/
REVIEWOpenAccess REVIEWOpenAccess

REVIEWOpenAccess - PDF document

conchita-marotz
conchita-marotz . @conchita-marotz
Follow
405 views
Uploaded On 2016-07-14

REVIEWOpenAccess - PPT Presentation

Enzymepromiscuityusingthedarksideofenzyme specificityinwhitebiotechnology BenuArora 1 JoyeetaMukherjee 1 andMunishwarNathGupta 2 Abstract Enzymepromiscuityresultsinfarlargerrangesoforganiccompounds ID: 404302

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "REVIEWOpenAccess" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

REVIEWOpenAccess Enzymepromiscuity:usingthedarksideofenzyme specificityinwhitebiotechnology BenuArora 1 ,JoyeetaMukherjee 1 andMunishwarNathGupta 2* Abstract Enzymepromiscuityresultsinfarlargerrangesoforganiccompoundswhichcanbeobtainedbybiocatalysis.While earlyexamplesmostlyinvolveduseoflipases,morerecentliteratureshowsthatcatalyticpromiscuityoccursmore widelyandmanyotherclassesofenzymescanbeusedtoobtaindiversekindsofmolecules.Thisisofimmense relevanceinthecontextofwhitebiotechnologyasenzymecatalysedreactionsusegreenerconditions. Keywords: Enzymespecificity,Catalyticpromiscuity,Enzymesinorganicsynthesis,Enantioselectivity,Greenchemistry “ IsuspecttheyputSocratestodeathbecausethereis somethingterriblyunattractive,alienatingandnon- humaninthinkingwithtoomuchclarity. ” - TheBedofProcrustesbyNassimNicholasTaleb Introduction Thebasictenetofwhitebiotechnologyistominimize damagetotheenvironmentratherthantakingrecourse toremediationasan “ endofthepipe ” solution[1,2].En- zymeseitherinisolatedformorintheformofwholecells canplayanimportantrolebecauseoftheirtwowell knownvirtues.Thebiocatalystsnormallydonotrequire hightemperatureorotherconditionswhichinvolvehigh consumptionofenergy.Thebiocatalystsarebelievedto befairlyspecific,whichwouldmeanlessnumberofside theatomeconomyofthereactions.Thesesidereactions hencelowertheyieldofthedesiredproduct(makingthe catalysislessefficient)andnecessitatecomplicateddown- streamprocessing. Thisreviewdiscussestheparadigmshiftsovertheyears inourunderstandingoftheenzymespecificity.Italsoex- plainswhysocalledlackofspecificityisalsoagoodnews asfarastheusefulnessofenzymesinbiotechnology isconcerned.Themostdramaticdeparturefromthe classicalconceptofenzymespecificityisseeninthe phenomenonofcatalyticpr omiscuity.Thisrefersto thesameenzymecatalyzingverydifferentkindsofbio- transformations[3-6]. Classificationofenzymesandenzymespecificity Mostofthepeoplehaveforgotten(understandablesinceit disappearedfromthestandardtextsmanydecadesback!) thatinitiallyproteinswereclassifiedaccordingtotheir solubilityinvarioussolvents.Thefiveclassesofproteins werealbumins(solubleinwaterandsaltsolutions),globu- lins(sparinglysolubleinwaterbutsolubleinsaltsolu- (solubleinacidoralkali)andscleroproteins(insolublein aqueoussolvents)[7].Asourknowledgeofproteinsgrew, thedistinctionbetweenthesevariousclassesbecamefluid andinfactconfusing.Theenzymes,intheearlyphase ofbiochemistrybecamethemostimportantandmost studiedclassofproteins.Thesewerenamedinarandom fashionjustaspeoplenamebuildings,streetsandmonu- ments.Manyofthesenamespersiste.g.catalase,trypsin, lysozymeetc.Manyofthesenameswerebaseduponthe natureoftheircatalyticactivity.Lysozymeisnamedsoas itlysescells.So,thenomenclatureandcatalyticspecificity havealonghistoryintheareaofbiocatalysis. Theideaofaparticularstructurebeingabsolutelyrelated toabiologicalactivityhasbeenconsideredthehallmarkof biologyformanydecades.Hence,itisnotsurprisingthat enzymecommissionclassificationwasbaseduponthetype *Correspondence: munishwar48@yahoo.co.uk 2 DepartmentofBiochemicalEngineeringandBiotechnology,IndianInstitute Fulllistofauthorinformationisavailableattheendofthearticle ©2014Aroraetal.;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommons AttributionLicense(http://creativecommons.org/licenses/by/4.0),whichpermitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginalworkisproperlycredited.TheCreativeCommonsPublicDomain Dedicationwaiver(http://creativecommons.org/publicdomain/zero/1.0/)appliestothedatamadeavailableinthisarticle, unlessotherwisestated. Arora etal.SustainableChemicalProcesses (2014) 2:25 DOI10.1186/s40508-014-0025-y ofreactiontheenzymecatalyzes – hydrolysis,isomerisation orredoxreactionsetc.[8].Thisinretrospectmaynothave beensuchawisemoveaswebelievedtillnow. In1955 – 56,InternationalCommissionofenzymeswas setupandthatishowtheECclassificationcameintobe- ing[8].Asweknow,thisclassificationprovidesanumber withfourfigures.Itisworthnotingthatallthefourfigures relatetothedetailsofthespecificityoftheenzyme.The firmbeliefwasthatifoneisabletopindowncomplete detailsofthespecificity,onehasdescribedtheenzyme andthatisitsidentity. Variouskindsofenzymepromiscuity Nothingpromotesascientificdirectionasmuchascoining anewterm.Systembiology,nanotechnologyandsynthetic biologyareillustrativeexamples.Enzymepromiscuityis alsoacaseinpoint.AsHultandBurglund[9]pointed out,promiscuouscatalysisbypyruvatedecarboxylaseof formationofC-Cbondswasreportedin1921andforms thebasisofacurrentindustrialprocess.Khersonskyand Tawfik[4]havealsocitedexamplesoffewotherwell knownenzymeswhich,manydecadesback,werereported tocatalysereactions “ inadditiontotheonesforwhich theyarephysiologicallyspecializedorevolve …” .AsBabtie etal.[10]highlighted “ Promiscuousactivitiesaregenerally considerablylessefficientthantheprimaryfunctionofan enzyme,butsecondorderrateconstants(k cat /K M )ashigh as10 5 M  1 s  1 andrateaccelerations((k cat /K M )/k 2 )upto 10 18 havebeenreported:thesevaluesmatchorexceed thoseformanynativeenzymaticreactions. ” .Afterinitial looseusagesoftheterms(associatedwithpromiscuous behaviourofenzymes),thereisclaritythatbroadspecifi- cityofanenzymeintermsofcatalysisofthesamereac- tionwithrangeofsubstratesshouldbecalledsubstrate promiscuity.Instanceswhenanenzymecatalysesadiffer- entreaction(whichisnotbelievedtobephysiologically relevantatthatpointinevolution)withadifferenttransi- tionstateshouldbetermedasexamplesofcatalyticprom- iscuity[9,10]. HultandBerglund[9]goastepfurtherandsuggestthat reversereactionscatalysedbyenzymesinmanynon- aqueousmediaorco-solventscanbeclassifiedascondition promiscuity.Insuchcases,thetransitionstatemaybesame asinnormalreactions.So,thismaybelittleconfusing. Enzymepromiscuitystartedasbeingperceivedas “ asso- ciatedwithunwantedsideeffects,poorcatalyticproperties anderrorsinbiologicalfunction ” [11].Today,itisincreas- inglybeingperceivedasimmenselyusefulphenomenon whichcandramaticallyenhanceutilityofbiocatalysisin biotechnology. Babtieetal.[10]haveprovidedagooddiscussionon howcatalyticpromiscuitymayoperate.Apartfromthe differentaminoacidsoftheactivesiteinvolvedina qualitativeorquantitativefashionduringbindingofthe “ alternativesubstrates ” ,hydrophobicinteractionsmay haveanimportantroletoplay.Notonlyduringbinding, evenduringcatalyticsteps,thecontributionsoftheac- tivesiteresiduesmaydifferqualitativelyand/orquanti- tatively.This “ accidentalpromiscuity ” observedinwild formsoftheenzymesshouldbedistinguishedfrom “ in- ducedpromiscuity ” exhibitedbymutantsobtainedby proteinengineeringordirectedevolution[12].Manyex- cellentreviews(otherthanthosealreadyquotedabove) whichincludeevolutionaryaspectsofpromiscuityare available[3,13,14]. Conditionpromiscuityofenzymes Hydrolaseshydrolysesubstrates.Whathappensifwater isnearlyabsent?Adventofnon-aqueousenzymology showedthatexploringthispossibilityledtocarryingout biocatalysisinnearlyanhydrousorganicsolvents[15,16], reversemicelles[17,18],ionicliquids[19-22]etc.So,a lipaseinlowwatercontainingorganicsolventsynthe- sizesanesterbondandisobviouslynotfunctioningasa hydrolase[23]. Thishasbeenaveryusefuldiscovery.Ithasbeenalso veryimportantasitopeneduphugepossibilitiesof usingenzymesinbiotransformations[16,24][Figure1]. Notonlyitmakesitpossibletouseinexpensivehydrolases likeproteasesandlipasesinorganicsynthesis,itprovides anadditionalhandleofmediumengineering[25,26].Chan- gingtheorganicsolventmaychangetheenantioselectivity [27,28].Theotherpossibilitiesemergede.g.usingorganic solventsasco-solvents[29]orusingbiphasicsystemscon- sistingofaqueousmediumandwaterimmiscibleorganic solvents[30].Onecanuseorganicsolventphasetodis- solvesubstratesandaqueousphasecancontaintheen- zyme.Thismakesthecatalyticprocessveryefficientin casethesubstrateinhibitionisinvolved[31].Iftheprod- uctalsogoesbacktotheorganicphase,shiftingofthe equilibrium(infavourofproductformation)andover- comingproductinhibition(ifinvolved)arebothachieved. Morenewpossibilitiescontinuetoemerge.AsDordick ’ s groupshowedfewyearsback,nanotubemediatedassem- blyofenzymesattheinterfaceofaqueousandorganic mediaovercomesthetransportlimitationstypicalofsuch biphasicsystems[32]. Itincidentallyalsomeantthatonecouldusegreensol- ventsforbiocatalysissuchasglycerol,ethanol,succinate esters,lactateesters,limoneneandsupercriticalfluids [34].Thecaseofglycerolisespeciallyrelevantinthecon- textofwhitebiotechnologyasmassiveamountsofgly- cerolaregeneratedduringbiodieselproductionandhence fitsinwellwiththebiorefineryconcept.Thebiodieselas suchcanbeobtainedfromwastesandcanbeagoodex- ampleofwastevalorization[35-37][Figure2].Manyof theabovementionedsolventsalso,inprinciple,canbeob- tainedfromnonfoodbiomassorwastefoodmaterials Arora etal.SustainableChemicalProcesses (2014) 2:25 Page2of9 [35].Allthispointsouttotheemergingcontoursofa chemicalindustrybaseduponsustainablepractices. Thesepossibilitieshaveemergedasourclassicalcon- ceptofhydrolaseswillbealwayshydrolasesturnedout tobenotabsolutelyvalid.Ifyouchangethereaction condition,enzymesshowconditionpromiscuity.That hasnotturnedouttobebadatallfromtheperspective ofwhitebiotechnology. Catalyticpromiscuity:recentresults Asmanyexamplesofcatalyticpromiscuityhavebeencov- eredinquiteafewrecentreviews[5,38,39],wewillmostly focusonliteraturepertainingtolastcoupleofyears.Rather thanaimingatbeingcomprehensive,thethrustofthis reviewisonillustratinghowcatalyticpromiscuitycanbe exploitedtocreatenovelpossibilitiesintheareaofbioca- talysisdrivingthegrowthofwhitebiotechnology.Someex- amplesofreactionscarriedoutusingcatalyticpromiscuity forthesynthesisoforganiccompoundsintheauthors ’ la- boratoryareillustratedinTable1.Also,wehavemostly limitedourselvestoexamplesofaccidentalpromiscuityra- therthanincludingevergrowingnumberofexamples wherecatalyticpromiscuityhasbeentailoredbyusingpro- teinengineeringordirectedevolution. Catalyticpromiscuityoflipases Singlepotmulticomponentreactionsareanefficientsyn- theticstrategyespeciallyifaccompaniedbygoodatom Figure1 Lipasecatalyzedtransesterificationof  ,  -glucoseor  ,  -maltosewithvinylpropionateorethylacrylateasacyldonorproduced monoestersanddiesters.  -Cyclodextrinandthementionedesterproducts,weresubstratesinthesecondreactioncatalyzedbyCGTase from B.macerans toproduceoligosaccharideesters.[Reproducedfro mRef[33]withpermissionfromChemistryCentral]. Figure2 BiodieselconversionwithcleanoilusingNovozym435+RMIM. Reactionswereperformedtaking0.5gcoffeeoil.Ethanolwas addedinmolarratio4:1(ethanol:oil).Novozym435+RMIM=3:1(WhiteBars);37.5mgofenzymeNovozym435(enzymeloadbeing7.5%w/w ofoil)and12.5mgofenzymeRMIM(enzymeloadbeing2.5%w/wofoil)wasadded.Novozym435+RMIM=1:1(GreyBars);25mgofenzyme Novozym435(enzymeloadbeing5%w/wofoil)and25mgofenzymeRMIM(enzymeloadbeing5%w/wofoil)wasadded.Novozym435+ RMIM=1:3(Blackbars);12.5mgofenzymeNovozym435(enzymeloadbeing2.5%w/wofoil)and37.5mgofenzymeRMIM(enzymeload being7.5%w/wofoil)wasadded.[ReproducedfromRef[37]withpermissionfromChemistryCentral]. Arora etal.SustainableChemicalProcesses (2014) 2:25 Page3of9 Table1Someinterestingexamplesoforganiccompoundssynthesizedintheauthors ’ laboratoryexploitingcatalytic promiscuity StructureofthecompoundSubstrateandreactionconditionsReference Substrate: 5-Hydroxy-endotricyclo[5.2.1.0 2,6 ]deca-4,8-dien-3-oneandvinylacetate[ 40 ] Biocatalyst: Novozyme435 Solvent: Vinylacetate(substrate)containing10%(v/v)pyridine/DMF Substrate: p -nitrobenzaldehydeandethylacetoacetate[ 41 ] Biocatalyst: Lipasesfrom Candidaantarctica lipaseB ,Mucorjavanicus,Mucormiehei, Candidarugosa andNovozyme435 Solvent: Aqueousorganicco-solventmixtureswereusedasthesolvent Substrate: p -nitrobenzaldehydeandacetylacetone[ 42 ] Biocatalyst: Lipasesfrom Candidaantarctica lipaseB ,Mucorjavanicus,Mucormiehei, Burkholderiacepacia andNovozyme435 Solvent: Aqueousorganicco-solventmixtures Substrate: p -nitrobenzaldehyde[ 43 ] Biocatalyst: Novozyme435 Solvent: Aqueousbuffer Arora etal.SustainableChemicalProcesses (2014) 2:25 Page4of9 economy.Zhang[44]showedthatporcinepancreatic lipase(PPL)couldbeusedtosynthesizeanumberof 2,4-disubstitutedthiazoleswithmethanolastheorganic solvent.Theirinterestinsynthesisofthesecompoundswas duetotheirmanybiologicalactivities.Thereareseveral noteworthyfeaturesofthiswork.Useoforganicsolvents (ascomparedtowateroraqueous-organicco-solventmix- tures)hasbeenunderexploitedinthecontextofcatalytic promiscuityofenzymes.Moreimportant,someamylase preparationshavealsobeenshowntobecatalysingthisre- action.Itisverylikelythatenzymesusedinthiswork wereindustrialgradepreparationsandmayhavebeen contaminatedbylipaseactivities.Earlier,ittookseveral decadesbeforeNakajima ’ sgroupcouldshowthatlipases (contrarytoanearlierclaim)ifpurifieddonotcatalyse peptidesynthesisinorganicsolvents[45].Asweexplore moreandmorecatalyticpromiscuityofenzymes,itisne- cessarythatwekeepinmindthatsomeofthesemaybe causedbycontaminatingproteins.Anotherimportant pointisthatmethanolasasolventwasfarsuperiorto ethanol.Thatisunfortunateasethanol,unlikemethanol, isagreensolvent.So,fromsustainabilitypointofview, perhapsweneedtoseparatelyscreenoutapanelofgreen solventsanddeterminewhichoneisthebest,evenifnot asgoodasanothernongreensolvent. Ugireactionisoneofthemorewellknownmulticom- ponentreactions[46].TheclassicUgireactioninvolves condensationofaprimaryamine,acarbonylcompound, carboxylicacidandisocyanide.Kzossowskietal.[47]have shownthatNovozym435couldformapeptidebond inorganicsolventsliketolueneandchloroform.An importantobjectiveofwhitebiotechnologyhasbeen tobeabletooperatechemicalprocessesstartingwith simplesetofcompounds[34]whichcanbeobtained fromrenewableresources.Inthatrespect,peptidebond formationstartingwithanamine,aldehydeandiso- cyanide(ratherthantwoaminoacids)isagoodadvance- mentandshowsthewiderangingpromiseandpotential ofcatalyticpromiscuity. Catalyticpromiscuity:beyondlipases Thephenomenonofcatalyticpromiscuityhasturnedout tobefarmorewidespreadthaninitiallybelieved.While earlier,therewasastrongfocusontheuseoflipasesfor C-Cbondformationreactions[38,40,41,48,49],useof otherenzymesincatalyzingdiversekindsofreactionsis beingincreasinglydemonstrated.Liuetal.[50]havere- portedasymmetricaldolreactionsbetweenisatinderiva- tiveswithcyclicketonescatalyzedbynucleasep1from Penicilliumcitrinum .Thisexampleofcatalyticpromis- cuityprovidesagreenapproachforthesynthesisofpharma- ceuticallyactivecompounds.Lietal.[51]hadearlierused thesameenzymeforcatalyzingasymmetricaldolreac- tionsbetweenaromaticaldehydesandcyclicketones undersolvent-freeconditions.Thecatalyticpromiscuity of Escherichiacoli BioHesterasewasrecentlyexploited forthesynthesisof3,4-dihydropyranderivatives[52].The authorsusedaseriesofsubstitutedbenzalacetonesand1, 3-cyclicdiketonesasreactantsinanhydrousDMF,with yieldsashighas76%beingobtainedinsomecases.Re- cently,ficinfromfigtreelatex(aplantcysteineproteinase) wasshowntocatalyzethedirectasymmetricaldolreac- tionsofnitrogen,oxygenorsulphurcontainingheterocyc- licketoneswitharomaticaldehydesinorganicmedium [53].Earlierworkfromthesamegroupshowedthatcom- merciallyavailablepapain(from Caricapapaya latex)can beusedasanefficientcatalystforKnoevenagelreactions involvingawiderangeofsubstrates[54].Zhengetal.[55] developedthetrypsincatalyzedone-potmulticomponent synthesisof4-thiazolidinonesasanovelstrategyforthe synthesisofthisimportantgroupofheterocycliccom- pounds.Thederivativesof2H-1-benzopyran-2-oneform thescaffoldofmanypharmaceuticals[56,57].Wangetal. [58]haveusedanalkalineproteasefrom B.licheniformis toobtainthesebydominoKnoevanagel/intramolecular transesterificationreactionsinlowwatercontainingor- ganicsolvents. Aninterestingexampleofexploitingcatalyticpromiscu- ityforcarryingoutdomino,single-potreactionswasre- portedbyZhouetal.[59].Theauthorsused  -amylase from Bacillussubtilis forcatalyzingtheoxa-Michael/aldol condensationforthesynthesisofsubstitutedchromene derivatives.Gaoetal.[60]describedHenryreactionscata- lyzedbyglucoamylasefrom Aspergillusniger .Thereac- tionscarriedoutinmixedsolventsofethanolandwater, formedthe  -nitroalcoholsinyieldsupto99%. Oneemergingconcernhasbeenthebacteriadevelop- ingresistancetowardsexistingantibioticslikeinthecase ofaminoglycosideswhicharebroadspectrumantibiotics [61].Thecatalyticpromiscuityofaminoglycosideacetyl transesteraseswasutilizedforchemoenzymaticsynthesis ofvarietyofnovelmoleculesincludingacylatedamino- glucosideswhichshowpromiseincircumventingbacterial resistancetowardsexistingantibiotics.Thesyntheticstrat- egyavoidslongermultistepprocesses.Werneburgetal. [62]haveusedthepolyketidesynthetaseforpreparative scalesynthesisof15newaureothin(ashikimate-polyketide withantimicrobialandantitumoractivities)analogs,many withlesscytotoxicitybutimprovedanti-proliferative action.Itmaybenotedthatengineeredmutantsofthe organismwereused.So,itisanexampleofmetabolicen- gineeringwhereinthestrategywasbaseduponthecata- lyticpromiscuityoftheenzyme. Alcoholdehydrogenases(ADHs)areenzymeswhich catalyzethetransformationofketones/aldehydestothe correspondingalcoholsandviceversaattheexpense ofanicotinamidecofactorthatactsashydridedonor andacceptorrespectively[63].Ofthemanyapproaches Arora etal.SustainableChemicalProcesses (2014) 2:25 Page5of9 availableforco-factorrecycling,asimplewayistousea co-substratesuchaspropanol[64,65].Gotor ’ sgroup[66] hasusedADHsfrom L.brevis,R.ruber and Thermoanaer- obacter sp.tocarryoutregioselectiveandstereoselective reductionsof1,2-and1,3-diketonestoobtainenantio- purehydroxyketonesordiols.Somecyclicdiketoneswere alsoreduced.Theco-substratepropanolwasusedforco- factorregenerationinthiscaseaswell.Whilethereaction carriedoutwasessentiallyanormalone,thebinding modesofthesubstratesweredifferentwithdifferent ADHsandshowhowdifferentpartsoftheactivesiteof theenzymescanbeinvolvedinbinding.Thisisagoodil- lustrationofsubstratepromiscuitybeingexploitedforde- signingusefulsyntheticstrategies.Aninterestingexample ofcatalyticchemo-promiscuityofalcoholdehydrogenase wasreportedbyFerreira-Silveetal.[67].Theauthorsob- servedthatsomealcoholdehydrogenasestransformed phenylacetaldoximetotheprimaryalcoholviatheimine andaldehydeintermediates,suggestingthatthehydrideof theco-factorwastransferredtotheN-atomoftheoxime moietyratherthantheC-atom. AlanineracemaseisakeyPLP-dependantenzymein cyclosporine(awellknownimmunosuppressantdrug) biosynthesis.DiSalvoetal.[68]reportedthatjustlike serinehydroxymethyltransferaseandthreoninealdolase, theclonedracemasewasabletocarryoutbothretroal- dolcleavageandtransaminationreactions.Itisastrong evidencethatthesethreeenzymesillustratedivergent evolutionfromacommonancestorwhichperhapssingly performedalltheseindividualreactions.So,thespecia- lisedfunctionsevolvedbuttheenzymesretainedfeatures whichareresponsibleforthepromiscuousbehaviour. AnovelprotocolfortheD-aminoacylasecatalyzed doubleMichaeladditionwasdevelopedbyChenetal. [69].Thereactions,whichwereusedforthesynthesisof (hetero)spiro[5.5]undecanederivativesproducedthe cis isomersinallthecases.Grulichetal.[70]providea usefulsummaryoftheapplicationsofPenicillinGacy- laseswhichareknowntocatalysetransesterifications, MarkonikovadditionsorHenryreactions.Unfortunately, thecatalyticefficiencyreportedsofarinthesepromiscu- ousreactionsisfarfromsatisfactoryforanybiotechno- logicalapplications.However,asNobelietal.[11]had pointedout,suchresultslaythefoundationofsubsequent effortsusingproteinengineering/directedevolutionto improveuponthesecatalyticactivities.Largenumberof successfulresultswhichprovethisarealreadyavailablein theliterature[12,71-73]. Heetal.[74]reportedforthefirsttimethathenegg whitelysozyme(HEWL)efficientlypromotestheone- pot,three-componentaza-Diels-Alderreactionofaro- maticaldehydes,aromaticamineand2-cyclohexen-1-one. Underoptimisedconditions,yieldsupto98%andstereo- selectivityof endo/exo ratiosupto90:10wereobtained. Similarly,Baasetal.[75]havereviewedtheenzyme promiscuityinfivemembersofthetautomerasesuper family.Theseenzymesshowdiversecatalyticactivities encompassingC-H,C-C,C-Oandcarbon-halogenbonds. ThereviewofBaasetal.[75]discusseshowlookingat promiscuousactivitieshelpsinunderstandingofmechan- ismofnormalactivitiesoftheenzymes.Itisinteresting thatallenzymeshaveN-terminalprolineasakeycatalytic residue.Itisverywellestablishedthatsomeaminoacids assuchcatalysediversekindsofreactionsontheirown [76,77].Obviously,thecatalyticpromiscuityofenzymes hasitsorigininconfluenceofdifferentfactors[11].Table2 summarizestheusefulnessofcatalyticpromiscuityinbio- catalysis(Table2). Archaeconstitutetheoldestorganismsonourearth. Giventheharsherconditionsprevalentinthosedays, archaeareprominentexamplesofextremophiles.The specialisedfunctionsoftheenzymes(partoftheevolved metabolism)inmorecomplexorganismhaveevolved fromthesmallnumberofenzymeswhichtheseances- torshad.So,theseorganismsconstitutevaluablesystems totrackextensivepromiscuityshownbytheearlyen- zymes.Jiaetal.havedetailedbothpromiscuityaswellas moonlightingshownbyarchaeenzymes[82].Archaeen- zymesarerichinintrinsicdisorder.Jiaetal.[82]point outthatcapacityforthestructuretosurviveunderharsh conditionsandmultitasking(whichisseenaspromiscu- ityandmoonlighting)requiredconformationalpliability. Itisinterestingthatmany “ hubproteins ” importantin metabolicregulationsinmanyorganismshavebeenfound tobeintrinsicallydisorderedproteins(IDPs)[83].So, promiscuityisonefacetoftheevolutionarydesignofen- zymes.AsSkolnicketal.[84]state,promiscuousbehaviour isthebiochemicalnoise(lowlevel,ligand-proteininterac- tions)whichwasnearlyimpossibletoeliminateasenzyme moleculesevolvedtoassumespecialisedcatalyticroles. Theexampleofglutathionetransferaseisespeciallyin- teresting.Atkinsgroup[85]havediscussedthattwoiso- formsofglutathionetransfereasesinhumansvastly differintheircatalyticpromiscuity.Thishighlightsthe conceptualrelationshipbetweenthephenomenonofiso- enzymestopromiscuousbehaviouraspointedoutbyone ofusfewyearsback[5].TheA-classGSTA1-1showedthe fairlywidesubstratespecificityasadetoxificationenzyme. Ontheotherhand,GSTA4-4acteduponlipidperoxida- tionproducts.Thiswasoneoftheearlyreportstopoint outthat “ conformationalplasticity ” isinbuilttoachieve catalyticpromiscuityatthecostofstability[85].More recentworkfromthesamegroup[86]concludesthat smoothbarrierfreetransitionswithinthelocalconform- ationallandscapeoftheactivesiteisassociatedwiththe morepromiscuousGST.Furthermore,localmoltenglob- ulebehaviouroptimizesthecatalyticfunctionoftheGST indetoxification[87].So,catalyticpromiscuitymaynotbe Arora etal.SustainableChemicalProcesses (2014) 2:25 Page6of9 justaccidental “ noise ” [84]butpartofanintentionalbio- catalyticdesign. Labrou ’ sgroup[88]haverecentlyreportedaGSTfrom A.tumefaciens whichrepresentsanovelclassofbacter- ialGSTsuperfamily.Itsactivesiteisquitedifferentfrom cytosolicGSTreportedsofar.Itmaybeinterestingto seetheunravellingofitsspecificityintheyearstocome. Finally,aspointedoutbythem,GSTsarealsopossibly involvedinthestorageandtransportationofwidevariety ofbiologicalmoleculesandthusarealsomoonlighting proteins.Thisthreewaycorrelationbetweenisoenzymes, promiscuousenzymesandmoonlightingproteinshave beenpointedoutearlier[5].Tosumup,theconform- ationalpliabilitymaybelocalorglobalinproteinstruc- tureasthecausebehindpromiscuity. Conclusions Fewtrendsareclear.Whileduringearlyfewyears,ex- amplesofcatalyticpromiscuityweremostlyconcerned withapplicationsoflipases;lastfewyearshaveseen otherclassesofenzymes(otherhydrolases,oxidoreduc- tases,transferasesetc.)beingequallycapableofshowing catalyticpromiscuity. Theshiftfromourbeliefinenzymespecificitytothe realizationthatthesebiocatalystsarefairlypromiscuous hasnotbeengradual.Somekeymilestonescanbeidenti- fied.Weacceptedtheideaofbroadspecificity(latelycalled relaxedspecificity)longago.Isoformsorisoenzymes,the enzymesfromthesameorganism,carryingsimilarcatalytic activitybutwithdifferentspecificityandkineticbehaviour havebeenagainknownsinceseveraldecades[5].Theca- talysisstartswithmolecularrecognitionofthe “ substrate ” bytheenzyme.Thebindingsite,partoftheactivecentre wasknowntoshowpromiscuousbehaviourwhentex- tiledyesemergedaspowerfulaffinityligands[89].The catalyticpromiscuitylargelyarisesbecausemanydif- ferent “ substrates ” caninteractwithdifferentsidechains ofaminoacidstoresultindifferenttransitionstates. Table2Applicationsofcatalyticpromiscuityforusefulbiotransformations BiotransformationsSubstrate(s)Enzyme(s)References Regio-andstereoselective reductions DiketonesADHsfrom Lactobacilluskefir,Rhodococcus ruber,Thermoanaerobacter etc. [ 66 ] ReductionreactionPhenylacetaldoximeADHsfrom Rhodococcusruber,Ralstoniasp., Thermoanaerobacter etc. [ 67 ] Aza-Diels-Alderreaction4-chlorobenzaldehyde,cyclohexenone,4-anisidineHeneggwhitelysozyme(HEWL)[ 74 ] DominoKnoevenagel/ intramoleculartransesterification Salicylaldehyde,ethylacetoacetateAlkalineproteasefrom Bacillus licheniformis (BLAP) [ 58 ] TransesterificationreactionGuaifenesin,vinylacetatePenicillinGacylase[ 78 ] KnoevenagelreactionAromaticaldehyde,acetylacetone/EthylacetoacetatePapainfrom Caricapapaya latex[ 54 ] Ugireactionforpeptide synthesis(MCR) * Aldehyde,amine,isocyanideNovozyme435(commerciallyavailable, immobilized Candidaantarctica lipaseB) [ 47 ] AsymmetricaldolreactionAromaticaldehyde,cyclicketoneNucleasep1from Penicilliumcitrinum [ 51 ] AsymmetricaldolreactionHeterocyclicketone,aromaticaldehydeFicinfromfigtreelatex[ 53 ] Synthesisof4-thiazolidinonesAromaticaldehyde,benzylamine,mercaptoaceticacidTrypsinfromporcinepancreas[ 55 ] Dominooxa-Michael/aldol condensations Salicylaldehyde,methylvinylketone  -amylasefrom Bacillussubtilis [ 59 ] Henryreaction4-cyanobenzaldehyde,nitromethaneGlucoamylasefrom Aspergillusniger (AnGA)[ 60 ] Retroaldolandtransamination reactions L-threonineandL- allo -threonine(forretroaldol reaction);D-andL-alanine(fortransaminationreaction) Alanineracemasefrom Tolypocladium inflatum [ 68 ] DoubleMichaeladditionreactionCyclohexane-1,3-dioneand(1E,4E)-1, 5-diphenylpenta-1,4-dien-3-one D-aminoacylase[ 69 ] EnantioselectivealdolreactionIsatinderivatives,cyclicketonesNucleasep1from Penicilliumcitrinum [ 50 ] Synthesisof2,4-disubstituted thiazoles(MCR) * Benzylamine,isobutyraldehyde,thioaceticacid, methyl3-(dimethylamino)-2-isocyanoacrylate Porcinepancreaticlipase(PPL)[ 44 ] Michaeladdition-cyclizationcas- cadereaction Substitutedbenzalacetonesand1,3-cyclicdiketones E.coli BioHesterase[ 52 ] Synthesisofsubstituted 2H-chromemes(MCR) * Salicylaldehyde,acetophenone,methanolPorcinepancreaticlipase[ 79 ] Baylis-Hillmanreaction p -nitrobenzaldehydeandmethylvinylketone E.coli BioHesterase[ 80 ] Biginellireaction(MCR) * Urea,ethylacetoacetate,vinylacetateTrypsinfromporcinepancreas[ 81 ] *standsforMulti-componentreaction. Arora etal.SustainableChemicalProcesses (2014) 2:25 Page7of9 Thisisakintoageneralpractitionerbecomingaspe- cialistinmedicalsciencebutretainingenoughknowledge ofhowtotreatmanydiseases.Inthebeginning,wehad RNAworld[90].Thencameearlyenzymes.Ascomplex metabolismswererequiredwithevolutionofmorecom- plexorganisms,morespecialisedenzymesemerged.These enzymesdidnotforgetentirelywhattheirancestorswere capableof. Whitebiotechnologycandefinitelyprofitbyexploiting manyofthecatalyticpowerswhichenzymesdidnoten- tirely “ forget ” !Thisoverviewhaslookedattheproverbial “ tipoftheiceberg ” .Hopefully,itwilldrawattentionof manybiotechnologiststolookatthehugeicebergofpo- tentialapplicationofthesegreencatalyststonurture sustainableapproachesinchemicalindustries. Competinginterests Theauthorsdeclarethattheyhavenocompetinginterests. Authors ’ contributions BAplayedalargeroleinthesearchforthecurrentliterature.Allauthors participatedindraftingofthetext,readandapprovedthefinalmanuscript. Acknowledgements WethankProf.PrashantMishraforhisinterestinthisworkandseveral relateddiscussions.WeacknowledgefinancialsupportfromtheGovernment ofIndia ’ sDepartmentofScienceandTechnology(DST)[GrantNo.:SR/SO/ BB-68/2010].BAandJMthanktheCouncilofScientificandIndustrial ResearchfortheSeniorResearchFellowship. Authordetails 1 DepartmentofChemistry,IndianInstituteofTechnology,Delhi,HauzKhas, NewDelhi110016,India. 2 DepartmentofBiochemicalEngineeringand Biotechnology,IndianInstituteofTechnologyDelhi,HauzKhas,NewDelhi 110016,India. Received:27August2014Accepted:10December2014 References 1.GuptaMN,RaghavaS: Relevanceofchemistrytowhitebiotechnology. ChemCentJ 2007, 1: 17. 2.UlberR,SellD: WhiteBiotechnology. Berlin:Springer-Verlag;2007. 3.KazlauskasRJ: Enhancingcatalyticpromiscuityforbiocatalysis. CurrOpin ChemBiol 2005, 9: 195 – 201. 4.KhersonskyO,TawfikDS: Enzymepromiscuity:amechanisticand evolutionaryperspective. AnnuRevBiochem 2010, 79: 471 – 505. 5.GuptaMN,KapoorM,MajumderAB,SinghV: Isozymes,moonlighting proteinsandpromiscousenzymes. CurrSci 2011, 100: 1152 – 1162. 6.GuptaMN,MukherjeeJ: Enzymology:someparadigmshiftsoverthe years. CurrSci 2013, 104: 1178 – 1186. 7.FrutonJS,SimmonsS: GeneralBiochemistry. NewYork:WileyandSonsInc; 1958. 8.DixonM,WebbEC: Enzymes. London:AcademicPress;1964. 9.HultK,BerglundP: Enzymepromiscuity:mechanismandapplications. TrendsBiotechnol 2007, 25: 231 – 238. 10.BabtieA,TokurikiN,HollfelderF: Whatmakesanenzymepromiscuous. CurrOpinChemBiol 2010, 14: 1 – 8. 11.NobeliI,FaviaAD,ThorntonJM: Proteinpromiscuityanditsimplications forbiotechnology. NatBiotechnol 2009, 27: 157 – 167. 12.GoldsmithM,TawfikDS: Directedenzymeevolution:beyondthe low-hangingfruit. CurrOpinStrucBiol 2012, 22: 406 – 412. 13.O ’ BrienPJ,HerschlagD: Catalyticpromiscuityandtheevolutionofnew enzymaticactivities. ChemBiol 1999, 6: R91 – R105. 14.HumbleMS,BerglundP: Biocatalyticpromiscuity. EurJOrgChem 2011, 2011: 3391 – 3401. 15.GuptaMN: Enzymefunctioninorganicsolvents. EurJBiochem 1992, 203: 25 – 31. 16.VulfsonEN,HallingPJ,HollandHL: EnzymesinNonaqueousSolvents: MethodsandProtocol. NewJersey:HumanaPress;2001. 17.MartinekK,LevashovAV,KlyachkoN,KhmelnitskyYL,BerezinIV: Micellar enzymology. EurJBiochem 1986, 155: 453 – 468. 18.MartinekK,BerezinIV,KhmelnitskyYL,KlyachkoNL,LevashovAV: Enzymes entrappedintoreversedmicellesofsurfactantsinorganicsolvents:key trendsinappliedenzymology(Biotechnology). BiocatalBiotransform 1987, 1: 9 – 15. 19.ParkS,KazalauskasRJ: Improvedpreparationanduseofroom temperatureionicliquidsinlipase-catalyzedenantio-andregioselective acylations. JOrgChem 2001, 66: 8395 – 8401. 20.ParkS,KazalauskasRJ: Biocatalysisinionicliquids – advantagesbeyond greentechnology. CurrOpinBiotechnol 2003, 14: 432 – 437. 21.ShahS,GuptaMN: Kineticresolutionof(±)-1-phenylethanolin[Bmim] [PF 6 ]usinghighactivitypreparationsoflipases. BioorgMedChemLett 2007, 17: 921 – 924. 22.ZhaoH: Methodsforstabilizingandactivatingenzymesinionic liquids — areview. JChemTechnolBiotechnol 2010, 85: 891 – 907. 23.KumariV,ShahS,GuptaMN: Preparationofbiodieselbylipase-catalyzed transesterificationofhighfreefattyacidcontainingoilfrommadhuca indica. EnergyFuels 2007, 21: 368 – 372. 24.GuptaMN: Methodsinnon-AqueousEnzymology. Basel:BirkhauserVerlag;2000. 25.LaaneC: Mediumengineeringforbioorganicsynthesis. Biocatalysis 1987, 30: 80 – 87. 26.GuptaMN,RoyI: Enzymesinorganicmedia:forms,functionand applications. EurJBiochem 2004, 271: 2575 – 2583. 27.WuSH,ChuFY,WangKT: Reversibleenantioselectivityofenzymatic reactionsbymedia. BioorgMedChemLett 1991, 1: 339 – 342. 28.TsaiS,HuangCM: Enantioselectivesynthesisof( S )-ibuprofenesterprodrugs bylipasesincyclohexane. EnzymeMicrobTechnol 1999, 25: 682 – 688. 29.KhmelnitskyYL,MozhaevVV,BelovaAB,SergeevaMV,MartinekK: Denaturationcapacity:anewquantitativecriterionforselectionoforganic solventsasreactionmediainbiocatalysis. EurJBiochem 1991, 198: 31 – 41. 30.MattiassonB,HolstO: ExtractiveBioconversions. NewYork:MarcelDekkerInc; 1991. 31.PurichDL: EnzymeKinetics:Catalysis&Control. London:AcademicPress;2010. 32.AsuriP,KarajanagiS,DordickJS,KaneR: Directedassemblyofcarbon nanotubesatliquid-liquidinterfaces:nanoscaleconveyorsforinterfacial biocatalysis. JAmChemSoc 2006, 128: 1046 – 1047. 33.AyresBT,ValencaGP,FrancoTT: Two-stepprocessforpreparationof oligosaccharidepropionatesandacrylatesusinglipaseandCyclodextrin GlycosylTransferase(CGTase). SusChemProcesses 2014, 2: 6. 34.BoodhooK,HarveyA: ProcessIntensificationforGreenChemistry. London: WileyandSonsLtd;2013. 35.LuqueR,ClarkJH: Valorisationoffoodresidues:wastetowealthusing greenchemicaltechnologies. SusChemProcesses 2013, 1: 10. 36.PleissnerD,LinCS: Valorisationoffoodwasteinbiotechnological processes. SusChemProcesses 2013, 1: 21. 37.BanerjeeA,SinghV,SolankiK,MukherjeeJ,GuptaMN: Combi-protein coatedmicrocrystalsoflipasesforproductionofbiodieselfromoilfrom spentcoffeegrounds. SustChemProcesses 2013, 1: 14. 38.BustoE,Gotor-FernandezV,GotorV: Hydrolases:catalyticallypromiscuous enzymesfornon-conventionalreactionsinorganicsynthesis. ChemSoc Rev 2010, 39: 4504 – 23. 39.KapoorM,GuptaMN: Lipasepromiscuityanditsbiochemical applications. ProcessBiochem 2012, 47: 555 – 569. 40.MajumderAB,RameshNG,GuptaMN: Lipasecatalyzedcondensation reactionwithatricyclicdiketone-yetanotherexampleofbiocatalytic promiscuity. TetrahedronLett 2009, 50: 5190 – 5193. 41.KapoorM,MajumderAB,MukherjeeJ,GuptaMN: Decarboxylativealdol reactioncatalysedbylipasesandaproteaseinorganicco-solvent mixturesandnearlyanhydrousorganicsolventmedia. BiocatalBiotransform 2012, 30: 399 – 408. 42.MajumderAB,GuptaMN: Lipase-catalyzedcondensationreactionof 4-nitrobenzaldehydewithacetylacetoneinaqueous – organiccosolvent mixturesandinnearlyanhydrousmedia. SynthCommun 2014, 44: 818 – 826. 43.AroraB,PandeyPS,GuptaMN: LipasecatalyzedCannizzaro-typereactionwith substitutedbenzaldehydesinwater. TetrahedronLett 2014, 55: 3920 – 3922. Arora etal.SustainableChemicalProcesses (2014) 2:25 Page8of9 44.ZhangH: Anovelone-potmulticomponentenzymaticsynthesisof 2,4-disubstitutedthiazoles. CatalLett 2014, 144: 928 – 934. 45.MaruyamaT,NakajimaM,KondoH,KawasakiK,SekiM,GotoM: Canlipases hydrolyseapeptidebonds? EnzymMicrobTechnol 2003, 32: 655 – 657. 46.DomlingA,UgiI: Multicomponentreactionswithisocyanides. AngewChem IntEd 2000, 39: 3168 – 3210. 47.KzossowskiS,WiraszkaB,BerzozeckiS,OstaszewskiR: Modelstudiesonthe firstenzyme-catalyzedUgireaction. OrgLett 2013, 15: 566 – 569. 48.BrannebyC,CarlqvistP,MagnussonA,HultK,BrinckT,BerglundP: Carbon – carbonbondsbyhydrolyticenzymes. JAmChemSoc 2003, 125: 874 – 875. 49.LiC,FengX-W,WangN,ZhouY-J,YuX-Q: Biocatalyticpromiscuity:thefirst lipasecatalysedasymmetricaldolreaction. GreenChem 2008, 10: 616 – 618. 50.LiuZQ,XiangZW,ShenZ,WuQ,LinXF: Enzymaticenantioselectivealdol reactionsofisatinderivativeswithcyclicketonesundersolventfree conditions. Biochimie 2014, 101: 156 – 160. 51.LiHH,HeYH,YuanY,GuanZ: Nucleasep1:anewbiocatalystfordirect asymmetricaldolreactionundersolvent-freeconditions. GreenChem 2011, 13: 185 – 189. 52.JiangL,WangB,LiR,ShenS,YuH,YeL: Catalyticpromiscuityof Escherichia coli BioHesterase:applicationinthe synthesisof3,4-dihydropyran derivatives. ProcessBiochem 2014, 49: 1135 – 1138. 53.FuJP,GaoN,YangY,GuanZ,HeYH: Ficin-catalyzedasymmetricaldol reactionsofheterocyclicketoneswithaldehydes. JMolCatalBEnzym 2013, 97: 1 – 4. 54.HuW,GuanZ,DengX,HeYH: Enzymecatalyticpromiscuity:the papain-catalyzedKnoevenagelreaction. Biochemie 2012, 94: 656 – 661. 55.ZhengH,MeiYJ,DuK,SheQI,ZhangPF: Trypsincatalysedone-pot multicomponentsynthesi sof4-thiazolidinones. CatalLett 2013, 143: 298 – 301. 56.ChunK,ParkSK,KimHM,ChoiY,KimMH,ParkCH,JoeBY,ChunPG, ChoiHM,LeeHY,HongSH,KimMS,NamKY,HanG: Chromen-based TNF-  -convertingenzyme(TACE)inhi bitors:design,synthesisand biologicalevaluation. BioorgMedChemLett 2008, 16: 530 – 535. 57.KhodeS,MaddiV,AragadeP,PalkarM,RonadPK,MamledesaiS, ThippeswamyAHM,SatyanarayanaD: Synthesisandpharmacological evaluationofanovelseriesof5-(substituted)-aryl-3-(3-coumarinyl)-1- phenyl-2-pyrazolinesasnovelanti-inflammatoryandanalgesicagents. EurJMedChem 2009, 44: 1682 – 1688. 58.WangCH,GuanZ,HeYH: Biocatalyticdominoreaction:synthesisof 2H-1-benzopyran-2-onederivativesusingalkalineproteasefrom Bacilluslicheniformis. GreenChem 2011, 13: 2048 – 2054. 59.ZhouLH,WangN,ZhangW,XieZB,YuXQ: Catalyticalpromiscuityof  -amylase:synthesisof3-substitu ted2H-chromenederivativesvia biocatalyticdominooxa-Mich ael/aldolcondensations. JMolCatalB Enzym 2013, 91: 37 – 43. 60.GaoN,ChenYL,HeYH,GuanZ: Highlyefficientandlarge-scalable glucoamylasecatalyzedHenryreactions. RSCAdv 2013, 3: 16850 – 16856. 61.GreenKD,ChenW,HoughtonJL,FridmanM,Garneau-TsodikovaS: Exploring thesubstratepromiscuityofdrugmodifyingenzymesforthe chemoenzymaticgenerationofN-acylatedaminoglycosides. ChemBioChem 2010, 11: 119 – 126. 62.WerneburgM,BuschB,HeJ,RichterMEA,XiangL,MooreBS,RothM, DahseHM,HertweckC: Exploitingenzymaticpromiscuitytoengineera focussedlibraryofhighlyselectiveantifungalandantiproliferative aureothinanalogs. JAmChemSoc 2010, 132: 10407 – 10413. 63.KulaMR,KraglU: Dehydrogenasesinthesynthesisofchiralcompounds. In StereoselectiveBiocatalysis. EditedbyPatelRN.NewYork:MarcelDekker Inc;2000:839 – 866. 64.VanderDonkWA,ZhaoH: Recentdevelopmentsinpyridinenucleotide regeneration. CurrOpinBiotechnol 2003, 14: 421 – 426. 65.KroutilW,MangH,EdeggerK,FaberK: Recentadvancesinthe biocatalyticreductionofketonesandoxidationofsec-alcohols. CurrOpin ChemBiol 2004, 8: 120 – 126. 66.Kurina-SanzM,BisognoFR,LavanderaI,OrdenAA,GotorV: Promiscuous substratebindingexplainstheenzymaticstereoandregiocontrolled synthesisofenantiopurehydroxylketonesanddiols. AdvSynthCatal 2009, 351: 1842 – 1848. 67.Ferreira-SilveB,LavandraI,KernA,FaberK,KroutilW: Chemo-promiscuity ofalcoholdehydrogenases:reductionofphenylacetaldoximetothe alcohol. Terahedron 2010, 66: 3410 – 3414. 68.diSalvoML,FlorioR,PaiardiniA,VivoliM,D ’ AguannoM,ContestabileR: AlanineracemasefromTolypocladiuminflatum:akeyPLP-dependent enzymeincyclosporinebiosynthesisandamodelofcatalyticpromiscuity. ArchBiochemBiophys 2013, 529: 55 – 65. 69.ChenXY,LiangYR,XuFL,WuQ,LinXF: Stereoselectivesynthesisofspiro [5.5]undecanederivativesviabiocatalytic[5+1]doubleMichael additions. JMolCatalBEnzym 2013, 97: 18 – 22. 70.GrulichM,StepanekV,KyslikP: Perspectivesandindustrialpotentialof PGAselectivityandpromiscuity. BiotechnolAdv 2013, 31: 1458 – 1472. 71.SoskineM,TawfikDS: Mutationaleffectsandtheevolutionofnew proteinfunctions. NatureRevGenet 2010, 11: 572 – 582. 72.MeierMM,RajendranC,MalisiC,FoxNG,XuC,SchleeS,BarondeauDP, HockerB,SternerR,RaushelFM: Molecularengineeringof organophosphatehydrolysisactivityfromaweakpromiscuouslactonase template. JAmChemSoc 2013, 135: 11670 – 11677. 73.JungS,KimJ,ParkS: Rationaldesignforenhancingpromiscuousactivity of Candidaantarctica lipaseB:aclueforthemolecularbasisofdissimilar activitiesbetweenlipaseandserine-protease. RSCAdv 2013, 3: 2590 – 2594. 74.HeYH,HuW,GuanZ: EnzymecatalyseddirectthreecomponentAzaDiels Alderreactionusingheneggwhitelysozyme. JOrgChem 2012, 77: 200 – 207. 75.BaasBJ,ZandvoortE,GeertsemaEM,PoelarendsGJ: Recentadvancesin thestudyofenzymepromiscuityinthetautomerasesuperfamily. ChemBioChem 2013, 14: 917 – 926. 76.JarvoER,MillerSJ: Aminoacidsandpeptidesasasymmetric organocatalysts. Tetrahedron 2002, 58: 2481 – 2495. 77.NotzW,TanakaF,BarbasCFIII: Enamine-basedorganocatalysiswithproline anddiamines:thedevelopmentofdirectcatalyticasymmetricaldol,Mannich, MichaelandDiels-Alderreactions. AccChemRes 2004, 37: 580 – 591. 78.LiuB,WuQ,LvD,LinX: ModulatingthesynthetaseactivityofpenicillinG acylaseinorganicmediabyadditionofN-methylimidazole:usingvinyl acetateasactivatedacyldonor. JBiotechnol 2011, 153: 111 – 115. 79.YangF,WangZ,WangH,ZhangH,YueH,WangL: Enzymecatalytic promiscuity:lipasecatalyzedsynthesisofsubstituted2H-chromenesby athree-componentreaction. RSCAdv 2014, 4: 25633 – 25636. 80.JiangL,YuHW: Anexampleofenzymaticpromiscuity:theBaylis-Hillman reactioncatalyzedbyabiotinesterase(BioH)from Escherichiacoli . BiotechnolLett 2014, 36: 99 – 103. 81.XieZB,WangN,WuWX,LeZG,YuXQ: Trypsin-catalyzedtandem reaction:one-potsynthesisof3,4-dihydropyrimidin-2(1H)-onesbyinsitu formedacetaldehyde. JBiotechnol 2014, 170: 1 – 5. 82.JiaB,CheongGW,ZhangS: Multifunctionalenzymesinarchaea: promiscuityandmoonlight. Extremophiles 2013, 17: 193 – 203. 83.MittagT,KayLE,Forman-KayJD: Proteindynamicsandconformational disorderinmolecularrecognition. JMolRecognit 2010, 23: 105 – 116. 84.SkolnickJ,GaoM: Interplayofphysicsandevolutioninthelikelyorigin ofproteinbiochemicalfunction. ProcNatlAcadSci 2013, 110: 9344 – 9349. 85.HouL,HonakerMT,ShiremanLM,BaloghLM,RobertsAG,NgK,NathA,AtkinsWM: Functionalpromiscuitycorrelateswithconformationalheterogeneityin A-classglutathioneS-transferases. JBiolChem 2007, 282: 23263 – 23274. 86.HonakerMT,AcchioneM,SumidaJP,AtkinsWM: Ensembleperspective forcatalyticpromiscuity:calorimetricanalysisoftheactivesite conformationallandscapeofadetoxificationenzyme. JBiolChem 2011, 286: 42769 – 42776. 87.HonakerMT,AcchioneM,ZhangW,MannervikB,AtkinsWM: Enzymatic detoxification,conformationalselection,andtheroleofmoltenglobule activesites. JBiolChem 2013, 288: 18599 – 18611. 88.SkopelitouK,DhavalaP,PapageorgiouAC,LabrouNE: Aglutathione transferasefromAgrobacteriumtumefaciensrevealsanovelclassof bacterialGSTsuperfamily. PLoSONE 2012, 7: e34263. 89.LabrouNE: Affinitychromatography. In MethodsforAffinity-Based SeparationsofEnzymesandProteins. EditedbyGuptaMN.Basel: BirkhauserVerlag;2002:16 – 28. 90.WatsonJD,HopkinsNH,RobertsJW,SteitzJA,WeinerAM: MolecularBiology oftheGene. fourththedition.California:TheBenjamin/CummingsPublishing CompanyInc;1987:1103 – 1124. Arora etal.SustainableChemicalProcesses (2014) 2:25 Page9of9