/
2LINDSKOG,RESNICK,ANDROYor(0;1]2?Ambiguityforthechoiceofasymptoticregi 2LINDSKOG,RESNICK,ANDROYor(0;1]2?Ambiguityforthechoiceofasymptoticregi

2LINDSKOG,RESNICK,ANDROYor(0;1]2?Ambiguityforthechoiceofasymptoticregi - PDF document

conchita-marotz
conchita-marotz . @conchita-marotz
Follow
376 views
Uploaded On 2015-10-08

2LINDSKOG,RESNICK,ANDROYor(0;1]2?Ambiguityforthechoiceofasymptoticregi - PPT Presentation

4LINDSKOGRESNICKANDROYdenotetheclassofrealvaluednonnegativeboundedandcontinuousfunctionsonSandletMbdenotetheclassof niteBorelmeasuresonSAbasicneighborhoodof2Mbisasetoftheformf2MbjRfidRfid ID: 153575

4LINDSKOG RESNICK ANDROYdenotetheclassofreal-valued non-negative boundedandcontinuousfunctionsonS andletMbdenotetheclassof niteBorelmeasuresonS.Abasicneighborhoodof2Mbisasetoftheformf2Mb:jRfidRfid

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2LINDSKOG,RESNICK,ANDROYor(0;1]2?Ambigui..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2LINDSKOG,RESNICK,ANDROYor(0;1]2?Ambiguityforthechoiceofasymptoticregimeledtotheideaofco-ecientoftaildependence[9,10,26,27,34,43],hiddenregularvariation(hrv)[20,28,32,33,38{40]andtheconditionalextremevalue(cev)model[12{14,21,35].Duetothescalinginherentinthede nitionofregularvariation,anaturaldomainforregularlyvaryingtailsisaregionclosedunderscalarmultiplicationandusuallythedomainisaconecenteredattheorigin.CommonlyusedconesincludeR+,Rd+,orthetwosidedversionsallowingnegativevaluesthatarenaturalin nanceandeconomics.However,asarguedin[14],thereisneedforotherconesaswell,particularlywhenasymptoticindependenceorasymptoticfulldependence([41,Chapter5],[45])ispresent.Goingbeyond nitedimensionalspaces,thereisaneedforacomprehensivetheorycoveringspacessuchasR1+andfunctionspaces.Fortunatelyagoodframeworkforsuchatheoryofregularvariationonmetricspacesafterremovalofapointwascreatedin[23].Theneedtoremovemorethanapoint,perhapsaclosedsetandcertainlyaclosedcone,wasarguedin[14].Theseideasbuildonw#-convergencein[11,SectionA2.6].Thispaperhasanumberofgoals:(1)Wefollowtheleadof[23]anddevelopatheoryofregularlyvaryingmea-suresoncompleteseparablemetricspacesSwithaclosedconeCremoved.Section2developsatopologyonthespaceofmeasuresonSrCwhichare niteonregionsatpositivedistancefromC.Thistopologyallowscreationofmappingtheorems(Section2.1)thatencouragecontinuityargumentsandisdesignedtoallowsimultaneousregularvariationpropertiestoexistatdi erentscalesasisconsideredinhiddenregularvariation.(2)WeapplythegeneralmaterialofSection2totwosigni cantapplications.(a)InSection4wefocusonRp+andR1+,thespaceofsequenceswithnon-negativecomponents.AniidsequenceX=(X1;X2;:::)2R1+suchthatP[X1�x]isregularlyvaryinghasadistributionwhichisregularlyvaryingonR1+rC6jforanyj�1,whereC6jaresequenceswithatmostjpositivecomponents.Mappingtheorems(Section2.1)allowextensiontotheregularvariationpropertiesofS=(X1;X1+X2;X1+X2+X3;:::)inR1+minusthesetofnon-decreasingsequenceswhichareconstantafterthejthcomponent.SeeSection4.5.2.Forreasonsofsimplicityandtaste,werestrictdiscus-siontoR1+butwithmodeste ort,resultscouldbeextendedtoR1.WealsodiscussregularvariationofthedistributionofasequenceofPoissonpointsinR1+(Section4.5.4).(b)TheR1+discussionofPoissonpointsinSection4.5.4canbeleveragedinanaturalwaytoconsider(Section5)regularvariationofthedis-tributionofaLevyprocesswhoseLevymeasureisregularlyvary-ing:limt!1t�b(t)x;1=x� ;x�0,forsomescalingfunctionb(t)!1.Wereproducetheresult[22,24]thatthelimitmeasureofregularvariationwithscalingb(t)onD([0;1];R)rf0gconcentratesoncadlagfunctionswithonepositivejump.ThisraisesthenaturalquestionofwhathappenedtotherestofthejumpsoftheLevyprocess 4LINDSKOG,RESNICK,ANDROYdenotetheclassofreal-valued,non-negative,boundedandcontinuousfunctionsonS,andletMbdenotetheclassof niteBorelmeasuresonS.Abasicneighborhoodof2Mbisasetoftheformf2Mb:jRfid�Rfidj;i=1;:::;kg,where&#x-278;0andfi2Cbfori=1;:::;k.Thusasub-basisforMbaresetsoftheformf2Mb:(f):=Rfd2Ggforf2CbandGopeninR+.ThisequipsMbwiththeweaktopologyandconvergencen!inMbmeansRfdn!Rfdforallf2Cb.Seee.g.Sections2and6in[6]fordetails.FixaclosedsetCSandsetO=SrC,e.g.onepossiblechoiceisO=Srfs0gforC=fs0gforsomes02S.ThesubspaceOisametricsubspaceofSintherelativetopologywith-algebraSO=S(O)=fA:AO;A2Sg.LetCO=C(O)denotethereal-valued,non-negative,boundedandcontinuousfunctionsfonOsuchthatforeachfthereexistsr&#x-278;0suchthatfvanishesonCr;weusethenotationCr=fx2S:d(x;C)rg,whered(x;C)=infy2Cd(x;y).Similarly,wewillwrited(A;C)=infx2A;y2Cd(x;y)forAS.WesaythatasetA2SOisboundedawayfromCifASrCrforsomer&#x-278;0orequivalentlyd(A;C)&#x-278;0.SoCOconsistsofnon-negativecontinuousfunctionswhosesupportsareboundedawayfromC.LetMObetheclassofBorelmeasuresonOwhoserestrictiontoSrCris niteforeachr&#x-278;0.Whenconvenient,wealsowriteM(O)orM(SrC).Abasicneighborhoodof2MOisasetoftheformf2MO:jRfid�Rfidj;i=1;:::;kg,where&#x-348;0andfi2COfori=1;:::;k.Asub-basisisformedbysetsoftheformf2MO:(f)2Gg;f2CO;GopeninR+:(2.1)Convergencen!inMOisconvergenceinthetopologyde nedbythisbaseorsub-base.For2MOandr&#x-348;0,let(r)denotetherestrictionoftoSrCr.Then(r)is niteandisuniquelydeterminedbyitsrestrictions(r),r&#x-348;0.Moreover,convergenceinMOhasanaturalcharacterizationintermsofweakconvergenceoftherestrictionstoSrCr.Theorem2.1(Portmanteautheorem).Let;n2MO.Thefollowingstate-mentsareequivalent.(i)n!inMOasn!1.(ii)Rfdn!Rfdforeachf2COwhichisalsouniformlycontinuousonS.(iii)limsupn!1n(F)6(F)andliminfn!1n(G)&#x-348;(G)forallclosedF2SOandopenG2SOandFandGareboundedawayfromC.(iv)limn!1n(A)=(A)forallA2SOboundedawayfromCwith(@A)=0.(v)(r)n!(r)inMb(SrCr)forallbutatmostcountablymanyr&#x-348;0.(vi)Thereexistsasequencefrigwithri#0suchthat(ri)n!(ri)inMb(SrCri)foreachi.Forproofs,seeSection2.4.Note,theresultistrueforanygeneralmetricspace.Weakconvergenceismetrizable(forinstancebytheProhorovmetric;seee.g.p.72in[6])andthecloserelationbetweenweakconvergenceandconvergenceinMOin 6LINDSKOG,RESNICK,ANDROY2.2.RelativecompactnessinMO.Provingconvergencesometimesrequiresacharacterizationofrelativecompactness.Asubsetofatopologicalspaceisrelativelycompactifitsclosureiscompact.Asubsetofametricspaceiscompactifandonlyifitissequentiallycompact.Hence,MMOisrelativelycompactifandonlyifeverysequencefnginMcontainsaconvergentsubsequence.For2MMOandr�0,let(r)betherestrictionoftoSrCrandM(r)=f(r):2Mg.ByTheorem2.1(vi)wehavethefollowingcharacterizationofrelativecompactness.Theorem2.4.AsubsetMMOisrelativelycompactifandonlyifthereexistsasequencefrigwithri#0suchthatM(ri)isrelativelycompactinMb(SrCri)foreachi.Prohorov'stheoremcharacterizesrelativecompactnessintheweaktopology.ThistranslatestoacharacterizationofrelativecompactnessinMO.Theorem2.5.MMOisrelativelycompactifandonlyifthereexistsasequencefrigwithri#0suchthatforeachisup2M(SrCri)1;(2.3)andforeach&#x]TJ/;༔ ; .96;& T; 10;&#x.516;&#x 0 T; [0;0thereexistsacompactsetKiSrCrisuchthatsup2M(Sr(Cri[Ki))6:(2.4)2.3.M-convergencevsvagueconvergence.Vagueconvergencecomplieswiththetopologyonthespaceofmeasureswhichare niteoncompacta.RegularvariationformeasuresonaspacesuchasRp+hastraditionallybeenformulatedusingvagueconvergenceaftercompacti cationofthespace.InordertomakeuseofexistingregularvariationtheoryonRp+,itisusefultounderstandhowM-convergenceisrelatedtovagueconvergence.LetSbeacompleteseparablemetricspaceandsupposeCisclosedinS.ThenM+(SrC)isthecollectionofmeasures niteonK(SrC),thecompactaofSrC:M+(SrC)=f:(K)1;8K2K(SrC)g:VagueconvergenceonM+(SrC)means7!(f)iscontinuousforallf2C+K(SrC),thecontinuousfunctionswithcompactsupport.ThespacesM+(SrC)andM(SrC)arenotthesame.ForexampleifS=[0;1)andC=f0g,2M(SrC)means(x;1)1forx&#x]TJ/;༔ ; .96;& T; 13;&#x.02 ;� Td;&#x [00;0but2M+(SrC)means([a;b])1for0ab1.ForinstanceLebesguemeasureisinM+(SrC)butnotinM(SrC).2.3.1.ComparingMvsM+.Wehavethefollowingcomparison.Lemma2.1.M-convergenceimpliesvagueconvergenceand(2.5)M(SrC)M+(SrC);C+K(SrC)C(SrC):Proof.Iff2C+K(SrC),itscompactsupportKSrCmustbeboundedawayfromCandhenced(K;C)&#x]TJ/;༔ ; .96;& T; 57;&#x.388;&#x 0 T; [0;0andf2C(SrC):If2M(SrC);andDsatis esd(D;C)&#x]TJ/;༔ ; .96;& T; 57;&#x.388;&#x 0 T; [0;0,then(D)1.IfK2K(SrC)thend(K;C)&#x]TJ/;༔ ; .96;& T; 10;&#x.516;&#x 0 T; [0;0andso(K)1,showingany2M(SrC)isalsoinM+(SrC): 8LINDSKOG,RESNICK,ANDROYProof.Notice rstthat@(SrC)=fx2S:d(x;C)=gso@(SrC1)\@(SrC2)=;for16=2.TheconclusionfollowsfromLemma2.4.2.4.2.ProofofTheorem2.1.Weshowthat(i))(ii),(ii))(iii),(iii))(iv),(iv))(v),(v))(vi)and(vi))(i).Supposethat(i)holds.Supposen!inMOandtakef2CO.Given�0considertheneighborhoodN;f()=f:jRfd�Rfdjg.Byassumptionthereexistsn0suchthatn&#x-368;n0impliesn2N;f(),i.e.jRfdn�Rfdj.HenceRfdn!Rfd.Supposethat(ii)holds.TakeanyclosedFthatisboundedawayfromC.Thenthereexistsr&#x-324;0suchthatFSrCr.Soforallx2F,d(x;C)&#x-324;r.Soifwede neF=fx2S:d(x;F)g,theneachFisopen,FFandF#Fas#0.Alsoforr=2,wehavethatforallx2Fd(x;C)&#x-364;r�r=2=r=2,meaningthatFSrCr=2.For&#x-364;0,SrFisclosedandF\(SrF)=;.Sofor0r=2,byLemma2.3,thereexistsauniformlycontinuousfunctionffromSto[0;1]suchthatf0onSrFandf1onF.Observethatf2COasFSrCr=2.Sowehavelimsupn!1n(F)6limn!1Zfdn=Zfd6(F):As#0,F#FandasFisclosed,wehave(F)#(F).Thisleadstolimsupn!1n(F)6(F):NowtakeanyopenGboundedawayfromC.Thenthereexistsr&#x-304;0suchthatGSrCr.Soifwede neG=Srfx2SrG:d(x;SrG)g,theneachGisclosed,GGandG"Gas#0.SobyLemma2.3,thereexistsauniformlycontinuousfunctionffromSto[0;1]suchthatf0onSrGandf1onG.Observethatf2COasGSrCr.Sowehaveliminfn!1n(G)&#x-283;limn!1Zfdn=Zfd&#x-283;(G):As#0,G"GandasGisopen,wehave(G)"(G).Thisleadstoliminfn!1n(G)&#x-283;(G):Thiscompletestheproofof(iii).Supposethat(iii)holdsandtakeA2SOboundedawayfromCwith(@A)=0.limsupn!1n(A)6limsupn!1n(A�)6(A�)=(A)6liminfn!1n(A)6liminfn!1n(A):Hence,limn!1n(A)=(A),sothat(iv)holds.Supposethat(iv)holdsandtaker&#x-283;0suchthat(@(SrCr))=0.ByLemma2.5,allbutatmostcountablymanyr&#x-283;0satisfythisproperty.AsSrCristriviallyboundedawayfromC,wehavethatn(SrCr)!(SrCr).NowanyASrCrisalsoboundedawayfromCandasSrCrisclosed,@SrCrA=@A,wherethe rstexpressiondenotestheboundaryofAwhenconsideredasasubset 10LINDSKOG,RESNICK,ANDROYThenisameasure.Clearly,�0and(;)=0.Moreover,iscountablyadditive:fordisjointAn2SOthemonotoneconvergencetheoremimpliesthat([nAn)=limr!0r([nAn\[SrCr])=limr!0Xnr(An\[SrCr])=Xn(An):2.4.4.ProofofTheorem2.3.Firstly,Dh2SO[6,p.243].TakeA02SO0boundedawayfromC0withh�1(@A0)=0.Since@h�1(A0)h�1(@A0)[Dh(seee.g.(A2.3.2)in[11]),wehave(@h�1(A0))6h�1(@A0)+(Dh)=0.Sincen!inMO,(@h�1(A0))=0,andh�1(A0)isboundedawayfromC,itfol-lowsfromTheorem2.1(iv)thatnh�1(A)!h�1(A).Hence,nh�1!h�1inMO0.2.4.5.ProofofCorollary2.1.TakeA0S0rC0suchthatd0(A0;C0)�0.Weclaimthisimpliesd(h�1(A0);C)�0.Otherwise,ifd(h�1(A0);C)=0,thereexistxn2h�1(A0)andyn2Csuchthatd(xn;yn)!0:Thenh(xn)2A0;h(yn)2h(C)=C0andifhisuniformlycontinuous,thend0(h(xn);h(yn))!0sothatd0(A0;C0)=0,acontradiction.2.4.6.ProofofCorollary2.2.TheproofofCorollary2.1showsthatitsucesifeitherfxngorfynghasalimitpoint.Intheformercase,ifxn0!xforsomesubsequencen0!1,thend(x;yn0)!0andyn0!x2Candh(yn0)!h(x)sod0(A0;C0)=0againgivingacontradiction.NoteifSiscompactthanfxnghasalimitpoint.Ontheotherhand,iffynghasalimitpointthenthereexistsanin nitesubsequencefn0gandyn0!y2Csothatd(xn0;y)!0.Thusifhiscontinuous,h(xn0)!h(y)2h(C)=C0whichcontradictsd0(A0;C0)�0.NoteifCiscompact,thenfynghasalimitpointandinparticularifC=fs0g.Thuswehavethesecondvariant.2.4.7.ProofofTheorem2.4.SupposeMMOisrelativelycompact.LetfngbeasubsequenceinM.Thenthereexistsaconvergentsubsequencenk!forsome2M�.ByTheorem2.1(v),thereexistsasequencefrigwithri#0suchthat(ri)nk!(ri)inMb(SrCri).Hence,M(ri)isrelativelycompactinMb(SrCri)foreachsuchri.Conversely,supposethereexistsasequencefrigwithri#0suchthatM(ri)Mb(SrCri)isrelativelycompactforeachi,andletfngbeasequenceofelementsinM.Weuseadiagonalargumentto ndaconvergentsubsequence.SinceM(r1)isrelativelycompactthereexistsasubsequencefn1(k)goffngsuchthat(r1)n1(k)convergestosomer1inMb(SrCr1).SimilarlysinceM(r2)isrelativelycompactandfn1(k)gMthereexistsasubsequencefn2(k)goffn1(k)gsuchthat(r2)n2(k)convergestosomer2inMb(SrCr2).Continuinglikethis;foreachi�3letni(k)beasubsequenceofni�1(k)suchthat(ri)ni(k)convergestosomeriinMb(SrCri).Thenthediagonalsequencefnk(k)gsatis es(ri)nk(k)!riinMb(SrCri)foreach 12LINDSKOG,RESNICK,ANDROY(3)SetS=[0;1)fx2R2+:kxk=1gandC=f0gfx2R2+:kxk=1g.For�0,de ne(;(r;a))7!(r;a):3.2.Regularvariation.Recallfrome.g.[7]thatapositivemeasurablefunctioncde nedon(0;1)isregularlyvaryingwithindex2Riflimt!1c(t)=c(t)=forall�0.Similarly,asequencefcngn�1ofpositivenumbersisregularlyvaryingwithindex2Riflimn!1c[n]=cn=forall�0.Here[n]denotestheintegerpartofn.De nition3.1.Asequencefngn�1inMOisregularlyvaryingifthereexistsanincreasingsequencefcngn�1ofpositivenumberswhichisregularlyvaryingandanonzero2MOsuchthatcnn!inMOasn!1.Thechoiceofterminologyismotivatedbythefactthatfn(A)gn�1isaregularlyvaryingsequenceforeachsetA2SOboundedawayfromC,(@A)=0and(A)�0.Wewillnowde neregularvariationforasinglemeasureinMO.De nition3.2.Ameasure2MOisregularlyvaryingifthesequencef(n)gn�1inMOisregularlyvarying.Therearemanyequivalentformulationsofregularvariationforameasure2MO.Somearenaturalforstatisticalinference.Considerthefollowingstatements.(i)Thereexistanonzero2MOandaregularlyvaryingsequencefcngn�1ofpositivenumberssuchthatcn(n)!()inMOasn!1.(ii)Thereexistanonzero2MOandaregularlyvaryingfunctioncsuchthatc(t)(t)!()inMOast!1.(iii)Thereexistanonzero2MOandasetE2SOboundedawayfromCsuchthat(tE)�1(t)!()inMOast!1.(iv)Thereexistanonzero2MOandanincreasingsequencefbngn�1ofpositivenumberssuchthatn(bn)!()inMOasn!1.(v)Thereexistanonzero2MOandanincreasingfunctionbofsuchthatt(b(t))!()inMOast!1.Theorem3.1.Thestatements(i)-(v)areequivalentandeachstatementimpliesthatthelimitmeasurehasthehomogeneityproperty(3.1)(A)=� (A)forsome �0andallA2SOand�0.Noticethataregularlyvaryingmeasuredoesnotcorrespondtoasinglescalingparameter unlessthemultiplicationoperationwithscalarsis xed.3.3.Moreexamples.WeamplifythediscussionofSection3.1.1.3.3.1.ContinuationofSection3.1.1.Example3.1.ConsideragainthecontextofSection3.1.1,item1whereS=R2andletC=(f0gR)[(Rf0g).ConsidertwoindependentParetoran-domvariables:LetX1bePa( 1)andX2bePa( 2).De ne(;(x1;x2))7! 14LINDSKOG,RESNICK,ANDROYExample3.4(Polarcoordinates).SetS=[0;1)2;C=f0g;O=[0;1)2rf0gwithscalingfunction(;x)=(;(x1;x2))7!x=(x1;x2):Forsomechoiceofnormx7!kxkde ne@=fx2S:kxk=1g:Alsode neS0=[0;1)@;C0=f0g@;O0=(0;1)@;andscalingoperationonO0is�;(r;a)7!(r;a):Themaph(x)=�kxk;x=kxkfromO7!O0iscontinuous.Letdandd0bethethemetricsonSandS0.SupposeXhasaregularlyvaryingdistributiononOsothatforsomeb(t)!1,(3.4)tPX=b(t)2!()inMOforsomelimitmeasure.Weshowh(X)=:(R;)hasaregularlyvaryingdistributiononO0.WeapplyTheorem2.3sosupposeA0O0satis esd0(A0;f0g@)�0;thatis,A0isboundedawayfromthedeletedportionofS0.Theninffr�0:(r;a)2A0g=�0andh�1(A0)=fx2O:�kxk;x=kxk2A0gsatis esinffkxk:x2h�1(A0)g=0�0.SothehypothesesofTheorem2.3aresatis edandallowtheconclusionthattP�R b(t);2!h�1()inMO0:(3.5)Conversely,givenregularvariationonO0asin(3.5),de neg:O07!Obyg(r;a)=ra.Mimictheveri cationabovetoconclude(3.5)implies(3.4).Example3.5.Examples3.3and3.4typifythefollowingparadigm.Considertwotriples(S;C;O)and(S0;C0;O0),andahomeomorphismh:O!O0withthepropertythath�1(A0)isboundedawayfromCifA0isboundedawayfromC0.Themultiplicationbyascalar(;x)7!xinOgivesrisetothemultiplicationbyascalar(0;x0)7!0x0:=h(0h�1(x0))inO0.Noticethat(0;x0)7!0x0iscontinuous,1x0=x0,and01(02(x0))=(0102)x0.Wealsoneedtocheckthatd0(0x0;C0)�d0(x0;C0)if0�1.3.4.Proofs.3.4.1.Preliminaries.ForA2SO,writeS(A)=fx:x2A;�1g.Lemma3.1.Let2MObenonzero.Thereexistsx2Oand�0suchthatS(Bx;)isboundedawayfromC,(S(Bx;))�0,and(@rS(Bx;))=0forr�1insomesetofpositivemeasurecontaining1.Proof.The rsttwopropertiesareobvious.Inordertoprovethe nalclaim,set (r)=d(@rS(Bx;);C).Noticethat (r)=d(@rBx;;C)andthat@rS(Bx;)OrC (r).Choosex2Oand�0suchthat(@S(Bx;))=0and(@(OrC (1)))=0,andsuchthat (r0)� (1)forsomer0�1.TheexistenceofsuchxandfollowsfromLemma2.5.Lemma2.5alsoimpliesthat(@(OrC ))=0forallbutatmostcountablymany 2[ (1); (r0)].Since (r)isanondecreasingand 16LINDSKOG,RESNICK,ANDROYSupposethat(i)holdsandsetc(t)=c[t].ForeachA2Aandt�1itholdsthatc[t] c[t]+1c[t]+1(([t]+1)A)6c(t)(tA)6c[t]([t]A):(3.6)Sincefcngn�1isregularlyvaryingitholdsthatlimn!1cn=cn+1=1.Hence,limt!1c(t)(tA)=(A)forallA2A.ItfollowsfromLemma3.2that(ii)holds.Supposethat(ii)holds.Thenc[t]([t])!()inMO.Moreover,fc[t]gisaregularlyvaryingsequencesincec(t)isaregularlyvaryingfunction.Therefore,(ii)implies(i).Supposethat(ii)holds.TakeasetE2SOboundedawayfromCsuchthat(tE);(E)�0and(@E)=0.Then(t) (tE)=c(t)(t) c(t)(tE)!() (E)ast!1.Hence,byTheorem2.1(ii),(iii)holds.Supposethat(iii)holds.Itwasalreadyprovedin(a)abovethatstatement(iii)impliesthatt7!(tE)isregularlyvaryingwithindex� 60.Settingc(t)=1=(tE)impliesthatc(t)isregularlyvaryingwithindex andthatc(t)(t)!()inMO.Thisprovesthat(iii)implies(ii).Uptothispointwehaveprovedthatstatements(i)-(iii)areequivalent.Supposethat(iv)holds.Setb(t)=b[t]andtakeA2A.Then[t] [t+1][t+1](b[t+1]A)6t(b(t)A)6[t+1] [t][t](b[t]A)fromwhichitfollowsthatlimt!1t(b(t)A)=(A).ItfollowsfromLemma3.2that(v)holds.If(v)holds,thenitfollowsimmediatelythatalso(iv)holds.Hence,statements(iv)and(v)areequivalent.Supposethat(iv)holds.TakeEsuchthat(@E)=0and(E)�0.Fort�b1,letk=k(t)bethelargestintegerwithbk6t.Thenbk6tbk+1andk!1ast!1.Hence,forA2A,k k+1(k+1)(bk+1A) k(bkE)6(tA) (tE)6k+1 kk(bkA) (k+1)(bk+1E)fromwhichitfollowsthatlimt!1(tA)=(tE)=(A)=(E).ItfollowsfromLemma3.2that(iii)holds.Hence,eachofthestatments(iv)and(v)implieseachofthestatements(i)-(iii).Supposethat(iii)holds.Thenc(t):=1=(tE)isregularlyvaryingatin nitywithindex �0.If �0,thenc(c�1(t))tast!1byPropositionB.1.9(10)in[16]andthereforelimt!1t(c�1(t)A)=limt!1c(c�1(t))(c�1(t)A)=(A)forallA2SOboundedawayfromCwith(@A)=0.If =0,thenProposition1.3.4in[7]saysthatthereexistsacontinuousandincreasingfunctionecsuchthat 18LINDSKOG,RESNICK,ANDROYandwealsoneedd01(x;y)=1Xp=1�Ppl=1jxl�ylj^1 2p=1Xp=1kxjp�yjpk1^1 2p;wherekk1istheusualL1normonRp+.Proposition4.1.Themetricsd1andd01areequivalentonR1+andd1(x;y)6d01(x;y)62d1(x;y):Proof.Firstofall,d01(x;y)=1Xi=1�Pil=1jxl�ylj^1 2i�1Xi=1jxi�yij^1 2i=d1(x;y):Fortheotherinequality,observed01(x;y)=1Xi=1�Pil=1jxl�ylj^1 2i61Xi=1Pil=1�jxl�ylj^1 2i=1Xl=11Xi=l2�i�jxl�ylj^1=1Xl=122�l�jxl�ylj^1=2d1(x;y):4.2.Continuityofmaps.WithaviewtowardapplyingCorollary2.1,weconsiderthecontinuityofseveralmaps.4.2.1.CUMSUM.WebeginwiththemapCUMSUM:R1+7!R1+de nedbyCUMSUM(x)=(x1;x1+x2;x1+x2+x3;:::):Proposition4.2.ThemapCUMSUM:R1+7!R1+isuniformlycontinuousand,infact,isLipshitzinthed1metric.Proof.Wewrited1�CUMSUM(x);CUMSUM(y)=1Xi=1 Pil=1xl�Pil=1yl ^1 2i61Xi=1�Pil=1jxl�ylj^1 2i=d01(x;y)62d1(x;y):WecannowapplyCorollary2.1.Corollary4.1.LetS=S0=R1+andsupposeCisclosedinR1+andCUMSUM(C)isclosedinR1+:Ifforn�0,n2M(R1+rC)andn!0inM(R1+rC),thennCUMSUM�1!0CUMSUM�1inM(R1+rCUMSUM(C)).Forexample,ifC=f01g,thenCUMSUM(C)=f01g.Foradditionalexamples,see(4.6). 20LINDSKOG,RESNICK,ANDROYWhenremovingmorefromthestatespacethanjustf0pg,theconventionalpolarcoordinatetransform(4.1)isnotusefulif@isnotcompact,oratleastboundedawayfromwhatisremoved.Forexample,ifSrC=(0;1)p,@isnotcompactnorboundedawayfromtheremovedaxes.Thefollowinggeneralization[14]sometimesresolvesthis,provided(4.2)belowholds.Temporarilly,weproceedgenerallyandassumeSisacomplete,separablemetricspaceandthatscalarmultiplicationisde ned.IfCisacone,C=Cfor�0.SupposefurtherthatthemetriconSsatis es(4.2)d(x;y)=d(x;y);�0;(x;y)2SS:Note(4.2)holdsforaBanachspacewheredistanceisde nedbyanorm.(ItdoesnotholdforR1+.)IfweintendtoremovetheclosedconeC,set@C=fs2SrC:d(s;C)=1g;whichplaystheroleoftheunitsphereandC0=f0g@Cisclosed.De nethegeneralizedtransformpolarcoordinatetransformationGPOLAR:SrC7!(0;1)@C=[0;1)@Crf0g@C=S0rC0by(4.3)GPOLAR(s)=�d(s;C);s=d(s;C);s2SrC:SinceCisaconeandd(;)hasproperty(4.2),wehaveforanys2SrCthatds d(s;C);C=ds d(s;C);1 d(s;C)C=1 d(s;C)d(s;C)=1;sothesecondcoordinateofGPOLARbelongsto@C.Forexample,ifS=R2+andweremovetheconeconsistingoftheaxesthrough02,thatis,C=f0g[0;1)[[0;1)f0g,then@C=fx2R2+:x1^x2=1g.TheinversemapGPOLAR�1:(0;1)@C7!SrCisGPOLAR�1(r;a)=ra;r2(0;1);a2@C:ItisrelativelyeasytocheckthatifA0(0;1)@CisboundedawayfromC0=f0g@C,thenGPOLAR�1(A0)isboundedawayfromC.On(0;1)@Cadoptthemetricd0�(r1;a1);(r2;a2)=jr1�r2j_d@C(a1;a2);whered@C(a1;a2)isanappropriatemetricon@C.Supposed0(A0;f0g@C)=�0:Thismeans=inf(r1;a1)2A0a22@Cd0�(r1;a1);(0;a2)andsettinga2=a1thisisinf(r1;a1)2D0r1.Weconcludethat(r;a)2A0impliesr�.SinceGPOLAR�1(A0)=fra:(r;a)2A0g;wehaveinSrC,rememberingthatCisassumedtobeacone,d(fra:(r;a)2A0g;C)=inf(r;a)2A0d(ra;C)=inf(r;a)2A0d(ra;rC) 22LINDSKOG,RESNICK,ANDROYProof.SupposeCsatis es(4.4)and(4.5)holds.Supposef2C(R1+rC)andwith-outlossofgeneralitysupposefisuniformlycontinuouswithmodulusofcontinuity!f()=sup(x;y)2R1+rCd1(x;y)jf(x)�f(y)j:Thereexists1&#x]TJ/;༔ ; .96;& T; 15;&#x.712;&#x 17.;ࢗ ;&#xTd [;&#x]TJ/;༔ ; .96;& T; 15;&#x.712;&#x 17.;ࢗ ;&#xTd [;0suchthatd1(x;C)impliesf(x)=0.Observe,(4.7)d1�(xjp;01);x61Xj=p+12�j=2�p:Pickanypsolargethat2�p=2andde neg(x1;:::;xp)=f(x1;:::;xp;01):Thenwehave(a)From(4.7),jf(x)�g(xjp)j=jf(x)�f(xjp;01)j6!f(2�p):(b)g2C(Rp+rPROJp(C))andgisuniformlycontinuous.ToverifythatthesupportofgispositivedistanceawayfromPROJp(C),supposedpistheL1metriconRp+anddp�(x1;:::;xp);PROJp(C)=2:Thenthereis(z1;:::;zp)2PROJp(C)suchthatdp�((x1;:::;xp);(z1;:::;zp).Butthenifz2Cwithzjp=(z1;:::;zp),wehave,since(z1;:::;zp;01)2Cby(4.4),d1�(x1;:::;xp;01);(z1;:::;zp;01)=pXi=1jxi�zij^1 2i6pXi=1jxi�zij^16pXi=1jxi�zij=dp�(x1;:::;xp);(z1;:::;zp);andthereforedp�(x1;:::;xp);PROJp(C)=2impliesg(x1;:::;xp)=f(x1;:::;xp;01)=0:SothesupportofgisboundedawayfromPROJp(C)asclaimed.Nowwriten(f)�0(f)=[n(f)�n(gPROJp)]+[n(gPROJp)�0(gPROJp)]+[0(gPROJp)�0(f)]=A+B+C:(4.8)From(4.5),sincegPROJp2C(Rp+rPROJp(C)),wehaveB=n(gPROJp)�0(gPROJp)!0asn!1:HowtocontrolA?Forx2R1+rC,ifd1�(x1;:::;xp;01);C=2,thenf((x1;:::;xp;01)=0andalsod1�x;C)6d1(x;(xjp;01)+d1�(xjp;01);C2�p+=2sof(x)=0:Therefore,on=fx2R1+rC:d1�(xjp;0);C=2g 24LINDSKOG,RESNICK,ANDROYProposition4.4.Supposeforeveryn�0thatn2M+( )andnplacesnomassonthelinesthrough1p:n(�[0;1]pr[0;1)p\Cc)=0:(4.9)Thennv!0inM+( );(4.10)ifandonlyiftherestrictionstothespacewithoutthelinesthrough1pconverge:n0:=n(\ 0)!0(\ 0)=:00inM( 0):(4.11)Proof.Given(4.11),letf2C+K( ).Thentherestrictionto 0satis esfj 02C( 0)son(f)=n0(fj 0)!00(fj 0)=0(f);sonv!0inM+( ).Conversely,assume(4.10).SupposeB2S( 0)and00(@ 0B)=0,where@ 0BisthesetofboundarypointsofBin 0.Thisimplies0(@ B)=0since@ (B)@ 0B[� r 0\C:Thereforen(B)!0(B)andbecauseof(4.9),n0(B)!00(B)whichproves(4.11).4.5.RegularvariationonRp+andR1+.Forthissection,eitherSisRp+orR1+andCisaclosedcone;thenSrCisstillacone.ApplyingDe nition3.2,arandomelementXofSrChasaregularlyvaryingdistributionifforsomeregularlyvaryingfunctionb(t)!1,ast!1,tP[X=b(t)2]!()inM(SrC);forsomelimitmeasure2M(SrC).InRp+,ifC=f0pgorif(4.9)holds,thisde nitionisthesameastheoneusingvagueconvergenceonthecompacti edspace.4.5.1.Theiidcase:removef01g.SupposeX=(X1;X2;:::)isiidwithnon-negativecomponents,eachofwhichhasaregularlyvaryingdistributionon(0;1)satisfyingP[X1�tx]=P[X1�t]!x� ;ast!1;x�0; �0:Equivalently,ast!1,(4.12)tF(b(t)):=tP[X1=b(t)2]! ()inM((0;1));where (x;1)=x� ; �0:TheninM(R1+rf01g),wehavet((dx1;dx2;:::):=tP[X=b(t)2(dx1;dx2;:::)]!1Xl=1Yi6=l0(dxi) (dxl)=:(0)(dx1;dx2;:::);(4.13) 26LINDSKOG,RESNICK,ANDROYTheabovediscussioncouldhavebeencarriedoutwithminormodi cationswith-outtheiidassumptionbyassuming(4.12)andP[Xj�x]=P[X1�x]!cj�0;j�2:4.5.2.Theiidcase;removemore;hiddenregularvariation.Wenowinvestigatehowtogetpasttheonebigjumpheuristicbyusinghiddenregularvariation.Forj�1,setC=j=fx2R1+:1Xi=1xi�(0;1)=jg;C6j=fx2R1+:1Xi=1xi�(0;1)6jg=C6(j�1)[C=j;(4.18)sothatC6jisclosed.Weimagineanin nitesequenceofreductionsofthestatespacewithscalingadjustedateachstep.Thisissuggestedbythepreviousdiscus-sion.OnM(R1+rf01g),thelimitmeasure(0)concentratedonC=1,asmallpartofthepotentialstatespace.Removef01g[C=1=C61andonM(R1+rC61)seekanewconvergenceusingadjustedscalingb(p t).WegetinM(R1+rC61)ast!1,(1)t(dx1;dx2;:::)=tP[X=b(p t)2(dx1;dx2;:::)]!(1)�(dx1;dx2;:::):=XlYj=2fl;kg0(dxj) (dxl) (dxk)(4.19)whichconcentratesonC=2.Ingeneral,we ndthatinM(R1+rC6j)ast!1,(j)t(dx1;dx2;:::)=tP[X=b(t1=(j+1)2(dx1;dx2;:::)]!(j)�(dx1;dx2;:::):=Xi12j+1Yj=2fi1;:::;ij+1g0(dxj) (dxi1) (dxi2)::: (dxij+1)(4.20)whichconcentratesonC=(j+1).Thisisanelaborationofresultsin[28,31,32].TheresultinR1+canbeprovenbyreducingtoRp+bymeansofTheorem4.1notingthatC6jsatis es(4.4)andthenobservingthatneither(j)tnor(j)putsmassonlinesthrough1p.Itisenoughtoshowconvergencesofthefollowingform:Assumep&#xi]TJ;&#x/F9 ;.98; T; 9.;E ;&#x-0.9;— T; [0;jandi1i2ij+1andyl&#x-278;0;l=1;:::;j+1andtP[Xil&#x-278;b(t1=(j+1))yl;l=1;:::;j+1]=j+1Yl=1t1=(j+1)P[Xil&#x-278;b(t1=(j+1))yl]!j+1Yl=1 (yi;1)=j+1Yl=1y� l:AformalstatementoftheresultandaproofrelyingonaconvergencedeterminingclassisgiveninthenextSection4.5.3.Table1givesasummaryoftheresultsintabularform. 28LINDSKOG,RESNICK,ANDROY(j)isgivenin(4.20),ormoreformally,(j)(A)=X(i1;:::;ij+1)ZInj+1Xk=1zkeik2Ao (dz1)::: (dzj+1);wherethecomponentsofeikareallzeroexceptcomponentikwhosevalueis1andtheindices(i1;:::;ij+1)runthroughtheorderedsubsetsofsizej+1off1;2;:::g.TheproofofTheorem4.2usesaparticularconvergencedeterminingclassA�jofsubsetsofOj.LetA�jdenotethesetofsetsAm;i;aform�j,whereAm;i;a=fx2R1+:xik�akfork=1;:::;mg;i1im;a1;:::;am&#x-278;0:Lemma4.1.Ift;2MOjandlimt!1t(A)=(A)forallA2A&#x-278;jboundedawayfromCjwith(@A)=0,thent!inMOjast!1.Proof.Considerthesetof nitedi erencesofsetsinA&#x-278;jandnotethatthissetisa-system.Takex2Ojand&#x-278;0.Sincex2Ojtherearei1ijsuchthatxik&#x-278;0foreachk.If2�ij=2choosem=ij.Otherwise,choosem&#x-348;ijsuchthat2�m=2.Takeminf=2;minfxk:xk&#x]TJ/;ø 9;&#x.962; Tf;&#x 18.;ˆ ;� Td;&#x [00;0andk6mggandsetB=fy2R1+:yk&#x]TJ/;ø 9;&#x.962; Tf;&#x 18.;ˆ ;� Td;&#x [00;0ifxk=0andyk&#x]TJ/;ø 9;&#x.962; Tf;&#x 18.;ˆ ;� Td;&#x [00;xk�otherwisefork6mgB0=fy2R1+:yk&#x]TJ/;ø 9;&#x.962; Tf;&#x 18.;ˆ ;� Td;&#x [00;ifxk=0andyk&#x]TJ/;ø 9;&#x.962; Tf;&#x 18.;ˆ ;� Td;&#x [00;xk+otherwisefork6mg:ThenB;B02A&#x]TJ/;ø 9;&#x.962; Tf;&#x 18.;ˆ ;� Td;&#x [00;j,B0isapropersubsetofB,andz2BrB0impliesthatd(z;x)Pmk=12�k+=2,i.e.thatz2Bx;.Moreover,(BrB0)=fy2R1+:yk2J(xk)fork6mg;whereJ(xk)=[0;)ifxk=0andJ(xk)=(xk�;xk+)ifxk6=0.Finally,@(BrB0)isthesetofy2R1+suchthatyk2[maxf0;xk�g;xk+]forallk6mandyk=oryk=xkforsomek6m.Inparticular,thereisanuncountablesetof-values,forwhichtheboundaries@(BrB0)aredisjoint,satisfyingtherequirements.Thereforecanwithoutlossofgeneralitybechosensothat(@(BrB0))=0.TheseparabilityofR1+implies(cf.theproofofTheorem2.3in[6])thateachopensetisacountableunionof-continuitysetsoftheform(BrB0).ThesameargumentasintheproofofTheorem2.2in[6]thereforeshowsthatliminft!1t(G)&#x-278;(G)forallopenGOjboundedawayfromCj.AnyclosedsetFOjboundedawayfromCjisasubsetofsomeA2A&#x-278;j.Bythesameargumentasabove,wemaywithoutlossofgeneralitytakeAsuchthat(@A)=0.ThesetArFisopenandtherefore(A)�limsupt!1t(F)=liminft!1t(ArF)&#x-278;(ArF)=(A)�(F);i.e.limsupt!1t(F)6(F).TheconclusionfollowsfromTheorem2.1(iii).ProofofTheorem4.2.Foranym&#x-278;janda1;:::;am&#x-278;0,limt!1c(t)jP(X2tAj;i;a)=jYk=1a� k=j(Aj;i;a)andlimt!1c(t)jP(tAj+1;i;a)=0: 30LINDSKOG,RESNICK,ANDROYForthe rsttwocomponents,letPRM()beaPoissoncountingfunctionwithmeanmeasureandforx�0;y�0,tP[Q (�1)=b(t)�x;Q (�2)=b(t)�y]6tP[PRM()(b(t)(x^y;1)�2]andwritingp(t)=(b(t)(x^y;1)),wehavetP[PRM()(b(t)(x^y;1)�2]=t(1�e�p(t)�p(t)e�p(t))6t(p(t)�p(t)e�p(t))6tp2(t)!0:TheconclusionnowfollowsfromLemma4.1byobservingthatwehaveshownconvergenceforthesetsinaconvergencedeterminingclass.Similarly,weclaimtP[�Q (�l)=b(t1=2);l�12]!(2)()inM(O1)ast!1,where(2)(dx1dx2:::)= (dx1) (dx2)1[x1�x2�0]1Yl=30(dxl):Straightforwardcomputationsshowthatthedistributionof(�1;�2)=(E1;E1+E2)satis esP(�16z;�26w)=1�e�z�ze�w;zw;1�e�w�we�w;z&#x-278;w:Noticethat,forx&#x-278;y&#x-278;0,P[Q (�1)=b(t1=2)&#x-278;x;Q (�2)=b(t1=2)&#x-278;y]=P[�16Q(b(t1=2)x);�26Q(b(t1=2)y)]=1�e�Q(b(t1=2)x)�Q(b(t1=2)x)e�Q(b(t1=2)y)Q(b(t1=2)x)�Q(b(t1=2)x)2=2+O(Q(b(t1=2)x)3)�Q(b(t1=2)x)1�Q(b(t1=2)y)+O(Q(b(t1=2)y)2)Inparticular,itisastraightforwardexerciseincalculustoverifythatforx&#x-278;y&#x-278;0limt!1tP[Q (�1)=b(t1=2)&#x-278;x;Q (�2)=b(t1=2)&#x-278;y]=x� y� �x�2 =2=(2)(z2R1#:z1&#x-278;x;z2&#x-278;y):Similarcomputationsshowthat,fory&#x-278;x&#x-278;0,limt!1tP[Q (�1)=b(t1=2)&#x-278;x;Q (�2)=b(t1=2)&#x-278;y]=y�2 =2=(2)(z2R1#:z1&#x-278;x;z2&#x-278;y):Moreover,forx&#x-278;0;y&#x-278;0;z&#x-278;0,tP[Q (�1)=b(t1=2)&#x-278;x;Q (�2)=b(t1=2)&#x-278;y;Q (�3)=b(t1=2)&#x-278;z] 32LINDSKOG,RESNICK,ANDROYThestandardItorepresentation[1,4,25]ofXisXt=ta+Bt+Zjxj61x[N([0;t]dx)�t(dx)]+Zjxj�1xN([0;t]dx);whereBisstandardBrownianmotionindependentofthePoissonrandommeasureNon[0;1](0;1)withmeanmeasureLeb.Referringtothediscussionpreceding(4.23),fQ (�n);n�1garepointswrittenindecreasingorderofaPoissonrandommeasureon(0;1)withmeanmeasureandbyaugmentation[39,p.122],wecanrepresentN=1Xl=1(Ul;Q (�l));where(Ul;l�1)areiidstandarduniformrandomvariablesindependentoff�ng.TheLevy-ItodecompositionallowsXtobedecomposedintothesumoftwoindependentLevyprocesses,(5.1)X=eX+J;whereJisacompoundPoissonprocessoflargejumpsboundedfrombelowby1,andeX=X�JisaLevyprocessofsmalljumpsthatareboundedfromaboveby1.ThecompoundPoissonprocesscanberepresentedastherandomsumJ=PN1l=1Q (�l)1[Ul;1],whereN1=N([0;1][1;1)).Recallthenotationin(4.23)forR1#+,H=jandH6jandtheresultinTheorem4.3.Weseektoconvertastatementlike(4.24)intoastatementaboutX.The rststepistoaugment(4.24)withasequenceofiidstandarduniformrandomvarables.TheuniformrandomvariableswilleventuallyserveasjumptimesfortheLevyprocess.ThefollowingresultisanimmediateconsequenceofTheorem4.3.Proposition5.1.UnderthegivenassumptionsonandQ,forj�1,tPh�(Q (�l)=b(t1=j);l�1);(Ul;l�1)2i!((j)L)()(5.2)inM((R1#+rH6j�1)[0;1]1)ast!1,whereLisLebesguemeasureon[0;1]1and(j)concentratesonH=jandisgivenby(4.25).Thinkof(5.2)asregularvariationontheproductspaceR1#+[0;1]1whenmultiplicationbyascalarisde nedas(;(x;y))7!(x;y).Recall istheParetomeasureon(0;1)satisfying (x;1)=x� ,forx�0,andwedenotebyj productmeasuregeneratedby withjfactors.Form�0,letD6mbethesubspaceoftheSkorohodspaceDconsistingofnondecreasingstepfunctionswithatmostmjumpsandde neAmasAm=f(x;u)2R1#+[0;1]1(5.3):ui2(0;1)for16i6m;ui6=ujfori6=j;16i;j6mg:LetTmbethemap(5.4)Tm:Am7!Dde nedbyTm(x;u)=mXi=1xi1[ui;1]; 34LINDSKOG,RESNICK,ANDROY5.1.Details.WenowprovidemoredetailfortheproofofTheorem5.1.Inthedecomposition(5.1),theprocesseXrepresentssmalljumpsthatshouldnota ectasymptotics.WemakethisprecisewiththenextLemma.Lemma5.1.Forj�1,andany�0,limsupt!1tPhsups2[0;1]jeXsj�b(t1=j)i=0:Proof.WerelyonSkorohod'sinequalityforLevyprocesses[8],[37,Section7.3].Fora�0,Phsups2[0;1]jeXsj�2ai6(1�c)�1P[jeX1j�a];wherec=sups2[0;1]P[jeXsj�a].Thus,sinceeX1hasallmoments nite,foranym�1,tPhsups2[0;1]jeXsj�b(t1=j)i6t(1�c(t))�1P[jeX1j�b(t1=j)=2]6t(1�c(t))�1EjeX1jm bm(t1=j)(=2)m:Forlargeenoughm,t=bm(t1=j)!0ast!1andc(t):=sups2[0;1]P[jeXs�b(t1=j)=2]6sups2[0;1]EjeXsjm bm(t1=j)(=2)m=sups2[0;1]smEjeX1jm bm(t1=j)(=2)m6EjeX1jm bm(t1=j)(=2)m!0;ast!1sinceb(t)!1.Lemma5.2.Forj�1,tP[J2b(t1=j)]!((j)L)T�1j()inM(DrD6j�1)ast!1.Proof.WeapplyTheorem2.1(iii).Constructionofthelowerboundforopensets:LetGDbeopenandboundedawayfromD6j�1.ThisimpliesthatfunctionsinGhavenofewerthanjjumps.Recallthat�l=E1++El,wheretheEksareiidstandardexponentials.TakeM�jandnoticethattPhN1Xl=1Q (�l)1[Ul;1]2b(t1=j)Gi�tPhN1Xl=1Q (�l)1[Ul;1]2b(t1=j)G;N16Mi=tPhN1Xl=1Q (�l)1[Ul;1]2b(t1=j)G;j6N16Mi 36LINDSKOG,RESNICK,ANDROYDecomposethe rstsummandaccordingtowhetherMt6jorMt�j+1.NoticeMtjisincompatiblewithPMtl=1Q (�l)1[Ul;1]2b(t1=j)FsinceFisboundedawayfromD6j�1.Thuswegettheupperbound6tPhjXl=1Q (�l)1[Ul;1]2b(t1=j)Fi+tP[Mt&#x-374;j+1]+tPhN1Xl=Mt+1Q (�l)&#x-374;b(t1=j)i:Wenowshowthatthesecondandthirdofthethreetermsabovevanishast!1.Firstly,thede nitionofMtimpliesthatQ (�l)6b(t1=j) forMt+16l6N1.Thus,tPhN1Xl=Mt+1Q (�l)&#x-374;b(t1=j)i6tP[(N1�Mt)b(t1=j) &#x-374;b(t1=j)]6tP[N1&#x-374;b(t1=j)1� ]:Theright-handsideconvergesto0ast!1sincethetailprobabilityhasaMarkovboundoftE(N1)p=[b(t1=j)1� ]pforanyp.Secondly,P[Mt&#x-374;j+1]6P[Q (�j+1)&#x-374;b(t1=j) ]6P[�j+16([b(t1=j) ;1))]6P[max(E1;:::;Ej+1)6([b(t1=j) ;1))]=P[E16([b(t1=j) ;1))]j+1:SinceP[E16y]yasy#0,andsince([x;1))isregularlyvaryingatin nitywithindex� andbisregularlyvaryingatin nitywithindex1= ,we ndthatlimsupt!1t([b(t1=j) ;1))j+1=limsupt!1L(t)t1� (j+1)=jforsomeslowlyvaryingfunctionL.Inparticular,choosing 2(j j+1;1)ensuresthatlimt!1tP[Mt�j+1]=0.Wenowdealwiththeremainingterm.SincetPhjXl=1Q (�l)1[Ul;1]2b(t1=j)Fi=tPh((Q (�l);l�1);(Ul;l�1))2b(t1=j)T�1j(F)i+tPh((Q (�l);l�1);(Ul;l�1))2Acmiand,byLemmas5.3and5.4,T�1j(F)is,ifnonempty,closedandboundedawayfromH6j�1[0;1]1,Proposition5.1andthefactthatAcmisaP-nullsetyield 38LINDSKOG,RESNICK,ANDROYProof.IfA\D6m=;,thenT�1m(A)=;.Therefore,withoutlossofgeneralitywemaytakeAD6m.Assumedsk(A;D6j�1)��0andnoticethatx2D6mifandonlyifx=mXi=1yi1[ui;1]fory1�:::�ym�0;ui2[0;1]:Ifx2A,Pmi=jyi�asaconsequenceofdsk(A;D6j�1)�andbecausethey'sarenon-increasing,yj�=(m�j+1).Consequently,T�1m(A)n�xi;i�12R1#+:xj�=(m�j+1)o[0;1]1;andthelattersetisboundedawayfromH6j�1[0;1]1.References[1]D.Applebaum.LevyProcessesandStochasticCalculus,volume93ofCam-bridgeStudiesinAdvancedMathematics.CambridgeUniversityPress,Cam-bridge,2004.ISBN0-521-83263-2.[2]A.A.Balkema.MonotoneTransformationsandLimitLaws.MathematischCentrum,Amsterdam,1973.MathematicalCentreTracts,No.45.[3]AABalkemaandP.Embrechts.Highriskscenariosandextremes:ageometricapproach.EuropeanMathematicalSociety,2007.[4]J.Bertoin.LevyProcesses,volume121ofCambridgeTractsinMathematics.CambridgeUniversityPress,Cambridge,1996.ISBN0-521-56243-0.[5]P.Billingsley.ProbabilityandMeasure.WileySeriesinProbabilityandMath-ematicalStatistics.JohnWiley&SonsInc.,NewYork,thirdedition,1995.ISBN0-471-00710-2.AWiley-IntersciencePublication.[6]P.Billingsley.ConvergenceofProbabilityMeasures.JohnWiley&SonsInc.,NewYork,secondedition,1999.ISBN0-471-19745-9.AWiley-IntersciencePublication.[7]N.H.Bingham,C.M.Goldie,andJ.L.Teugels.RegularVariation.CambridgeUniversityPress,1987.[8]L.Breiman.Probability,volume7ofClassicsinAppliedMathematics.SocietyforIndustrialandAppliedMathematics(SIAM),Philadelphia,PA,1992.ISBN0-89871-296-3.doi:10.1137/1.9781611971286.URLhttp://dx.doi.org/10.1137/1.9781611971286.Correctedreprintofthe1968original.[9]J.T.BruunandJ.A.Tawn.Comparisonofapproachesforestimatingtheprobabilityofcoastal ooding.J.R.Stat.Soc.,Ser.C,Appl.Stat.,47(3):405{423,1998.[10]S.G.Coles,J.E.He ernan,andJ.A.Tawn.Dependencemeasuresforextremevalueanalyses.Extremes,2(4):339{365,1999.[11]D.J.DaleyandD.Vere-Jones.AnIntroductiontotheTheoryofPointPro-cesses.SpringerSeriesinStatistics.Springer-Verlag,NewYork,1988.ISBN0-387-96666-8. 40LINDSKOG,RESNICK,ANDROY0-471-35629-8.[31]A.MitraandS.I.Resnick.HiddenRegularVariation:DetectionandEstima-tion.ArXive-prints,January2010.[32]A.MitraandS.I.Resnick.Hiddenregularvariationanddetectionofhiddenrisks.StochasticModels,27(4):591{614,2011.[33]A.MitraandS.I.Resnick.Modelingmultiplerisks:Hiddendomainofat-traction.Extremes,2013.doi:10.1007/s10687-013-0171-8.URLhttp:dx.doi.org/10.1007/s10687-013-0171-8.[34]L.Peng.Estimationofthecoecientoftaildependenceinbivariateextremes.Statist.Probab.Lett.,43(4):399{409,1999.ISSN0167-7152.[35]S.ResnickandD.Zeber.MarkovKernelsandtheConditionalExtremeValueModel.ArXive-prints,October2012.[36]S.I.Resnick.Pointprocesses,regularvariationandweakconvergence.Adv.AppliedProbability,18:66{138,1986.[37]S.I.Resnick.AProbabilityPath.Birkhauser,Boston,1999.[38]S.I.Resnick.Hiddenregularvariation,secondorderregularvariationandasymptoticindependence.Extremes,5(4):303{336(2003),2002.ISSN1386-1999.[39]S.I.Resnick.HeavyTailPhenomena:ProbabilisticandStatisticalModeling.SpringerSeriesinOperationsResearchandFinancialEngineering.Springer-Verlag,NewYork,2007.ISBN:0-387-24272-4.[40]S.I.Resnick.Multivariateregularvariationoncones:applicationtoextremevalues,hiddenregularvariationandconditionedlimitlaws.Stochastics:AnInternationalJournalofProbabilityandStochasticProcesses,80(2):269{298,2008.http://www.informaworld.com/10.1080/17442500701830423.[41]S.I.Resnick.ExtremeValues,RegularVariationandPointProcesses.Springer,NewYork,2008.ISBN978-0-387-75952-4.Reprintofthe1987original.[42]H.L.Royden.RealAnalysis.Macmillan,thirdedition,1988.[43]M.Schlather.Examplesforthecoecientoftaildependenceandthedomainofattractionofabivariateextremevaluedistribution.Stat.Probab.Lett.,53(3):325{329,2001.[44]E.Seneta.RegularlyVaryingFunctions.Springer-Verlag,NewYork,1976.LectureNotesinMathematics,508.[45]M.Sibuya.Bivariateextremestatistics.Ann.Inst.Stat.Math.,11:195{210,1960.FilipLindskog,DepartmentofMathematics,KTHRoyalInstituteofTechnology,10044Stockholm,SwedenE-mailaddress:lindskog@kth.seSidneyI.Resnick,SchoolofORIE,CornellUniversity,Ithaca,NY14853E-mailaddress:sir1@cornell.eduJoyjitRoy,SchoolofORIE,CornellUniversity,Ithaca,NY14853E-mailaddress:jr653@cornell.edu