/
An Inertial Frame is a frame that is not accelerating (in the sense of An Inertial Frame is a frame that is not accelerating (in the sense of

An Inertial Frame is a frame that is not accelerating (in the sense of - PDF document

conchita-marotz
conchita-marotz . @conchita-marotz
Follow
422 views
Uploaded On 2016-03-17

An Inertial Frame is a frame that is not accelerating (in the sense of - PPT Presentation

In1916usingthegeneraltheoryofrelativitydeSitter20alsocalculatedtheadditionalframedraggingeffectconsistinginthemuchsmallerMercury ID: 259621

In1916 usingthegeneraltheoryofrelativity deSitter20alsocalculatedtheadditionalframe-draggingeffectconsistinginthemuchsmallerMercury

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "An Inertial Frame is a frame that is not..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

An Inertial Frame is a frame that is not accelerating (in the sense of proper acceleration that would be detected by In1916,usingthegeneraltheoryofrelativity,deSitter20alsocalculatedtheadditionalframe-draggingeffectconsistinginthemuchsmallerMercuryÕsperihelionshiftduetotheSunÕsspin(Box1).In1918,LenseandThirring21formulatedtheweak-fieldandslow-motiondescriptionofframedraggingontheorbitofatestparticlearoundaspinningbody,nowknownastheLenseÐThirringeffect(Box1andFig.3).Butframe-draggingisextremelysmallforSolarSystemobjects,sotomeasureitseffectontheorbitofasatelliteweneedtomeasurethepositionofthesatellitetoextremelyhighTheaccuratemeasurementofdistancesisafundamentaltaskinscienceandtechnology.Laser-rangingisthemostaccuratetechniqueformeasuringdistancestotheMoon22,23andtoartificialsatellitessuchasLAGEOS(lasergeodynamicssatellite)24.Short-durationlaserpulsesareemittedfromlasersonEarthandthenreflectedbacktotheemit-tinglaser-rangingstationsbyretro-reflectorsontheMoonoronarti-ficialsatellites.Bymeasuringthetotalround-triptraveltimewearetodayabletodeterminetheinstantaneousdistanceofaretro-reflectorontheLAGEOSsatelliteswithaprecisionofafewmillimetres25.LAGEOS24waslaunchedbyNASAin1976andLAGEOS2waslaunchedbytheItalianSpaceAgencyandNASAin1992,ataltitudesofapproximately5,900kmand5,800kmrespectively.TheLAGEOSsatellitesÕorbitscanbepredicted,overa15-dayperiod,withanuncertaintyofjustafewcentimetres16,25.TheLenseÐThirringdragBTime flowT2BCAT1BCAT3CAFigure1|Frame-draggingeffectsonclocksbyarotatingmass.Iftwoclocks,ortwinsAandC,flyallaroundaspinningbody,evenveryslowly,andathirdoneBawaitsthematthestartingpoint,fixedrelativetotheÔdistantstarsÕ(aÔfixedstarÕisshowninblue,andT1,T2andT3arethreeconsecutiveinstantsoftime),thenwhentheymeetagain,thetwinAthatwastravellinginthedirectionoppositetotherotationofthecentralbody,wouldbeyoungerrelativetothetwinBawaitingatthestartingpoint.OntheotherhandtwinC,travellinginthesamedirectionofrotationofthebody,wouldbeolderwithrespecttothestandingtwinBandtothetwinArotatingintheoppositedirection10Ð12.Forthistimedilation,duetothespinofthecentralbody,tooccur,theywouldnotneedtomovenearthespeedoflight(asinthecaseofthewell-knownÔtwin-paradoxÕofspecialrelativity).Forexample,iftwosuchtwinsmeetagain,havingflownarbitrarilyslowlyaroundthewholeEarthinoppositedirectionsontheequatorialplaneandexactlyatthesamealtitude,thedifferenceintheiragesduetotheEarthÕsspinwouldbeapproximately10216s(foranaltitudeofabout6,000km),whichwouldbeinprincipledetectableifnotfortheother,muchlarger,relativisticclockeffects.However,frame-draggingdoesproducerelevanteffectsonlightandmatter ,thatis,amagneticneedle,whichtendstobealignedalongB.Inpanelbisthe ofacentralbodyandframe-draggingVofatestgyroscopeS. altitude, the difference in their ages due to the EarthÕs spin would be approximately 10-16 s. TheLAGEOSsatellitesAspinninggyroscopedefinesveryaccuratelybyitsrotationanaxisfixedrelativetothelocalinertialframes.Similarly,theorbitalplaneofaplanet,moonorsatelliteisahugegyroscopethatÔfeelsÕgeneralrelativisticeffects.Oneoftheearlytriumphs3,7,8ofthegeneraltheoryofrelativitywasthepredictionoftheprecessionofMercuryÕsperi-helionbythemassoftheSun,whosedeviationfromthenewtonianresultwasbecomingsomethingofanembarrassmenttoastronomers.In1916,usingthegeneraltheoryofrelativity,deSitter20alsocalculatedtheadditionalframe-draggingeffectconsistinginthemuchsmallerMercuryÕsperihelionshiftduetotheSunÕsspin(Box1).In1918,LenseandThirring21formulatedtheweak-fieldandslow-motiondescriptionofframedraggingontheorbitofatestparticlearoundaspinningbody,nowknownastheLenseÐThirringeffect(Box1andFig.3).Butframe-draggingisextremelysmallforSolarSystemobjects,sotomeasureitseffectontheorbitofasatelliteweneedtomeasurethepositionofthesatellitetoextremelyhighTheaccuratemeasurementofdistancesisafundamentaltaskinscienceandtechnology.Laser-rangingisthemostaccuratetechniqueformeasuringdistancestotheMoon22,23andtoartificialsatellitessuchasLAGEOS(lasergeodynamicssatellite)24.Short-durationlaserpulsesareemittedfromlasersonEarthandthenreflectedbacktotheemit-tinglaser-rangingstationsbyretro-reflectorsontheMoonoronarti-ficialsatellites.Bymeasuringthetotalround-triptraveltimewearetodayabletodeterminetheinstantaneousdistanceofaretro-reflectorontheLAGEOSsatelliteswithaprecisionofafewmillimetres25.LAGEOS24waslaunchedbyNASAin1976andLAGEOS2waslaunchedbytheItalianSpaceAgencyandNASAin1992,ataltitudesofapproximately5,900kmand5,800kmrespectively.TheLAGEOSsatellitesÕorbitscanbepredicted,overa15-dayperiod,withanuncertaintyofjustafewcentimetres16,25.TheLenseÐThirringdragBTime flowT2BCAT1BCAT3CAFigure1|Frame-draggingeffectsonclocksbyarotatingmass.Iftwoclocks,ortwinsAandC,flyallaroundaspinningbody,evenveryslowly,andathirdoneBawaitsthematthestartingpoint,fixedrelativetotheÔdistantstarsÕ(aÔfixedstarÕisshowninblue,andT1,T2andT3arethreeconsecutiveinstantsoftime),thenwhentheymeetagain,thetwinAthatwastravellinginthedirectionoppositetotherotationofthecentralbody,wouldbeyoungerrelativetothetwinBawaitingatthestartingpoint.OntheotherhandtwinC,travellinginthesamedirectionofrotationofthebody,wouldbeolderwithrespecttothestandingtwinBandtothetwinArotatingintheoppositedirection10Ð12.Forthistimedilation,duetothespinofthecentralbody,tooccur,theywouldnotneedtomovenearthespeedoflight(asinthecaseofthewell-knownÔtwin-paradoxÕofspecialrelativity).Forexample,iftwosuchtwinsmeetagain,havingflownarbitrarilyslowlyaroundthewholeEarthinoppositedirectionsontheequatorialplaneandexactlyatthesamealtitude,thedifferenceintheiragesduetotheEarthÕsspinwouldbeapproximately10216s(foranaltitudeofabout6,000km),whichwouldbeinprincipledetectableifnotfortheother,muchlarger,relativisticclockeffects.However,frame-draggingdoesproducerelevanteffectsonlightandmatter ,thatis,amagneticneedle,whichtendstobealignedalongB.Inpanelbisthe ofacentralbodyandframe-draggingVofatestgyroscopeS. ÕÕ effects. For weak gravitational fields there is an analogy between the equations that govern the forces on a spinning electric charge (magnetic moment µ) moving through a magnetic field and the forces on a spinning mass moving through the field of a rotating mass. The magnetic dipole will feel a force due to the magnetic field and rotate. In a similar manner the spinning mass will experience a force and precess. TheLAGEOSsatellitesAspinninggyroscopedefinesveryaccuratelybyitsrotationanaxisfixedrelativetothelocalinertialframes.Similarly,theorbitalplaneofaplanet,moonorsatelliteisahugegyroscopethatÔfeelsÕgeneralrelativisticeffects.Oneoftheearlytriumphs3,7,8ofthegeneraltheoryofrelativitywasthepredictionoftheprecessionofMercuryÕsperi-helionbythemassoftheSun,whosedeviationfromthenewtonianresultwasbecomingsomethingofanembarrassmenttoastronomers.In1916,usingthegeneraltheoryofrelativity,deSitter20alsocalculatedtheadditionalframe-draggingeffectconsistinginthemuchsmallerMercuryÕsperihelionshiftduetotheSunÕsspin(Box1).In1918,LenseandThirring21formulatedtheweak-fieldandslow-motiondescriptionofframedraggingontheorbitofatestparticlearoundaspinningbody,nowknownastheLenseÐThirringeffect(Box1andFig.3).Butframe-draggingisextremelysmallforSolarSystemobjects,sotomeasureitseffectontheorbitofasatelliteweneedtomeasurethepositionofthesatellitetoextremelyhighTheaccuratemeasurementofdistancesisafundamentaltaskinscienceandtechnology.Laser-rangingisthemostaccuratetechniqueformeasuringdistancestotheMoon22,23andtoartificialsatellitessuchasLAGEOS(lasergeodynamicssatellite)24.Short-durationlaserpulsesareemittedfromlasersonEarthandthenreflectedbacktotheemit-tinglaser-rangingstationsbyretro-reflectorsontheMoonoronarti-ficialsatellites.Bymeasuringthetotalround-triptraveltimewearetodayabletodeterminetheinstantaneousdistanceofaretro-reflectorontheLAGEOSsatelliteswithaprecisionofafewmillimetres25.LAGEOS24waslaunchedbyNASAin1976andLAGEOS2waslaunchedbytheItalianSpaceAgencyandNASAin1992,ataltitudesofapproximately5,900kmand5,800kmrespectively.TheLAGEOSsatellitesÕorbitscanbepredicted,overa15-dayperiod,withanuncertaintyofjustafewcentimetres16,25.TheLenseÐThirringdragBTime flowT2BCAT1BCAT3CAFigure1|Frame-draggingeffectsonclocksbyarotatingmass.Iftwoclocks,ortwinsAandC,flyallaroundaspinningbody,evenveryslowly,andathirdoneBawaitsthematthestartingpoint,fixedrelativetotheÔdistantstarsÕ(aÔfixedstarÕisshowninblue,andT1,T2andT3arethreeconsecutiveinstantsoftime),thenwhentheymeetagain,thetwinAthatwastravellingin JHb!SFigure2|Frame-draggingandthegravitomagneticanalogyofthegeneraltheoryofrelativitywithelectrodynamics.Inthegeneraltheoryofrelativity,freelyfallingtest-gyroscopes,thatis,sufficientlysmallandaccuratespinningtops,determinetheaxesofthelocal,non-rotating,inertialframes1Ð3,wheretheequivalenceprincipleholdsÑthatis,wherethegravitationalfieldislocallyÔunobservableÕandallthelawsofphysicsarethelawsofthespecialtheoryofrelativity2.Therefore,ifwerotatewithrespecttothesegyroscopes,wefeelcentrifugalforces,eventhoughwemaynotrotateatallwithrespecttotheÔdistantstarsÕ,contrarytooureverydayintuition.Indeed,agyroscopeisdraggedbyspinningmasses,thatis,itsorientationchangeswithrespecttothe approximately 5,900 km and 5,800 km respectively. Thirring GRACE satellites have reduced the orbital uncertainties due to the modeling errors in the non-spherical EarthÕs gravitational field to only a few per cent of the LenseÐThirring effect. Experimental Tests of Frame-Dragging oftheorbitalplanesofLAGEOSandLAGEOS2(Box1)is26,27approximately31milliarcsecondsperyear,correspondingatthe ByfarthemainperturbationoftheirorbitalplanesisduetotheEarthÕsdeviationsfromsphericalsymmetry33.Inparticular,theflat-teningoftheEarthÕsgravitationalpotentialproducesalargeper-turbationoftheLAGEOSnode28Ð30,82.Butthankstotheobservationsofthegeodeticsatellites,theEarthÕsshapeanditsgrav-itationalfieldareextremelywellknown.Forexample,theflatteningoftheEarthÕsgravitationalpotentialistodaymeasured34withanuncertaintyofonlyaboutonepartin107.ToeliminatetheorbitaluncertaintiesduetotheerrorsintheEarthÕsgravitymodels,theuseofbothLAGEOSandLAGEOS2wasproposed27.However,itwasnoteasytoconfidentlyassesstheaccuracyoftheearliermeasure-ments35,36oftheLenseÐThirringeffectwiththeLAGEOSsatellites,giventhelimitingfactoroftheuncertaintyofthegravitymodelsavailablein1998.Theproblem37,38oftheuncertaintiesintheEarthÕsgravityfieldwasovercomeinMarch2002whenthetwinGRACE(gravityrecoveryandclimateexperiment)39,40spacecraftofNASAwerelaunchedinapolarorbitatanaltitudeofapproximately400kmandabout200Ð250kmapart.Thespacecraftrangetoeachotherusingradarandtheyaretrackedbytheglobalpositioningsatellites.TheGRACEsatelliteshavegreatlyimprovedourknowledgeoftheEarthÕsgravitationalfield.Indeed,byusingthetwoLAGEOSsatellitesandtheGRACEEarthgravitymodels34,theorbitaluncertaintiesduetothemodellingerrorsinthenon-sphericalEarthÕsgravitationalfieldareonlyafewpercentoftheLenseÐThirringeffect Ja3(1{e2)3=2whereJistheangularmomentumofthecentralbody,athesemi-majoraxisoftheorbitingtest-particleandeitsorbitaleccentricity.TherateofchangevLÐT ofthecentralbodyis:VS~3(J:^rr)^rr{Jr3where^rristhepositionunit-vectorofthetest-gyroscopeandrisitsradialdistancefromthecentralbody.ThegeodeticprecessionVgeodeticofatest-gyroscopeduetoitsvelocityv,orbitingataradialdistancerfromamassM,is: J4corresponds,accordingtothe2004GRACE(GFZ)Earthgravitymodel34,toonly3%oftheLenseÐThirringeffect.NATUREjVol449j6September2007REVIEWS43 geodetic. Its theoretical value is ~ 6,6 arcsec per year about an axis orthogonal to the Gravity Probe B orbital plane. Unfortunately due to unexpected large drifts of the gyroscopesÕ spin axes the geodetic precession was only measured to a precision of 1.5% (10-5 expected) and the error on the measurement of frame dragging guidestar(ref.45andseehttp://einstein.stanford.edu/).Ifwespinanelectricallychargedsphereweproduceamagneticfield.Anychangeoforientationofthesphererotationaxiswould .ForaspinningspheretheLondonmomentisdirectedalongthespinaxisofthesphere.EachofthefourGravityProbeBgyroscopesconsisted45,46(seehttp://einstein.stanford.edu/)ofaquartzsphere(rotor)ofradius1.9cm,designedtobesphericalandtohaverelativeinhomogeneitiesofitsdensitytoafewpartsinamillion.Eachrotorwascoveredwithaverythinfilmofniobium,thatis,asuperconductoratthetemperatureoftheexperiment(about2K),andwasspinningatapproximately4,000r.p.m.,sothatthespinningsuperconductorlayergeneratedaLondonmagneticmomentalignedalongthespinaxisofthegyro.Therotorswereencircledbyasuperconductingloop.Thevariationsofthemagneticfluxthroughtheloopweremeasuredbythechangesofcurrentinasuperconductingquantuminterferencedevice(SQUID).On14April2007,afterabout18monthsofdataanalysis(seehttp://einstein.stanford.edu/),thefirstGravityProbeBresultswerepresented.TheGravityProbeBexperimentmeasuredthegeodeticprecessionwithanaccuracyoftheorderof1.5%.Indeed,theGravityProbeBteamdiscoveredunexpectedlargedriftsofthegyroscopesÕspinaxesandestimatedtheunmodelledsystematicerrorstobeoftheorderof100milliarcsecondsperyear,correspondingtoanuncer-taintyoftheorderoftwoandhalftimestheframe-draggingbytheEarthspin.However,byadditionalmodellingofthesystematicerrors,theGravityProbeBteamaimstoachieve(ref.50andseehttp://einstein.stanford.edu/)anuncertaintyofabout5milliarcse-condsperyearthatwouldcorrespondtoameasurementofthegeo-deticprecessionwithabout0.1%accuracyandofframe-draggingbytheEarthspinwithabout13%accuracy. ,Thegreensolidlineisthetheoretical,LenseÐThirring,predictionofgeneralrelativity.c,Theredsolidlineisthebest-fitlinethroughtheobservedresiduals(inblack)andthebluesolidlinerepresentstheuncertaintyinthecombinednodallongitudesoftheLAGEOSsatellitesfromthelargesterrorsourceduetotheuncertaintyintheEarthÕsevenzonalharmonicofdegreefour,J4(correspondingtoapproximately3%oftheLenseÐThirringeffectaccordingtothe2004GRACE(GFZ)Earthgravitymodel34;seeFig.3).Theobservedslopeoftheredlineis0.99