezerosetoff1;:::;fr2K[X ].TheidealofallpolynomialsinL[X ]thatvanishinLdwherethefi'svanishhasageneratingsetinK[X ].Equivalently,theidealI(V)=fg2L[X ]:g(P)=0forallP2Vgisde nedoverK.NotethatbeforeTheorem4.7we'vewrittenVforavectorspace.NowVisdenotinganalgebraicvariety,soitisde nitelynotavectorspaceingeneral!ThereisnontrivialcontenttoTheorem4.7becausetheidealI(V)neednotbegeneratedbythefi'sthemselves.Forinstance,inC2letVbethezerosetoff1=X31andf2=X21�X1X2.ThenI(V)=(X1)whereastheideal(f1;f2)isstrictlycontainedinX1(anypolynomialintheideal(f1;f2)hasnoX1-term,butX1ofcoursedoes).Proof.ForP2V,fi(P)=0foralli,sofi((P))=0forall2G.Thus(P)2V,so(V)Vforall2G,hence(V)=Vforall2G.ToshowI(V)isde nedoverK,weshow(I(V))I(V)forall2G.Pickf2I(V)L[X ].For2GandP2V,setQ=�1(P)2V.Thenf(Q)=0,andapplyingtothisgives(f)((Q))=0,so(f)(P)=0.Thus(f)2I(V),so(I(V))I(V)forall2I(V).ThereforeI(V)isde nedoverK.Example4.8.IfVCdisthezerosetofsomerealpolynomialsf1;:::;fr,thentheidealI(V)ofcomplexpolynomialsvanishingonVisgeneratedbyrealpolynomials.TheproofofTheorem4.7isnotconstructive,sowedon'tgetamethodtowritedowngeneratorsofI(V)inK[X ]fromtheoriginalpolynomialsfiinK[X ]thatde neV.Theorem4.9.LetIL[X ]beahomogeneousprimeidealde nedoverK.ThenL(I)G=fg=h:g;h2K[X ];h62I;gandharehomogeneousofequaldegreeg.Proof.Theinclusionisobvious.Weworkouttheinclusion.Supposeg;h2L[X ]arehomogeneousofequaldegree,h62I,andg=h2L(I)G,whichmeans(g=h)=g=hforallinG.Wecanwriteg=h=gk=hkforanynonzerok2L[X ].For2G,sinceh62Iand(I)=I,(h)62I.ThenQ2G(h)62IandtheproductisinK[X ].Sowithoutlossofgenerality,h2K[X ].Then(g=h)=(g)=h,so(g)=ginL(I).Both(g)andgareinL[I]=L[X ]=I,so(g)gmodIforall2G.ThereforeTheorem4.6tellsusgegmodIforsomeeg2K[X ].Sinceg�eg2I,Iisahomogeneousideal,andgisahomogeneouspolynomial,thehomogeneouspartsofegnotofdegreedeggareinI.Thereforewithoutlossofgeneralityegishomogeneousofthesamedegreeasg.Sog=h=eg=hinL(I),andegandhareinK[I]. 16KEITHCONRAD5.ApplicationstoAlgebrasOur nalsetofapplicationsofGaloisdescentistoL-algebras.WeunderstandL-algebratobeusedinthesenseofanyL-vectorspaceequippedwithanL-bilinearmultiplicationlaw.Wewillnotassumethealgebraisassociative.ExamplesofL-algebrasincludeMn(L),L[X ],andaLiealgebraoverL(whichisnotassociative)suchasgln(L).ForanyK-algebraA,L KAisanL-algebra.De nition5.1.AK-formofanL-algebraAisaK-subalgebraAofAsuchthatthenaturalmapL KA!Agivenbyx a7!xaisanisomorphismofL-algebras.AK-formofanL-algebraisaK-formasanL-vectorspace,butit'smorethanthat:thealgebrastructureneedstoberespected.IfAisanL-algebraandAisaK-formofAthenAisassociativeifandonlyifAisassociativeandAisaLiealgebraoverLifandonlyifAisaLiealgebraoverK.Thereasonisthattherelevantproperties(associativityortheJacobiidentity)aretrueonanL-algebraifandonlyiftheyaretrueonanL-basis,andwecanuseaK-basisofAasanL-basisofA.Example5.2.TwoR-formsoftheC-algebraM2(C)areM2(R)andthequaternionsH,viewedinsideM2(C)bya+bi+cj+dk7!(a+bi�c�dic�dia�bi).Bothare4-dimensionalR-algebraswhosestandardR-basisisaC-basisofM2(C).SinceM2(R)andHarenotisomorphicR-algebras(HisadivisionringandM2(R)isnot),di erentK-formsofanL-algebraneednotbeisomorphicK-algebras.Thisisanimportantcontrastwiththelineartheory(Theorem3.4),whereallK-formsofanL-vectorspaceareisomorphicasK-vectorspaces.Whenworkingwithalgebraswehavetokeeptabsonthemultiplicativestructuretoo,andthatcreatesnewpossibilities.AswithK-formsofanL-vectorspace,K-formsofanL-algebracorrespondtoanap-propriatesystemofsemilinearG-actionsonthealgebra.AG-structureonanL-algebraAisacollectionofmapsr:A!Aforall2Gsuchthatrisa-linearK-algebraautomorphism(notL-algebraautomorphism!),ridL=idA,andrr0=r0.Example5.3.TheentrywiseorcoecientwiseG-actionsonMn(L),gln(L),andL[X ]asL-vectorspacesarealsoG-structuresasL-algebras.Example5.4.IfAisaK-algebrathentheL-algebraL KAgetsastandardG-structurebyA Xici ai!:=X(ci) ai:Thisis-linear(AisadditiveandA(ct)=(c)A(t)forallc2Landt2L KA)andalsoAismultiplicative(A(tt0)=A(t)A(t0)),soAisaK-algebraautomorphismofL KA.ThinkingofAjustasaK-vectorspace,bytheproofofTheorem2.14wehave(L KA)G=1 A.IfAisanL-algebrawithaG-structure,the xedsetAGisaK-formofAasvectorspacesbyTheorem2.14.ThespaceAGisalsoaK-algebraandtheL-linearisomorphismL KAG!AisanisomorphismofL-algebras,notjustofL-vectorspaces.SoAGisaK-formofAasanL-algebra.ThusG-structuresleadstoK-forms.Conversely,ifAisanL-algebrawithaK-formA,thenaturalmapL KA!AisanL-algebraisomorphismandthestandardG-structureonL KAinExample5.4canbe GALOISDESCENT17transportedtoaG-structureonAwhose xedsetisA.(ThisisanalgebraanalogueofExample2.10.)SoK-formsonanL-algebraAleadstoG-structuresonA.ItcanbenosurpriseatthispointthatTheorem2.14hasananalogueforalgebras:theK-formsofA(asanalgebra)areinone-to-onecorrespondencewiththeG-structuresonA(asanalgebra).OnejustreadsthroughtheproofofTheorem2.14andchecksthemapsconstructedtherebetweenalgebrasarenotjustsemilinearbutalsomultiplicative.Example5.5.WithrespecttotheirstandardG-structures,theK-formsoftheL-algebrasMn(L),gln(L),andL[X ]areMn(K),gln(K),andK[X ].ForaC-algebraA,aGal(C=R)-structureisdeterminedbyaconjugationonthealgebra.Thisisafunctionc:A!AsuchthatcissemilinearwithrespecttocomplexconjugationonC,isanR-algebraautomorphismofA,andc2=idA.Example5.6.TheC-algebraM2(C)hasR-formsM2(R)andH(embeddedinM2(C)asinExample5.2).Theseareeachthe xedpointsofoneofthefollowingtwoconjugationsonM2(C):c = ;c0 = � � :Notec0,whose xedsetisH,isnotanextensionoftheusualconjugationonquaternions,asthatdoesn't xallofH(also,theusualquaternionicconjugationreversestheorderofmultiplication).LetAbeanL-algebraandAandA0betwoK-formsofA(asanL-algebra).EachK-formprovidesAwithaG-structure,sayfrgandfr0gforAandA0.CallAandA0equivalentK-formsofAifthereisaK-algebraisomorphism :A!A0commutingwiththeG-actions: (r(a))=r0( (a))foralla2Aand2G.BecauseofexampleslikeM2(R)andHinsideM2(C),notallK-formsofanL-algebraareequivalent,astheK-formsmaynotbeisomorphicK-algebras.TheequivalenceofK-formsofanL-algebracanbedescribedbythealgebraanalogueofTheorem3.4(whereallK-formsareequivalent,usinganobviousnotionofequivalenceforvectorspaceswithG-structure):Theorem5.7.LetAbeanL-algebrawithK-formsAandA0.WritethecorrespondingG-structuresonAasfrgandfr0g.ThenAandA0areequivalentK-formsofAifandonlyifthereisanL-algebraautomorphism'ofAsuchthatr0='r'�1forall2G:thediagramA'// r Ar0 A'// Acommutesforall2G.Proof.(()Ifthereissucha'then'isaK-algebraautomorphismofA,andfora2A,'(a)=r0('(a))forall,so'(a)2A0.If'(a)2A0witha2A,then'(r(a))='(a),sor(a)=aforall,soa2A.Thus'(A)=A0,so'restrictstoaK-algebraisomorphismfromAtoA0.())SupposethereisaK-algebraisomorphism :A!A0suchthat (r(a))=r0( (a))foralla2A.Baseextend to1 ,anL-algebraisomorphismfromL KAtoL KA0.ThesebaseextensionsarebothL-algebraisomorphictoAinanaturalway,so1 can 18KEITHCONRADberegardedasanL-algebraautomorphism'ofA.Itislefttothereadertocheckwiththis'thatthediagramcommutes.ForourlastapplicationofGaloisdescent,weworkoutthestructureoftheL-algebraL KL,wherescalingbyLcomesinthe rstcomponent:c(x y)=cx yonsimpletensors.For2G,letLbeLasaringwithL-scalinggivenbythetwistedrulecx=(c)x.ThenLisanL-algebra.SetA=Y2GL;whoseelementsarewrittenintuplenotationas(x).ThisisanL-algebrausingcompo-nentwiseoperations.Inparticular,scalingbyLonAisgivenbyc(x)=(cx)=((c)x):Let2GactonAby((x))=(x)=(y);wherey=x.ToshowthisisaG-structureonA,itiseasytoseethatactsadditivelyandmultiplicativelyonA,andtheidentityofGactsonAastheidentitymap.For1and2inG,1(2((x)))=1((y))wherey=x2=(z);wherez=y1=x12.So1(2((x)))=(x12)=(12)((x)):Thuscomposingtheactionsof1and2onAgivestheactionof12.Also(c(x))=(((c)x))=(y);wherey=()(c)x=((c))xand(c)(((x)))=(c)((x))=((c)x)=(((c))x)=(y);soacts-linearlyonA.The xedsetAGforthisG-structureonAisf(x):((x))=(x)forall2Gg,whichamountstox=xforalland,soallthecoordinatesarethesameelement,sayx,ofL:AG=f(x):x2Lg.ThusL=AGasK-algebrasbyx7!(x).(ThismapisK-linearbutnotL-linearif#G�1.)SinceL=AGasK-algebras,L KL=L KAGasL-algebrasby 7! ( ).ByGaloisdescent,L KAG=AasL-algebrasby ( )7! ( )=(  )=(( ) ),so(5.1)L KL=A=Y2GL GALOISDESCENT19by 7!(( ) ).Foranapplicationof(5.1)toaproofofthenormalbasistheorem,see[4].References[1]N.Jacobson,\LieAlgebras,"Dover,NewYork,1979.[2]J.H.Silverman,\TheArithmeticofEllipticCurves,"Springer-Verlag,NewYork,1986.[3]W.Waterhouse,\IntroductiontoAneGroupSchemes,"Springer-Verlag,NewYork,1979.[4]W.Waterhouse,TheNormalBasisTheorem,Amer.Math.Monthly86(1979),212.[5]D.J.Winter,\TheStructureofFields,"Springer-Verlag,NewYork,1974.