/
[TheJournalofGeology,2001,volume109,p.755 [TheJournalofGeology,2001,volume109,p.755

[TheJournalofGeology,2001,volume109,p.755 - PDF document

cheryl-pisano
cheryl-pisano . @cheryl-pisano
Follow
371 views
Uploaded On 2017-02-08

[TheJournalofGeology,2001,volume109,p.755 - PPT Presentation

ElizabethANagy Figure1SimpliedgeologicmapoftheKontummassifinVietnamshowingsamplingsitesandregionsdiscussedintextMapiscompiledfromexistinggeologicmapsandpresenteldinvestigationsMapunitsareafterT ID: 517351

ElizabethA.Nagy Figure1.SimpliedgeologicmapoftheKontummassifinVietnamshowingsamplingsitesandregionsdiscussedintext.Mapiscompiledfromexistinggeologicmapsandpresenteldinvestigations.MapunitsareafterT

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "[TheJournalofGeology,2001,volume109,p.75..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

[TheJournalofGeology,2001,volume109,p.755–770]2001byTheUniversityofChicago.Allrightsreserved.0022-1376/2001/10906-0005$01.00GeodynamicSignicanceoftheKontumMassifinCentralVietnam:ArandU-PbAgesfromPaleozoictoTriassic ElizabethA.Nagy, Figure1.SimpliedgeologicmapoftheKontummassifinVietnamshowingsamplingsitesandregionsdiscussedintext.Mapiscompiledfromexistinggeologicmapsandpresenteldinvestigations.MapunitsareafterTranVanTri(1973)andNguyenXuanBaoetal.(1994).Heavydashedlinesareinternationalborders;lightdashedlinesarerivers.TheKannackcomplexconsistsofgranulitefaciesrocksandsyntectoniccharnockiteintrusions.ThePaleozoicamphibolitefaciesrocksincludeacidictobasicorthogneissesknownastheDak-ToˆUnit.Undatedamphibolitefaciesrocks,whichincludemigmatiticgneisses,orthogneisses,andmetasediments,aretheNgocLinhcomplexandtheKhamDucformation.MesozoicterrigenoussedimentsareTriassicandJurassic.,MapofVietnamshowingmajorfaultzones,cities,andtownsmentionedinthetextandthelocationofthemaingeologicmap.BienPhufaultzone;RedRiverfaultzone;SongChaymassif;SongCafaultzone;SongMafaultzone;Tamky–PhuocSonfaultzone. JournalofGeologyKONTUMMASSIF,VIETNAM7571,inset).EarlyProterozoicK-Aragesof1.7–2.0Ga(TranNgocNam1998),aswellasNdmodelagesof3.4–3.1Ga(Lanetal.1999),havebeendocu-mentedalongtheRedRiverfaultzone,althoughsingle-grainU-Pb-HfisotopeanalysesfromdetritalzirconandbaddeleyitecrystalsfromtheRedRiverarenotinfavorofcrustolderthan2.5Gaalongthismajordrainage(BodetandScha¨rer2000).In-heritedzirconcomponentscorroboratemeltingofPrecambrian(1.6–0.8Ga)crustinOligo-MiocenegneissesfromtheRedRiverandBuKhangareas¨reretal.1990,1994;Nagyetal.1999,2000),althoughdirectevidenceforPrecambrianrockshasnotbeenreportedfromtheBuKhangregion.AgesfromtheKontummassifincludeafewearlytomid-dleProterozoicK/ArandRb-Srages,aswellasaCambrianRb-SrageandaDevonianK/Arage,al-thoughanalyticaldetailsaremissingfrommanyoftheseearlystudies(FaureandFontaine1969;Snell-ing1969;HurleyandFairbairn1972;PhanTruongThi1985;TranQuocHai1986;Hutchison1989).RecentgeochronologicstudiesintheKontummas-sifndNdmodelagesof2.0–1.5Ga(Lanetal.2000)andSHRIMPU-Pbzirconagesfromonegranulitesampleof254Ma(TranNgocNametal.2001).WepresenttherstArandU-PbcombinedgeochronologicresultsforavarietyofrocksfromtheKontumbasement,includingtheKannackmetamorphiccomplex,andshowthattheserocksdonotrepresentPrecambrianlowercrustbutratherrecordPaleozoictoTriassicmagmatismandlow-temperaturethermalevents.Ourresultshaveim-portantimplicationsfortheextentofmagmatismrelatedtothelatePaleozoicclosingofthePaleo-TethysSea.GeologicSettingandSampleLocationsTheKontummassif(Saurin1944)insouth-centralVietnamisanupliftedblockofhigh-grademeta-morphicrocksintrudedbygraniticbodiesandlargelycoveredbyNeogene-Quaternarybasalts(Ranginetal.1995;HoangandFlower1998;Leeetal.1998).TheE-to-W-strikingTamky–PhuocSonfaultzone(g.1andinset)separatestheKontumblockfromtheTruongSonfoldbelttothenorth.TheTruongSonbelt,whichstrikesNWandex-tendsfromcentralVietnamthroughnorth-centralVietnamandintonortheasternLaos,consistspri-marilyofelongatedzonesofmetamorphicrocks.TheSongCaandSongMafaultzones(g.1,inset)are250–300-km-longcontinuousshearzoneswith-intheTruongSonbeltthatshowmetamorphicfab-ricsparalleltotheoveralltrendoftherange(e.g.,Lepvrieretal.1997).SouthoftheTamky–PhuocSonfaultzone,thesupposedlyPrecambrianKannackmetamorphiccorecomplex,locatedprimarilyintheeast-centralpartoftheKontumblockwithsmallerisolatedex-posuresinthesouthnearM’DracandinthewestnearDak-Toˆ(g.1),isintrudedbyPaleozoicandundatedamphibolitefaciesrocksandbyMesozoicnonfoliatedgranites.Mesozoicsedimentsarepre-sentaswell.Alloftheserockshavebeenexten-sivelyfaultedbystructuresgenerallystrikingNtoNNW,whereasNeogene-Quaternarybasaltsandsedimentsintheregionarenotdeformedbybrittledeformation.TheKannackmetamorphiccomplexincludesseveralformationspreservinggranulitefaciesrocktypes(DGMVN1997).Allrocksinthecomplexarerelatedtothe2-pyroxenegneissfaciesofregionalmetamorphism(Hutchison1989),correspondingtoconditionsofformationatdeepcrustallevelsaround800–850Cand7–8kbar(TranQuocHai1986).Thebaseofthecomplexisformedbyanaluminousmetasedimentaryseries(pelitesandAl-quartzites)intercalatedwithcarbonate(moreorlessdolomitic)sediments.Theseundatedsedimen-taryprotolithsarehighlyfoliated(sometimesmy-lonitic)andmetamorphosedtogranulitefacies,giv-ingrisetokhondaliticandkinzigiticgneisses,granuliticmetaquartzites,marbles,andskarns.Thefoliationisattomoderatelydipping.Intermediatepressuresaresupportedbyprismaticbiotiteandsil-limanite-garnet-K-feldsparmineralogy.Prismaticrutile,Mg-ilmenite,Ti-magnetite,sulfur,apatite,zircon,andgraphiteareabundant.Thepresenceofstablebiotitewithquartzinsomesamplesindi-catesthatanatecticconditions,probablyunderlowO,wereattained.Syntectonicbodiesofcharnockiteintrudethegranuliticmetasedimentaryformation.Evidenceforthesyntectonicnatureoftheintrusionsin-cludesmagmaticfoliationthatparallelsthefolia-tionofthegranulitesandfoliation-parallelintru-sionsoflargesills.Mostofthecharnockitesbelongtoeitheracalc-alkalinemagmaticseriesoracon-tinentaltholeiiticserieswithplagioclaseandor-thopyroxene.Themagmaticsuiteisdifferentiatedintoacidic,intermediate,andbasicmembers,giv-ingrisetocharno-enderbites,Q-enderbiteswithor-thopyroxeneandbiotite(PhanCuTienetal.1988),andtruenoriticgabbros.Themostacidicchar-nockiticrockscouldbeproductsofanatexisofthegranuliticmetasedimentsunderlowpHOcondi-tions.Thecharnockitesandgranulitesdisplayalate(secondary),retrogradegreenschistfaciesmeta-morphism(e.g.,chloritizationofbiotite,Felossinbiotites,growthofopaquesandsecondarywhite- 758E.A.NAGYETAL.micas).Cordieritemaybepinitizedandbrownhornblendecanbetransformedintoactinoliteandepidote.Thisretrogressiveepisodemaysimplybeduetocoolingofthesyntectonicmagmasoritmayhaveformedastheresultofindependent,late,low-grademetamorphism.OurstudyincludesaQ-enderbitecharnockite(VN357)analyzedwithU-Pb,Rb-Sr,andArmethods(14NorthandsouthoftheKannackcomplex,largeamountsofmigmatiticgneissesandstronglyfoli-atedgranitesareexposed.TheserocksdisplayaN-to-NE-strikingfoliationandageneralantiformalstructure(seecrosssectionsing.2).Shearcriteriaacrosstheareaindicatenormalmovementsrelatedtoexhumationofthemassif.Thedirectionofex-tensionisapproximatelyNWtoSE.Themineralassemblagecorrespondstoamphibolitefacieswithmuscoviteandsillimanite.IncontrasttotheKan-nackcomplex,migmatizationoccursinthepres-enceofwater.Wehaveanalyzedacharnockite(Q-enderbite)enclave(VN343)fromwithinthisunitfromthesouthernmostpartoftheKontummassif(g.1)withtheU-PbandRb-Srmethods(12InthewesternpartoftheKontumblock,aNNW-trendingzonealongtheKrongPokoRiverbetweenthevillagesofDak-ToˆandKontum(g.1)consistsofamphibolitesandgranitoidsmoreorlessgneis-sied(PhanCuTienetal.1988).Tothewest,theserocksareinfaultcontactoverasliceofKannackcomplexrocks;Neogenesedimentscovertheeast-erncontact.Therocksdonotshareanyfeatureswiththepreviouslydescribedcharnockites,andfromageochemicalpointofview,theybelongtoaFe-K-richseries.Wesampledthreedifferentam-phibolitefaciesmetabasitesrepresentingalkalinetocalc-alkalineafnities.Sampledoutcropscon-sistofaN110E-striking,subverticalfoliationandsubhorizontallineations.Abiotite-enrichedpeliticserieswithintheorthogneissex-pressesstrongfoliationandisoclinalfolding.Shearcriteriatendtoindicateadextralsenseofmotion.Oursamplesincludeaweaklydeformedgrano-diorite(VN386;14;107),anortho-gneiss(VN387;14;107),andabiotiteamphibolite(VN388;samelocationasVN387).WeanalyzedsampleVN386withU-PbandRb-SrmethodsandallthreesamplesforAr.MineralogyandGeochemistryCharnockites.SampleVN357isaQ-enderbitethatistypicalofintermediate-to-acidicunitsfoundintheKannackcomplex.Itcontainsquartz,andesineplagioclase(AncontainingantipertheticK-feldspar(AbmyrmekiticK-feldspar,hypersthene(Fe),Ti-biotite,Ti-hornblende,apatite,zircon,andTiopaques.(AllphenocrystcompositionsquotedhereweredeterminedwithaCamecaSX100-5electronmicroprobeattheUniversityofMontpellier2.)Thebiotiteoccursasasyn-tolate-crystallizationphase,formedaftertheinitialcrystallizationoforthopy-roxene,andbrownhornblendecrystallizedevenlater.SampleVN343isaQ-enderbiteoccurringwithinmigmatitesandconsistsofquartz,metastablecer-iticizedplagioclaseexhibitingpolysynthetictwin-ning,myrmekiticK-feldspar,orthopyroxene,chlor-itizedbiotite,muscovite,secondaryamphibole,apatite,andzircon.Thereisevidenceforbothpri-maryandsecondarymuscovite.Thepetrofabricin-dicatesbrittledeformation.AmphiboliteFaciesRocks.SampleVN386isaweaklyfoliatedgranodioritecontainingquartz,K-feldspar,oligoclaseplagioclase,Fe/Ti-biotite,andzircon.SampleVN387isanorthogneissconsistingofquartz,K-feldspar,oligoclaseplagioclase,Fe/Ti-biotite,Fe-hornblende,allanite,titanite,apatite,zircon,andopaques.Finally,VN388isabiotiteam-phiboliteofdioriticcomposition,consistingofquartz,andesineplagioclase(An),green-brownamphibole(Fe-pargasite/hastingsitewithFe0.9–1.13wt%TiO),Fe/Tibiotite(Fe;2.65wt%TiO),epidote(var.pistacite),titanite,allanite,ilmenite,apatite,andzircon.Geochemistry.ChemicalanalysesofpowderedwholerocksplitsfromthethreesamplesanalyzedforU-PbandRb-Sr(charnockitesVN357andVN343andgranodioriteVN386)wereperformedusingemission-ICPformajorelementdetermina-tionsandICP-MSfortraceandrareearthelement(REE)analyses(table1[tables1,3,and5areavail-ablefromTheJournalofGeologyDataDepositoryfreeofchargeuponrequest]).Rockclassicationforeachsampleisassignedusingasilica-alkalidi-agram(g.3).Majorandtraceelementdatashowthatthethreeintrusionsreectcalc-alkalinemag-maslyingintheeldsofdiorite(VN357),grano-diorite(VN386),andgranite(VN343).AllsamplesareLREE(lightrareearthelement)enrichedwithLa/(g.3).CharnockiteVN357istheleastfractionatedofthethreesamples,andcharnockiteVN343isthemostfractionatedandsignicantlydepletedinHREE(heavyrareearthelement)(La/),suggestinggarnetfractionationinthesourcemagma.Euanomaliesareslightlynegative(VN357)toabsent;plagioclasefractionationisthereforenotstronglysupported.Intraceelement Figure2.Geologiccrosssectionscorrespondingtoingure1andshowingMesozoicandolderrocks.Theamphibolitefaciesrocksareshownherewithoutthelithologicdistinctions(metasediments,migmatites,orthogneiss)showningure1.Elongatesymbolsshowgeneraldirectionoffoliationinthevariousrocktypes.Shortdashesaremicaschists;otheramphibolitefaciesunitsareshownwithlongdasheswithsinglecrossbar. 760E.A.NAGYETAL. Figure3.GeochemicalresultsfromsamplesVN343,VN357,andVN386illustratedby()atotalalkali-silicadiagram(boundarypositionsafterLeBasetal.1986)and)rareearthelementpatternsnormalizedtochondriticcomposition(normalizingvaluesfromAndersandEbi-hara1982).discriminationdiagramsappliedtograniticrocks(Pearceetal.1984),thegranite(VN343)andgran-odiorite(VN386)samplesgenerallyfallwithinthesyn-collisionalandvolcanic-arcgraniteelds,re-spectively.GeochronologicDataPreviousData.Previousstudieshavenotquan-titativelyidentiedArcheanagesforrocksfromanypartoftheKontummassif.Ofparticularsig-nicance,ArcheanagesinferredfortheKannackmetamorphiccomplexinthecentralandeasternregionsoftheKontummassifarebasedexclusivelyuponlithologiccorrelationsinferredbetweenthecharnockitesandpetrologicallysimilarPrecam-brianrocksinGondwana(PhanTruongThi1985;TranQuocHai1986;Hutchison1989,p.152).K-ArgeochronologyintheKontummassifprovidedEarlyProterozoicages(1650–1810Ma;TranQuocHai1986;Hutchison1989)thataresimilarto,yetslightlyolderthan,Rb-Sragesof1400–1600Ma(PhanTruongThi1985);a2300-MaPb-isochronagehasalsobeenmentionedintheliterature(Hutch-ison1989,p.300).AsignicantlyyoungerK-ArbiotiteageofMahasbeenreportedfromtheDak-ToˆregionnorthwestofKontum(g.1;FaureandFontaine1969;Snelling1969).Radio-metricageshaveonlyrecentlybeenreporteddi-rectlyfortheKannackcomplex(manyoftheagesreportedbyHutchison[1989]areestimates)andin-cludeK-Aragesof241–244Mafromsynkinematicbiotitesinacordierite-sillimanite-biotitegneiss(TranNgocNam1998),a240-MaArageforacharnockite(MaluskiandLepvrier1998;Maluskietal.1999),andU-PbSHRIMPagesaround250Maforagranulite(TranNgocNametal.2001).U-PbandRb-SrAnalyses.ZirconsfromsamplesVN357,VN343,andVN386weredatedwiththeU-Pbtechnique,andK-feldsparsfromthesampleswereanalyzedforRb-SrandPbisotopesystematics.Measurementswereperformedusingtheisotopedilutionmethodongrain-by-grainselectedfrac-tionsofzirconandK-feldspar,concentratedusingconventionalmagneticanddensityseparationtechniquesfollowingcrushingof3–5-kgrocksam-ples.TheU-PbandRb-Sranalyticalresultsarelistedintables2and3,respectively.Mostgrainswereabradedpriortodissolution(indicatedintable2).AllU-Pbdateswerecorrectedforinitialcom-monPbasdeterminedoncoexistingK-feldsparsfromeachsample(table3[tables1,3,and5areavailablefromTheJournalofGeologyDataDe-positoryfreeofchargeuponrequest]).Detailsoftheanalyticalproceduresandmass-spectrometricanal-ysiscanbefoundinthefootnotesoftables2and3andinearlierpublications(e.g.,Scha¨reretal.1994;ZhangandScha¨rer1999).Concordiadiagramsforthedioriteandgranitecharnockitesandtheamphibolitefaciesgranodior-iteareshowningure4,respectively.SevenzirconfractionsfromVN357(g.4)yieldvecon-cordantandtwoslightlydiscordantdates.Themeanagedenedbytheveidenticallyconcordantzirconfractionsandtheveryslightlydiscordantfractionsis(2)Ma.Aregressionline1.7includingallsevenfractionsgivesanupperinter-ceptageofabout1.1Ga,approximatingtheageofzirconsfromthemeltedcrustalmaterial.Sevenzir-confractionsfromVN343(g.4)yieldtwocon-cordantagesandoneveryslightlydiscordantdatethattogethergiveameanageofMa,1.5 Table2.U-PbAnalyticalResultsforZirconsfromtheKontumRegion Sampledescriptiontion(ppm) RadiogenicPbinatomic% Atomicratios Apparentagesin Urad. Dioriticcharnockite(VN357):45mediumtolargeequantgrains,transparent,abraded.162631313.065181.84.213.9.03944.2816.05177324925227530largeegg-shapedtoelongategrains,trans-parent,abraded.098434914.251484.34.311.4.03996.2810.05100925325124135largeelongategrains,transparent,nonabraded.179838315.6116582.64.213.1.03913.2770.0513392472482567largeelongategrains,transparent,nonabraded.072240215.7116685.54.410.1.03882.2726.0509382452452385mediumtolargeegg-shapedtoroundgrains,transparent,stronglyabraded.036926311.0150880.74.215.0.03919.2833.05242624825330414mediumtolargebrokenpiecesofgrains,trans-parent,abraded.07901606.656881.74.214.1.03887.2761.05151824624826415largeelongategrains,transparent,nonabraded.156537715.8322183.64.412.0.04077.2952.052509258263308Graniticcharnockite(VN343):13largeelongategrains,transparent,abraded.048449822.0457677.24.018.9.03958.2810.05147825025126211largeelongatetoroundgrains,transparent,abraded.025147021.1101276.33.919.7.03978.2828.05156225125326615mediumtolargeegg-shapedgrains,transparent,stronglyabraded.037751319.9306388.84.66.6.04009.2861.05175525325527510largeelongategrains,transparent,nonabraded.0673218372.711,34991.54.73.9.03543.25014.05120622422725022mediumtolarge,roundtoegg-shapedgrains,trans-parent,abraded.1190152163.611,49889.25.75.1.04341.38073.06361627432872917mediumequantgrains,transparent,abraded.0496122059.8911688.65.85.5.05056.4583.06574631838379824smalltomediumegg-shapedgrains,transparent,wellabraded.0360116447.9259788.04.97.1.04210.3260.056159266287459Granodiorite(VN386):13mediumwell-roundedgrains,transparent,wellabraded.043562043.8561388.75.06.3.07298.5667.05632145445646512mediumtolargeangulargrains,transparent,abraded.060858641.631787.84.97.3.07238.5539.05550245044843326smalltomediumequantgrains,transparent,abraded.032560342.1409689.25.05.9.07238.5554.05565345044943919smalltomediumegg-shapedgrains,transparent,abraded.042947132.031188.45.06.6.06993.5455.0565824364424758mediumtolargeelongategrains,transparent,non-abraded.0567121574.5780290.45.14.5.06451.4986.0560644034114555mediumtolargeroundgrains,transparent,abraded.062257433.1116989.84.95.3.06028.4578.055082377383416 Note.Individualanalyseswereperformedoneuhedral,unbroken,crack-freegrainsofhighesttransparencypossible.Smallgrains80mmlong,medium-sizegrainsare80–120mmlong,andlargegrainsare120mmlong.ZirconsweredissolvedinHFat220Cfor4dinTeonbombs;thechemicalprocedureisfromKrogh(1973),andabrasionwasperformedaccordingtoKrogh(1982).UdecayconstantsusedarethosedeterminedbyJaffeyetal.(1971)asrecommendedbySteigerandJa¨ger(1977).Forisotopicmeasurements,PbandUwereloadedtogetheronsingleRelamentswithSigelandHandwererunat1350–1450Cand–1550C,respectively,onaThomson206solid-sourcemassspectrometer.Massdiscriminationis%/amuforPbandU.Dioriticcharnockite(VN357)mean(1–6):(2)Ma;graniticcharnockite(VN343)mean(8–10):Ma;1.7252.5granodiorite(VN386)mean(15–17):Ma,mean(15–18):Ma.2.6448.1Ratiocorrectedformassdiscriminationandisotopictracercontribution.Ratiocorrectedformassdiscrimination,isotopictracercontribution,10pgofPbblank,1pgofUblank,andinitialcommonPb(table4)asdeterminedinleachedcoexistingfeldspar(Scha¨rer1991)fromthesamples.Togetherwithmass-spectrometricprecisionsanduncertaintiesfromspikecalibration,suchcorrectionforinitialPbyieldsanalyticaluncertaintiesof0.5%–0.7%for0.6%–1.0%forU,andabout0.2%–0.5%forPb,dependentonPbmeasured. 762E.A.NAGYETAL. Figure4.U-Pbconcordiadiagramsforsamples(VN357,()VN343,and()VN386.whereasthreeotherfractionsaresignicantlydis-cordant,indicatingthepresenceof1.8–2.7-Gain-heritedcomponentsextractedfromthemagmasourcerocks.Anonabradedfractionplotsatayoungeragerelativetoallothersamples,undoubt-edlyduetopostcrystallizationPblossatthecrystalsurfaces.SixzirconfractionsfromVN386(g.4yieldthreeconcordantdatesdeningameanageofMa,andthreeotherfractionsshow451.2variousdegreesofdiscordancethatcanbeascribedtopostcrystallizationPbloss.IncludingtheleastdiscordantfractionwiththeconcordantonesgivesameanageofMa.448.1Sourcecharacteristicsofthedioritic,granitic,andgranodioriticmagmaswereexaminedusingRb-SrandPbisotopesanalyzedinK-feldspar(tables3,4).TocalculateinitialSrratios(Sr),wecorrectedfortheinsitudecayofRbusingtheU-PbagesoftherocksandthemeasuredRb/Srratio.TheinitialPbisotoperatios(Pb)weremeasureddirectlyonK-feldsparmineralfractions,whicharegenerallydevoidofU.ThefeldsparswereleachedwithweakHF/HBrpriortodissolutiontoavoidanalyzingchemicallyalteredcrystalrimsthatpo-tentiallyincludeUandPbfromintergranularvaluesforthethreesamplesliebetween0.70939and0.71639(table4).The253-Magranitecharnockite(VN343)showsthelargestcrustalcon-tribution,whichisinagreementwith(1)itsgraniticcomposition,comparedtothelessdifferentiatedgranodioritic-dioriticcompositionsoftheothertworocks,and(2)thepresenceofsignicantinheritedcomponentsinitszircons(g.4).TheSrturesinthedioriteandgranodioriteindicatealesssignicantcrustalcomponentintheirsourcemag-mas,consistentwiththeirchemicalcharacter.valuesforallthreesamplesareslightlyhigherthanthemodelcurvesforPbevolutioninaverageoruppercontinentalcrust(diagram,g.5BecausePbisbufferedbycontinentalcomponents,whichcarrythedominantportionofPbcomparedtomantlemelts,acontributionofonlyasmallper-centageofuppercrustalmaterialtoabasalticmagmadominatesthePbisotopecompositionatthetimeofplutonemplacement(e.g.,Scha¨rer1991).Oursamples,includingthediorite,thereforeplotalongthemodelcurvesforcontinentalcrustbutinaslightlyhigherposition,implyingassimi-lationofoldcrustalcomponentswithvalueshigherthanbothaverageandupperconti-nentalcrustvalues(StaceyandKramers1975;Zart-manandDoe1981).ThisconclusionfromthePbsystematicscorroboratesthepresenceof1.1–2.7-Gainheritedcomponentsinthezircons(g.4).An JournalofGeologyKONTUMMASSIF,VIETNAM763 Figure5.diagrams.AlsoshownaremodelcurvesforPb-isotopeevolutionofupper(ZartmanandDoe1981)andaverage(StaceyandKramers1975)continentalcrust.Table4.SummaryofAgesandInitialSrandU-Th-PbSignatures Arage(Ma),U-Pbage(Ma),magmasourcePb()ofmagmasourceTh/U()ofmagmasource Dioriticcharnockite(VN357)2434248.81.7.710829.503.92Graniticcharnockite(VN343)…252.51.5.716399.643.90Granodiorite(VN386)3398451.22.6.709399.673.74Orthogneiss(VN387)3806…………Dioriticamphibolite(VN388)42410………… Note.(iscalculatedfromtheRb-Srdatalistedintable3andtheU-Pbagelistedabove.arecalculatedfromthePbdatalistedintable3andtheU-Pbagelistedabove,usingasingle-stageevolutionmodelofa4.56-Ga-oldEarthhavingPbinitialisotopicratiosasmeasuredintheCanyonDiabloFe-meteorite(Tatsumotoetal.1973).diagramofPb(g.5)revealsthatmagmasourcesforthecharnockites(VN343,VN357)areenrichedinThrelativetoU(Th/U[]:3.92and3.90;table4).Theseratiosarehigherthantypicalofmodelupperoraveragecrust,possiblyindicatingassimilationoflowercrustmaterial(i.e.,depletedinU).Incontrast,theoldergranodiorite(VN386)hasaratio(3.74)thatsuggestsmagmacontribu-tionfromtypicaluppercrust.ArBiotiteAnalyses.Foursampleswereir-radiatedwithuxmonitorsattheOsirisReactor(CEA)inSaclay,France.AnalyseswereperformedbystepwiseheatingofpuriedbiotiteseparatesandmeasuredusingamodiedThomsonraregasmassspectrometer.Analyticalprocedurescanbefoundinearlierpublications(Maluski1989;Maluskietal.1995;Lepvrieretal.1997).Dataarepresentedintable5(tables1,3,and5areavailablefromJournalofGeologyDataDepositoryfreeofchargeuponrequest)andillustratedingure6.AplateauageofMa(2)isgivenbythe243lastthreeheatingstepsofcharnockiteVN357(g.).Thisageaccountsforabout50%ofthedegassedbetween1050Candthetemperatureofcompletefusion.TheagecalculatedfortheentiredatasetisMa,whichoverlapswiththe239formervaluegivenuncertainties.Agesreachtherangeoftheplateauvaluebylowtemperatures(e.g.,Maforthe700Cstep).Thissuggeststhatpostcoolingthermaleffectswereinsignicant.Thethreeamphibolitefaciessamples(VN386,VN387,VN388)giveverysimilaragespectrapat-terns.Theirplateauagesarereachedearlyinthestep-heatingprocedure,generallyby650C,andtheplateausincludemorethan75%oftheextractedAr(g.6).PlateauagesareMa,Ma,andMa,respectively.6424Ourgeochronologicresults(table4)showthatmag-matismproducingcharnockitesandamphibolitefaciesintrusionsintheKontummassifismuch 764E.A.NAGYETAL. Figure6.Arplateaudiagramsforsamples()VN357,()VN386,()VN387,and()VN388youngerthanthePrecambrianagespreviouslyin-ferred(e.g.,PhanCuTienetal.1988;Hutchison1989,p.152).TheKontummassifappearstobeacompositeblockmadeupofremnantsofatleasttwomagmaticevents,oneinvolvingPaleozoicmiddlecrustalplutonismandtheothergeneratingPermo-Triassiclowercrustalcharnockites.Itfol-lowsthattheKontummassif,andinparticulartheKannackmetamorphiccorecomplex,didnotriftfromthePrecambriangranulitebeltofGondwana,whichispresentlydispersedinEastAntarctica,In-dia,SriLanka,andAustralia(Katz1993).Itshould,nevertheless,stillbeconsideredtheprinciplepartoftheIndochinablockinpaleogeographicrecon-structions.FollowingageochronologicsummaryofthemagmatichistoryoftheKontummassifasre-cordedinoursamplesandadiscussionofmagmasourcecharacteristics,weexaminetherelationshipbetweenthetectonichistoryoftheIndochinablockandmagmatismrecordedintheKontumregion.MagmaticHistoryintheKontumMassif.Theam-phibolitefaciesgranodiorite(VN386)givesaU-Pbemplacementageof450MaandanArage340Ma.Thedifferenceintheseagesmaybeduetoslowcooling.Alternatively,theweakfoli-ationdelineatedbythebiotitefabricmayhaveformedduringapost-450Ma,low-temperaturetec-tonometamorphiceventthatalsoresettheargonsystematics.Retrogressivegrowthofepidote(pis-tacite)andchloritesupportssuchanevent.BecausebiotitesinsampleVN386shownoevidenceofpar-tialresettingoftheargonsystem(i.e.,nosigni-cantlyyoungerAragesatlow-temperatureextractionsteps),weinferthatsuchareheatingeventprobablyoccurredat340Ma,completelyresettingtheargonisotopesinthebiotiteofthisparticularsample.Thisscenarioisfurthersup-portedbyPblossinthreeslightlydiscordantzirconfractionsinVN386(g.4)thatinterceptconcordiaatupperPaleozoictime.Onthebasisofeldrelationships,andintheabsenceofU-Pbdata,weinferthattheotheram-phibolitefaciesrocks(VN387andVN388)wereem- JournalofGeologyKONTUMMASSIF,VIETNAM765placedcontemporaneouslywithVN386atMa.AllthreesamplesappeartobepartofthesameseriesattheoutcroplevelintheKrongPokoRiverregion,andtherearenotectonicorintrusivecon-tactsbetweenthem.SamplesVN387andVN388Arplateauagesof380Maand424Ma,respectively.Again,theseagesmightreectslowcoolingofOrdovicianintrusions,therateofwhichmusthavevariedbetweenthethreeamphibolitesamplesgiventhethreedifferentArages.If,however,alow-temperaturethermaleventdidoc-curaround340Ma,assuggestedabove,theolderagesofVN387andVN388suggestonlypartialar-gonresetting.IncontrasttoVN386,theagespectraobtainedfromthebiotitesinVN387andVN388showevidenceofArdiffusionatlowdegassingtem-peratures,correspondingtolowagesrelativetotheplateauagesandsupportingpartialresettingbyapostemplacementtemperaturerise.Clearly,themostsurprisingresultfromtheam-phibolitefaciesmagmaticsuiteisthePaleozoic,ratherthanPrecambrian,U-PbandArages.OuralternativeinterpretationtosimplecoolingofOrdovicianintrusionsatvariousrates,whichisthatasubsequentthermalevent(340Maoryounger)resettheargonsystematicstovaryingde-grees,isspeculativebutcertainlyaviablepossi-bilitygiventheargonanddiscordantzirconresults.FaureandFontaine(1969)alsosuggestedalow-temperaturereheatingeventbasedonaPaleozoicK/Arage(398Ma)determinedforthesamegran-odioriteassampleVN386.Wewouldfavoranear-lierage(340Ma)fortheactualreheatingeventbasedontheobservationsoutlinedabove.ThecharnockitesamplefromtheKannackcom-plex(VN357),previouslyassignedanArcheanage(e.g.,PhanCuTienetal.1988),yieldssignicantlyyoungeragesof249Ma(U-Pb)and243Ma(Ar)(table4).TheconvergenceofagesbythetwodifferentradiometricsystemsimpliescoolingtoCwithin6Ma,indicatingrapidcrystalli-zationandcooling(40–60C/Ma)duringPermo-Triassictimes.AsimilarU-Pbage(253Ma)forthecharnockitesamplefromthesouthernKontummassif(VN343)isinagreementwithpreviouslyre-portedPermo-TriassicK/Ar(PhanCuTienetal.1988)andAr(MaluskiandLepvrier1998;Maluskietal.1999)agesfromthisregion.Resultsfromthetwogeochronometerssuggestrapidex-humationofthenewlygeneratedlowercrust,whichis,apriori,afundamentalrequirementtobringcharnockiticrocksthroughtheamphiboliteandgreenschiststabilityeldstothesurface.Itissignicantthattheamphibolitefaciessam-plesyieldingmiddlePaleozoicAragesintheKrongPokoRiverregionshownoeffectsfromthePermo-Triassicthermaleventthatisrecordedinthenearbycharnockitesamples.Itseemslikelythatthereisamajor,post-250-MastructureacrosswhichthePaleozoicandPermo-Triassicrocksarejuxtaposed.Giventhecomplexityoffaultsshownincurrentgeologicmaps(e.g.,g.1),itislikelythatoneormoresuchstructuresispresentintheMagmaSources.RelicinheritedcomponentsinzirconsfromcharnockitesamplesVN357andVN343showU-PbevidenceforProterozoic,andperhapsevenArchean,crustalsourcematerialpre-sentinthemagmasourceregionorassimilateddur-ingmagmaascentthroughthelowercrust.InitialSrandPbsignatures(tables3,4;g.5)alsoindicatetheinvolvementofoldercontinentalcrustinthegenesisofboththe250Maand450Mamagmas.Someoldercrustalmaterial,potentiallyintheformofsediments,musthavebeenpresentduringbothorogeniccycles;however,thisdoesnotimplythatPrecambriancrustisexposedatthesurfaceoftheKontumcomplex.Althoughthecalc-alkalinein-trusionsfromKontummostlikelyrepresentmix-ingofmantlewithcrustal-derivedmagmas,suchasindicatedbytheSrsignaturesandthedioriticcompositionofVN357,thenatureofmeltedcrustcannotberigorouslydetermined.Pbisotopicval-uesimplythatcrustalsourcematerialsdidnothavesignicantlyevolvedsignaturesatthetimeofmelt-ing,whichiscompatiblewithmagmaformationwithinandfromthelowercontinentalcrust,trig-geredbyinjectionofbasalticmagmasfromthemantle,agenerallyacceptedscenarioforthefor-mationofacalc-alkalineseries(e.g.,DePaoloetal.1991).Evidently,thishypothesisisbasedonalim-iteddatasetandtakesintoaccountthetectonicItisusefultodistinguishwhetherthecharnock-ites(VN357andVN343)aremetamorphic(e.g.,de-hydrationproductsofamphibolitesduringgranu-litefaciesmetamorphism)origneous(e.g.,meltingofafertilegranulitethatwasdehydratedduringanearliermetamorphism)becausetheformerisin-ferredtooccurat700–800C(e.g.,Hansenetal.1987),whereasthelattercanoccurattemperaturesashighas1000C(KilpatrickandEllis1992).ThelowSiOcontentofcharnockiteVN357(58%;table1)suggeststhatitmaybeaderivativemagmaofcumulatesassociatedwithmagmaticcharnockites,whoseparentalcompositionsaregenerally62%(KilpatrickandEllis1992),whereasthehigh-charnockite(VN343)mightrepresentacon-temporaneousfractionatedmagmaextractedfromthecharnockiticparent.Therelativelyhighabun- 766E.A.NAGYETAL.dancesofKOandLILE(largerionlithophileele-ments)andlowabundanceofCaOinVN343sup-portamagmatic(Ctype),ratherthanmetamorphic,charnockitesource(KilpatrickandEllis1992).Thecrystallizationofbiotitepriortohornblendeisalsocharacteristicofigneouscharnockites(KilpatrickandEllis1992).Perhapsmostsignicantly,gran-ulitemetamorphismwouldnotproducethenec-essarytemperaturesandpressuresrequiredtoresettheU-Pbsystemswithinthezirconstogenerateconcordant,ornearlyconcordant,grains(g.4Hightemperatures,suchasthoseinferredfortheemplacementofmagmaticcharnockites,canbeat-tainedbylargevolumesofbasaltinjectionintothelowercrustorbyprocessesoccurringwithinthebasallevelsofthickenedcrust,suchasproducedinmajorcontinentalcollisionzones(KilpatrickandEllis1992).Thislendssupporttoasyn-collisionalmagmaticoriginfortheserocksduringamajorPermo-Triassicorogenesis(discussednext).RelationshipbetweenMagmatismandTectonicHis-tory.ThePhanerozoictectonichistoryofIndo-chinaiscomplicatedandcontroversialbecausedatafromtheregionarerare.NumerousPaleozoicriftingeventstoreapartthenorthernmarginofGondwana,producingmicrocontinentsthateven-tuallycollidedintoAsiaanderadicatedmuchoftheearliergeologicrecord.Thelackofgeochron-ologicconstraintson,andscarcityof,obductedophiolitesmakesitdifculttoconstrainthetimingofthenumerousocean-formingeventsandmicro-plateseparations.Mostpaleogeographicrecon-structions,consequently,relyonthepresenceorabsenceoforalandfaunalassemblageslinkingvariouscontinentalblocks.AbriefoverviewofthetectonichistoryoftheIndochinablock,whichin-cludesthecentralandsouthernpartsofVietnam,isprovidedhereandshowshowourgeochronologicresultsmayconstrainthetimingofvariouscolli-sionalevents.Itisgenerallyagreedthat,bytheearlytomiddleCarboniferous,theIndochinaandSouthChinablocksamalgamatedalongtheSongMafaultzone(SMFZing.1,inset)innorthernVietnamandYunnan(e.g.,Hutchison1989;Metcalfe1996;Sen-¨randNatal’in1996).YinandNie(1996,p.473)suggestthatthesemicroplatescollidedinthelateTriassic;however,thereissignicantevidenceforaCarboniferoussuturebetweenthetwoblocks.Ac-cordingtoHutchison(1989),theAnnamiticplu-tonicarcformedabovearegionofsubductioninthelateDevonian,andsuturingwascompletewiththeformationoftheTruongSonfoldbelt(g.1,inset)andtheemplacementof330-Magranites.TheagesdiscussedbyHutchison(1989)arepre-dominantlyK-Ardeterminationsthattheauthoradmitsneedtobeveriedwithmorerigorousra-diometrictechniques.AdditionalevidenceforaLateDevonian/EarlyCarboniferousagefortheSongMasuturezoneincludesmiddleCarbonifer-ouscarbonatesthatblanketthezone,differentpre-middleCarboniferousfaunasoneithersideofthezoneoverlainbysimilarmiddleCarboniferousfau-nas,andlarge-scalefolding,thrusting,andnappeformationintheearlytomiddleCarboniferous(Metcalfe1998).WehavesuggestedthattheSiluriantoCarbon-Aragesforthethreeamphibolitefa-ciesrocksfromtheKrongPokoRiverregioninwesternKontum(VN386,VN387,VN388)mayre-ectalow-temperature(tectonometamorphic)re-heatingeventofOrdovicianintrusionsduringtheEarlyCarboniferous(340Ma).Itseemsreasonablethatthisthermaleventcorrespondstoatempera-tureincreaseinthecrustdirectlyrelatedtocrustalthickeningandmicroplatecollisionalongtheSongMasuture.Ifthisisthecase,itimpliesthattheKontumblock,whichwasformerlydescribed(e.g.,TranVanTrietal.1979)asanindependentunitfromtheTruongSonfoldbeltnorthoftheTamky–PhuocSonfaultzone(g.1andinset),wasinfactincontactwiththeTruongSonbeltpriortoPermo-Triassictimesandsubsequentlysufferedthesametemperatureanddeformationhistory.AmajorPermo-TriassiccollisionalandsuturingeventbetweenIndochinaandSibumasu(includingpeninsularMalaysia,Thailand,Burma,andYun-nan)closedthePaleo-TethysSea.Werefrainfromusingtheterms“Indosinian”or“Cimmeride”orogenyinordertoavoidsomecontroversysur-roundingtheirappropriateness(e.g.,Hutchison1989;Sengo¨randNatal’in1996),althoughitisclearthatwidespreadorogenicandmagmaticeventsoc-curredinIndochinaduringlatePaleozoic/earlyMesozoictimes.ThereisgeneralagreementthattheclosingofthePaleo-TethysSea,whichpro-ducedseveralmajorN-to-NW-trendingsuturezones,occurredintheTriassicwithorogenesiscon-tinuingintotheJurassic(e.g.,Hutchison1989;Met-calfe1998).AfairamountofArandU-Pbdatahascon-rmedthekeyroleofthisPermo-Triassictecton-ometamorphiceventintheNW-strikingTruongSonfoldbelt(g.1)betweentheSongMasutureandnorthernKontum(Maluskietal.1995;Lep-vrieretal.1997;NagyandScha¨rer1999;TranNgocNametal.2001),aswellasintheSongChaymassif(g.1,inset)northoftheRedRiverfaultzone(Ma-luskietal.1999,1999).AregionalstudybyLep- JournalofGeologyKONTUMMASSIF,VIETNAM767vrieretal.(1997)foundconsistentArplateaucoolingagesonmicasaround245Maforcalc-alkalinemagmaticrocksandhigh-grademeta-morphicrocksdistributedthroughoutNW-trend-ingshearzonesinVietnamnorthoftheKontumEmplacementagesdeterminedinthisstudyof249Ma(VN357)and253Ma(VN343)forchar-nockiticintrusionsintheKontummassifareingoodagreementwiththeagesfoundtothenorth.ThePermo-Triassicintrusions,thus,probablyrep-resentcollision-related,batholithic-typemagma-tismrelatedtotheclosingofthePaleo-TethysSea.Trace-elementgeochemistryofVN343(table1)issimilartothatfoundinothersyn-collisionalgran-itesthatexperiencedvolatile-inducedenrichmentinelementssuchasRbandTa(Pearceetal.1984).ThesimilaritybetweentheU-PbandAragesforthetwocharnockitessuggestsrapidexhuma-tionofnewlygeneratedcrust,whichmostlikelyoccurredduringoraftercollision.Rapidmigrationofthecharnockitefromthemagmasourceregionmayhavebeenfacilitatedbypreexistinginclinedshearzonesformedduringearliermicroplatecol-lisionsorevenbyactivecrustal-scaleshearzonesmovingcontemporaneouslyduringemplacement.Inasimilarmanner,activetranscurrentshearzoneswereperhapsresponsiblefortheemplacementandupwardmigrationofaPan-Africangranite-charnockiteplutoninNigeria(Ferre´etal.1997).OurresultsextendtothesouththeknownregioninIndochinaaffectedbytheextensivePermo-Triassicorogeny.ThetectonometamorphiceventisroughlycontemporaneouswithclosureofalargebasinthatformedtheE-to-W-trendingQinling-DabieshanorogenicbeltbetweentheSouthandNorthChinablocks.TheageofthiscollisioninChinaismostlikelyearlyTriassic,possiblyiniti-atinginthelatestPermian(e.g.,Eideetal.1994;YinandNie1996;Rowleyetal.1997;Hackeretal.1998);thusitappearsthatseveralmicroplatecollisionsoccurredsimultaneouslyinAsiaduringPermo-Triassictimes.ThisdiscussionimpliesaboveallthattheKon-tummassifdidnotriftfromthePrecambriangran-ulitebeltofGondwana.Rather,itrepresentsare-gionofPaleozoicandPermo-Triassicmagmatism.ThePaleozoicrocksfromtheareaaroundtheKrongPokoRiver(g.1)weresomehowprotectedfromthethermalanddeformationaleffectsoflaterPermo-Triassicmagma-generatingorogenesis,sug-gestingpost-250-MatectonicjuxtapositionofthesedifferentpartsoftheKontummassif.OurresultsfromtheKontummassifquestionthePrecambrianageassignedtoothermassifsinthearea,suchastheChonBurimassifinThailandandthePalinmassifinCambodia(Hutchison1989).WehavemuchtolearnandupdateregardingthegeologyofIndochina,whichhasbeenrelativelyinaccessiblefordecades.GeochronologicdatafromtheKannackcomplexintheKontummassif,Vietnam,implythattheAr-cheanagecommonlyinferredfortheregionisnolongersupported.Instead,newArandU-PbagesindicatethatcharnockitesandamphibolitefaciesrocksformedfromOrdoviciantoPermo-TriassictimesandthusdidnotriftfromthePre-cambriangranulitebeltofGondwana.Wenote,however,thatthepresenceofacrustalsourcebear-ingPrecambrianmaterial,potentiallyintheformofsediments,issubstantiatedbyinheritedcom-ponentsretainedinthezirconsanalyzedforU-Pb.Mostsignicantly,theseresultsconrmthesig-nicantroleofawidespreadmagma-generatingorogenythatbeganintheLatePermian/EarlyTri-assicandwastheresultofclosingofthePaleo-TethysSea.TheabsenceofthermaleffectsintheamphibolitefaciesrocksbythePermo-Triassicoro-genesisimpliespost-250-MatectonicjuxtapositionofthesedifferentpartsoftheKontummassif.Priortothisstudy,noevidenceexistedfora450-MamagmaticeventintheIndochinablock.TherelativelylowYandYbconcentrationsinVN386aresimilartoconcentrationsfoundingranitesformedinvolcanicarc(i.e.,subductionrelated)set-tingsratherthaninwithin-plategranitesandocean-ridgegranites(Pearceetal.1984).Ontheotherhand,arift-relatedoriginforVN386issup-portedbytraceelementgeochemicalpatternsthat,normalizedtoocean-ridgegranites,arequitesim-ilartowithin-plategranitesintrudedintostronglyattenuatedcrust(e.g.,relativelyhighconcentra-tionsofK,Rb,andThandvaluesofHf,Zr,andSmclosetothenormalizingvalues;Pearceetal.1984).TheearlyPaleozoichistoryoftheIndochinablockisuncertain.SomeauthorsfavorOrdovicianorSi-lurianriftingofIndochinafromGondwana(Hutch-ison1989,p.126),whereasotherssuggestthatrift-ingoccurredinLateDevoniantimesfollowingmajorintracontinentalextensionofthenorth-westernAustralianshelfintheEarlyOrdovician(Metcalfe1996,1998andreferencestherein).Ifthecalc-alkalineOrdovicianmagmatismidentiedherewasgeneratedinavolcanicarcsetting,thiswouldnotendorseearlyriftingscenarios.Instead,itmightsupportasouth-to-northprogressionofsubduction-relatedmagmatismfromtheIndochina 768E.A.NAGYETAL.blocktotheSouthChinablockwhere420–435-Mamagmatism(Lietal.1989;Li1994;Rogeretal.2000)hasbeenassociatedwithaphaseofgra-niticmagmatismthatoccurredduringamajormid-dleSilurian(“Caledonian”)collisioninsoutheastChinathatproducedwidespreadfolding,meta-morphism,andgraniticemplacement(e.g.,Hutch-ison1989).OurgeochronologicresultsdrawintoquestionProterozoicandearliestPhanerozoicK-ArandRb-SragespreviouslyreportedfortheKontummassif(e.g.,PhanTruongThi1985;TranQuocHai1986;Hutchison1989).Inseveralofthesepublications,theagesaregivenwithoutsupportingdatatablesorobtainablereferences,andinsomecases,wholerockratherthansinglecrystalagesweredeter-mined,whichcanbelessreliableindicatorsoftheageofcrystallization.HurleyandFairbairn(1972)reportedarelativelyyoungRb-Srwholerockage(530Ma)foragroupofrockssampledbetweenDaNangandtheKontumregion(g.1,inset).Theirresultsarequestionable,however,becauseofthelargegeographicdistributionofthesamples,theirdifferentoriginandnature,theirestimatedinitialratioof(considerablylowerthananyvaluesanalyticallydeterminedhere;seetable4),andthefactthatmanysamplesintheirstudydonotfallontheirreferenceisochron.Furthergeo-chronologyisneededtoshowthatArchean,orevenPrecambrian,crustexistsinIndochina.Presently,onlysmallslicesofheavilyoverprintedPrecam-briangneisseshavebeenidentiedinVietnamalongtheRedRiverfaultzone(g.1).ThegenerallyacceptedPrecambriancrystallizationageoftheBuKhangcomplexincentralVietnamhasrecentlybeenshowntobeCenozoic(Jolivetetal.1999;Nagyetal.1999,2000).Signicantly,arecentstudybyLanetal.(2000)ndsNdmodelagesfortheKannackcomplexof2.0–1.5Ga,arguingagainstArcheancrustalformation.WearesincerelygratefultoourVietnamesecol-leagues,includingTongDzuyThanh,NguyenVanVuong,TrinhVanLong,andNguyenXuanBao,fortheinvaluablehelptheyhaveofferedduringmanydifferenteldtrips.WethankF.Bodetforrewritingdata-processingprogramsandhelpfuldiscussions,L.delaCruzforhelpwithRb-Sranalyses,andF.RogerforprovidingapreprintofherresultsfromtheSongChaymassif.Wethankthreeanonymousreviewersforhelpfulsuggestions.ThisworkwassupportedbyCentreNationaldelaRechercheScientique-INSUthroughtheProgrammeInter-nationaldeCoope´rationScientique“Vietnam”andpartiallyfundedbyaNationalScienceFoun-dationInternationalResearchFellowshiptoE.A.Nagy. REFERENCESCITEDAnders,E.,andEbihara,M.1982.Solar-systemabun-dancesoftheelements.Geochim.Cosmochim.Acta46:2363–2380.Bodet,F.,andScha¨rer,U.2000.EvolutionoftheSE-AsiancontinentfromU-PbandHfisotopesinsinglegrainsofzirconandbaddeleyitefromlargerivers.Geochim.Cosmochim.Acta64:2067–2091.DePaolo,D.J.;Linn,A.M.;andSchubert,G.1991.Thecontinentalcrustalagedistribution:methodsofde-terminingmantleseparationagesfromSm-Ndiso-topicdataandapplicationtothesouthwesternUnitedStates.J.Geophys.Res.96:2071–2088.DGMVN(DepartmentofGeologyandMineralsofViet-nam).1997.GeologicalandmineralresourcesmapofVietnam(1:200,000),MangDen–BongSonsheet(D-49-XIII&D-49-XIV),Hanoi.Eide,E.A.;McWilliams,M.O.;andLiou,J.R.1994.Argeochronologyandexhumationofhigh-pressuretoultrahigh-pressuremetamorphicrocksoneast-cen-tralChina.Geology22:601–604.Faure,C.,andFontaine,H.1969.Ge´ochronologieduVietnamme´ridional.Arch.Geol.Vietnam(Sa¨gon)12:Ferre´,E.;Gleizes,G.;Djouadi,M.T.;Bouchez,J.L.;andUgodulunwa,F.X.O.1997.Drainageandemplace-mentofmagmasalonganinclinedtranscurrentshearzone:petrophysicalevidencefromagranite-charnockitepluton(Rahama,Nigeria).Bouchez,J.L.;Hutton,D.H.W.;andStephens,W.E.,eds.Granite:fromsegregationofmelttoemplacementfabrics.Dor-drecht,KluwerAcademic,p.253–273.Hacker,B.R.;Ratschbacher,L.;Webb,L.;Ireland,T.;Walker,D.;andShuwen,D.1998.U/Pbzirconagesconstrainthearchitectureoftheultrahigh-pressureQingling-Dabieorogen,China.EarthPlanet.Sci.Lett.161:215–230.Hansen,E.C.;Janardhan,A.S.;Newton,R.C.;Prame,W.K.B.N.;andRavidraKumar,G.R.1987.ArrestedcharnockiteformationinsouthernIndiaandSriLanka.Contrib.Mineral.Petrol.96:225–244.Hoang,N.,andFlower,M.1998.PetrogenesisofCeno-zoicbasaltsfromVietnam:implicationfororiginof“DiffuseIgneousProvince.”J.Petrol.39:369–395. JournalofGeologyKONTUMMASSIF,VIETNAM769Hurley,P.M.,andFairbairn,H.W.1972.Rb-SragesinVietnam:530m.y.event.Geol.Soc.Am.Bull.83:3525–3528.Hutchison,C.S.1989.Geologicalevolutionofsouth-eastAsia.Oxford,OxfordSciencePublications,368p.Jaffey,A.H.;Flynn,K.F.;Glendenin,L.E.;Bentley,W.C.;andEssling,A.M.1971.Precisionmeasurementsofhalf-livesandspecicactivitiesofUandPhys.Rev.C4:1889–1906.Jolivet,L.;Maluski,H.;Beyssac,O.;Goffe´,B.;Lepvrier,C.;PhanTruongThi;andNguyenVanVuong.1999.Oligocene-MioceneBuKhangextensionalgneissdomeinVietnam:geodynamicimplications.Geology27:67–70.Katz,M.B.1993.TheKannackcomplexoftheVietnamKontummassifoftheIndochinablock:anexoticfrag-mentofprecambrianGondwanaland?Findlay,R.H.;Unrug,R.;Banks,M.R.;andVeevers,J.J.,eds.Gondwana8.Rotterdam,Balkema,p.161–164.Kilpatrick,J.A.,andEllis,D.J.1992.C-typemagmas:igneouscharnockitesandtheirextrusiveequivalents.Trans.R.Soc.Edinb.EarthSci.83:155–164.Krogh,T.E.1973.Alow-contaminationmethodforhy-drothermaldecompositionofzirconandextractionsofUandPbforisotopicagedeterminations.Geochim.Cosmochim.Acta37:485–494.———.1982.ImprovedaccuracyofU-Pbzirconagesbythecreationofmoreconcordantsystemsusingairabrasiontechnique.Geochim.Cosmochim.Acta46:637–649.Lan,C.-Y.;Chung,S.-L.;Lo,C.-H.;Lee,H.;Wang,P.-L.;andLee,T.-Y.1999.TheoldestrockinSEAsia:alateArcheangneissiccomplexfromtheRedRivershearzone,NorthernVietnam.EOS:Trans.Am.Geophys.UnionFallMeeting,p.F1044(abstr.).Lan,C.-Y.;Chung,S.-L.;Lo,C.-H.;Lee,T.-Y.;andTrinhVanLong.2000.CrustalevolutionoftheIndochinablock:Sm-NdisotopicevidencefromtheKontummassif,centralVietnam.EOS:Trans.Am.Geophys.UnionFallMeeting,p.F1110(abstr.).LeBas,M.J.;LeMaitre,R.W.;Streckeisen,A.;andZanettin,B.1986.Achemicalclassicationofvol-canicrocksbasedonthetotalalkali–silicadiagram.J.Petrol.27:745–750.Lee,T.-Y.;Lo,C.-H.;Chung,S.-L.;Chen,C.-Y.;Wang,P.-L.;Lin,W.-P.;Hoang,N.;Chi,C.T.;andYen,N.T.ArdatingresultofNeogenebasaltsinVietnamanditstectonicimplication.Flower,M.F.J.;Chung,S.-L.;Lo,C.-H.;andLee,T.-Y.,eds.MantledynamicsandplateinteractionsineastAsia.Am.Geophys.UnionGeodyn.Ser.27,p.317–330.Lepvrier,C.;Maluski,H.;NguyenVanVuong;Roques,D.;Axent,V.;andRangin,C.1997.IndosinianNW-trendingshearzoneswithintheTruongSonbelt(Vietnam):ArTriassicagesandCretaceoustoCenozoicoverprints.Tectonophysics283:105–127.Li,X.1994.AcomprehensiveU-Pb,Sm-Nd,Rb-SrandArgeochronologicstudyonGuidonggrano-diorite,southeastChina:recordsofmultipletecton-othermaleventsinasinglepluton.Chem.Geol.115:283–295.Li,X.;Tatsumoto,M.;Premo,W.R.;andGui,X.1989.AgeandoriginoftheTanghugranite,southeastChina:resultsfromU-PbsinglezirconandNdisotopes.Ge-ology17:395–399.Maluski,H.1989.Argon39–Argon40dating—principlesandapplicationstomineralsfromterrestrialrocks.Roth,A.,andPoty,B.,eds.Nuclearmethodsofdating.SolidEarthSciencesLibrary.Dordrecht,KluwerAc-ademic12:325–351.Maluski,H.;Coulon,C.;Popoff,M.;andBaudin,P.Archronology,petrologyandgeody-namicsettingofMesozoictoearlyCenozoicmag-matismfromtheBenueTrough,Nigeria.J.Geol.Soc.Lond.152:311–326.Maluski,H.,andLepvrier,C.1998.Overprintingmeta-morphismsinVietnam.EOS:Trans.Am.Geophys.Union79:795(abstr.).Maluski,H.;Lepvrier,C.;PhanTruongThi;andNguyenVanVuong.1999.EarlyMesozoictoCenozoicevo-lutionoforogensinVietnam:anAr-Ardatingsyn-thesis.J.Geol.,DGMV,Hanoi,Ser.B,Spec.Issue13–14:81–86.Maluski,H.;Lepvrier,C.;Roques,D.;NguyenVanVuong;PhanVanQuynh;andRangin,C.1995AragesintheDaNang–DaiLocplutono-metamor-phiccomplex(centralVietnam):overprintingprocessofCenozoicoverIndosinianthermotectonicepisodes.WorkshoponCenozoicevolutionoftheIndochinapeninsula,Hanoi-DoSon,65p.Maluski,H.;Lepvrier,C.;TaTrongT.;andNguyenDucT.1999.EffectofupdomingprocessintheSongChaymassif(Vietnam)onAr-Arages.EUG10,Strasbourg,TerraNova4:57(abstr.).Metcalfe,I.1988.Originandassemblyofsouth-eastAsiancontinentalterranes.Audley-Charles,M.G.,andHallam,A.,eds.GondwanaandTethys.Geol.Soc.Spec.Publ.37:101–118.———.1996.Pre-CretaceousevolutionofSEAsianter-Hall,R.,andBlundell,D.,eds.Tectonicevo-lutionofSoutheastAsia.Geol.Soc.Spec.Publ.106:97–122.———.1998.PalaeozoicandMesozoicgeologicalevo-lutionoftheSEAsianregion:multidisciplinarycon-straintsandimplicationsforbiogeography.Hall,R.,andHolloway,J.D.,eds.BiogeographyandgeologicalevolutionofSEAsia.Leiden,Backhuys,p.25–41.———.1999.GondwanadispersionandAsianaccretion:anoverview.Metcalfe,I.,ed.GondwanadispersionandAsianaccretion.IGCP321FinalResultsVolume,p.9–28.Nagy,E.A.,andScha¨rer,U.1999.TheLatePer-mian–EarlyTriassicOrogenyinIndochina:preciseU-PbdatingresultsfromVietnam.EUG10,Strasbourg,TerraNova4:670(abstr.).Nagy,E.A.;Scha¨rer,U.;andMinh,N.T.1999.EarlyMioceneplutonismandgeodynamicsignicanceincentralVietnam:U-Pb,Rb-Srages,andgeochemistry.Geol.Soc.Am.Meeting31:345(abstr.). 770E.A.NAGYETAL.———.2000.Oligo-Miocenegraniticmagmatismincen-tralVietnamandimplicationsforcontinentaldefor-mationinIndochina.TerraNova12:67–77.NguyenXuanBao;TranDucLuong;andHuynhTrung.1994.ExplanatorynotetothegeologicalmapofVieNamon1:500,000scale.Hanoi,Geol.Surv.Vietnam.Pearce,J.A.;Harris,B.W.;andTindle,A.G.1984.Traceelementdiscriminationdiagramsforthetectonicin-terpretationofgraniticrocks.J.Petrol.25:956–983.PhanCuTien;LeDucAn;andLeDuyBach,eds.1988.GeologyofCambodia,LaosandVietnam(geologicmap;1:1,000,000)anditsexplanatorynote“GeologyofCambodia,LaosandVietnam.”Hanoi,Geol.Surv.Vietnam,158p.PhanTruongThi.1985.MetamorphiccomplexesoftheSocialistRepublicofVietnam.LeeSangMan,ed.ExplanatorytextofthemetamorphicmapofSouthandEastAsia(1:10,000,000).CGMW-UNESCO,p.90–95.Rangin,C.;Huchon,P.;LePichon,X.;Bellon,H.;Lep-vrier,C.;Roques,D.;NguyenDinhHoe;andPhanVanQuynh.1995.CenozoicdeformationofcentralandsouthVietnam.Tectonophysics251:179–196.Roger,F.;Leloup,P.H.;Jolivet,M.;Lacassin,R.;PhanTrongTrinh;Brunel,M.;andSeward,D.2000.LongandcomplexthermalhistoryoftheSongChaymeta-morphicdome(northernVietnam)bymulti-systemgeochronology.Tectonophysics321:449–466.Rowley,D.B.;Xue,F.;Tucker,R.D.;Peng,Z.X.;Baker,J.;andDavis,A.1997.Agesofultrahighpressuremeta-morphismandprotolithorthogneissesfromtheeast-ernDabieShan:U/Pbzircongeochronology.EarthPlanet.Sci.Lett.151:191–203.Saurin,E.1944.Etudesge´ologiquessurleCentreAnnam´ridional(textand1map).Hanoi,Bull.Serv.Geol.Indoch.27:210.¨rer,U.1991.Rapidcontinentalcrustformationat1.7Gafromareservoirwithchondriticisotopesig-natures,easternLabrador.EarthPlanet.Sci.Lett.102:110–133.¨rer,U.;Tapponnier,P.;Lacassin,R.;Leloup,P.H.;Dalai,Z.;andShaosheng,J.1990.InterplatetectonicsinAsia:apreciseageforlarge-scaleMiocenemove-mentalongtheAilaoShan–RedRivershearzone,China.EarthPlanet.Sci.Lett.97:65–77.¨rer,U.;Zhang,L.S.;andTapponnier,P.1994.Du-rationofstrike-slipmovementsinlargeshearzones:theRedRiverbelt,China.EarthPlanet.Sci.Lett.126:379–397.¨r,A.M.C.;Altiner,D.;Cin,A.;Ustao¨mer,T.;and¨,K.J.1988.OriginandassemblyoftheTethysideorogeniccollageattheexpenseofGondwanaLand.Audley-Charles,M.G.,andHallam,A.eds.Gond-wanaandTethys.Geol.Soc.Spec.Publ.37:119–181.¨r,A.M.C.,andNatal’in,B.A.1996.PaleotectonicsofAsia:fragmentsofasynthesis.Yin,A.,andHar-rison,T.M.,eds.ThetectonicevolutionofAsia.Cam-bridge,CambridgeUniversityPress,p.486–640.Snelling,N.J.1969.Isotopegeologyunit.London,1968,Annu.Rep.for1967,IGS,p.151–152.Stacey,J.S.,andKramers,J.D.1975.Approximationofterrestrialleadisotopeevolutionbyatwostagemodel.EarthPlanet.Sci.Lett.26:207–221.Steiger,R.H.,andJa¨ger,E.1977.Subcommissionongeo-chronology:conventionontheuseofdecayconstantsingeo-andcosmo-chronology.EarthPlanet.Sci.Lett.36:359–362.Tatsumoto,M.;Knight,R.J.;andAlle`gre,C.J.1973.Timedifferencesintheformationofmeteoritesasdeterminedfromtheratiooflead-207tolead-206.Sci-ence180:1279–1283.TranNgocNam.1998.ThermotectoniceventsfromEarlyProterozoictoMioceneintheIndochinacraton:implicationofK-AragesinVietnam.J.AsianEarthSci.16:475–484.TranNgocNam;Sano,Y;Terada,K.;Toriumi,M.;PhanVanQuynh;andLeTienDung.2001.FirstSHRIMPU-PbzircondatingofgranulitesfromtheKontummassif(Vietnam)andtectonothermalimplications.J.AsianEarthSci.19:77–84.TranQuocHai.1986.PrecambrianstratigraphyinIn-dochina,geologyofKampuchea,LaosandVietnam.Hanoi,Sci.Publisher,p.20–30(inVietnamesewithEnglishabstract).TranVanTri,ed.1973,1977.GeologicmapofVietnam(thenorthpart)at1:1,000,000,withexplanatorynote.Hanoi,ScienceandTechnologyPublishingHouse(1977inVietnamese,354p.;1979inEnglish,71p.).TranVanTri;TranKimThach;andTruongCamBao.1979.GeologyofVietnam(northpart).Hanoi,Viet-nam,Gen.Dept.Geol.,Res.Inst.Geol.Miner.Res.Yin,A.,andNie,S.1996.APhanerozoicpalinspasticreconstructionofChinaanditsneighboringregions.Yin,A.,andHarrison,T.M.,eds.Thetectonicevo-lutionofAsia.Cambridge,CambridgeUniversityPress,p.442–485.Zartman,R.E.,andDoe,B.R.1981.Plumbotectonics—themodel.Tectonophysics75:135–162.Zhang,L.-S.,andScha¨rer,U.1999.AgeandoriginofmagmatismalongtheCenozoicRedRivershearbelt,China.Contrib.Mineral.Petrol.134:67–85.