/
Section5.3:Disproofs,AlgebraicProofsandBooleanAlgebrasInthissectionwes Section5.3:Disproofs,AlgebraicProofsandBooleanAlgebrasInthissectionwes

Section5.3:Disproofs,AlgebraicProofsandBooleanAlgebrasInthissectionwes - PDF document

conchita-marotz
conchita-marotz . @conchita-marotz
Follow
380 views
Uploaded On 2016-11-24

Section5.3:Disproofs,AlgebraicProofsandBooleanAlgebrasInthissectionwes - PPT Presentation

C AB C AB ABCABC1 22SetProblemSolvingIngeneralaswithanyprobleminmathematicsthereareacoupleofgeneralstepsonewouldtaketosolveitTheseareiAskyourselfiftheproblemstatementgivenseemstruetest ID: 492793

C AB C AB (A\B)[CA\(B[C)1 22.SetProblemSolvingIngeneral aswithanyprobleminmathematics thereareacoupleofgeneralstepsonewouldtaketosolveit.Theseare:(i)Askyourselfiftheproblemstatementgivenseemstrue-test

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Section5.3:Disproofs,AlgebraicProofsandB..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Section5.3:Disproofs,AlgebraicProofsandBooleanAlgebrasInthissectionweshallconsiderhowtoproveanddisprovecertainstatementsaboutsetsusingalgebraicstyleproofsanddirectproofs.InadditionweshallintroducetheideaofaBooleanalgebra.Speci cally,theoperationswehavede nedonsetsareinmanyrespectsverysim-ilartothelogicalconnectiveoperations.Itturnsoutthatthereisacommonunderlyingstructuretobothoftheseideas(whichisalsoanunderlyingstructuretomanyotherconceptswealreadyknow),andwecallthisstructureaBooleanalgebra.1.DisprovingSetPropertiesNotethatasetpropertyisastatementwhichisclaimedtobetrueofallsets.Aswediscussedearlier,toshowthatsuchaclaimisnottrue,weneedtoexhibitasinglecounterexample.Therefore,toshowthatagivensetpropertyisnottrue,weneedtobuildaset(s)whichdonotsatisfythestatedproperty.Weillustratewithanexample.Example1.1.Showthat(A\B)[C=A\(B[C)isnotasetidentity.Toshowthatthisisnotasetidentity,weneedtoprovideacounterex-amplei.e.constructsetsA,BandCwhichdonotsatisfythisidentity.NotethatA\(B[C)willbeasubsetofAwhereas(A\B)[CwillhaveCasasubset.Therefore,ifwechooseCtocontainanyelementswhichAdoesnotcontain,thenthesewillbedi erentsets.Speci cally,LetA=f1;2;3g,B=f2;3;4gandC=f4;5g.Then(A\B)[C=f2;3;4;5gandA\(B[C)=f2;3g:AnalternativewaytoprovethisisthroughtheuseofVenndiagrams.Speci cally,weshadeintheregionscorrespondingtobothsidesoftheidentityandcheckwhetherwehavethesameVenndiagramineachcase: C AB C AB (A\B)[CA\(B[C)1 22.SetProblemSolvingIngeneral,aswithanyprobleminmathematics,thereareacoupleofgeneralstepsonewouldtaketosolveit.Theseare:(i)Askyourselfiftheproblemstatementgivenseemstrue-testwithacoupleofexamplestogetagutfeelingorattemptaVennDiagramifthenumberofsetsissmall.Ifthereisanydoubt,thenstartlookingforacounterexample.(ii)Ifyouaresurethestatementistrue,thenstarttoconstructasetproof-eitherdirectly,indirectlyorwithoneoftheothermethodsofproofwediscussed.Wehavealreadyseenanexampleofhowtodisproveasetidentity,soweshallinsteadconsidersomeexamplesofhowtoprovesetidenti-ties.First,aswedidintheprevioussection,wecanusestandardsetidentitiestoderivenewsetidentities.Example2.1.ShowthatforallsetsA,BandC,A[(BA)=A[B.WehaveA[(BA)=A[(B\Ac)=(A[B)\(A[Ac)bythesetdi erenceandDeMorganslaw.Next,usingthecomplementlawsandtheidentitylaws,wehave(A[B)\(A[Ac)=(A[B)\(U)=A[Bprovingtheidentity.Example2.2.ShowthatforallsetsA,BandC,(AB)\(CB)=A(B[Cc).Wehave(AB)\(CB)=(A\Bc)\(C\Bc)bythesetdi erencelaw.Next,usingthedistributiveandidempotentlaws,wehave(A\Bc)\(C\Bc)=(A\C)\(Bc\Bc)=(A\C)\Bc=A\(C\Bc):Finally,usingthesetdi erencelaw,DeMorganslawandthedoublecomplementlaw,wehaveA\(C\Bc)=A(C\Bc)c=A(Cc[B)=A(B[Cc):Inadditiontothesealgebraicstyleproofs,wecanuseothermethodsofprooftoprovefactsaboutsets.Weillustratewithaclassicalresultfromsettheory.Theorem2.3.Forallintegersn�0,ifasetXhasnelements,thenP(X)has2nelements. 3Proof.Weshallprovethisbyinduction.n=0(basecase):ifXhas0elements,thenitistheemptyset.SinceP(X)isthepowersetofX,itconsistsofallthesubsetsofX.Theemptysetisalwaysasubsetofanyset.Therearenoothersubsets(sincetherearenoelementstoformsubsetswith).HenceP(X)has1elementand1=20,sothebasecaseholds.(Inductionstep)Weassumetheresultholdsforannelementsetandproveitforasetwithnelements.SupposethatXhasn+1elementsandz2X.ObservethatwecanbreakupP(X)intotwodistinctsubsets-allsubsetsincludingzandallsubsetswhichdonotincludez.NoticealsothatthisdividesthesetP(X)exactlyinto2.Toseethis,weobservethatwecansetupaone-to-onecorrespondencebetweensuchsets-speci cally,wecanassociateanygivensubsetwhichdoesnotcontainztothesubsetwiththesameelementstogetherwithzi.e.fx1;x2;:::;xrg$fx1;x2;:::;xr;zgTherefore,thesizeofP(X)willbeequaltotwicethatofthenumberofsubsetsofXi.e.thesizeofthesetP(Xfzg).However,thesetXfzghassizen,sobytheinductionhypothesis,P(Xfzg)has2nelements.ItfollowsthatP(X)has22n=2n+1elements.3.BooleanAlgebrasAsobservedpreviously,operationsonsetsareverysimilartologicaloperators.Thisisbecausetheabstractunderlyingstructureofthesemathematicalobjectsarethesame.Inthissection,weshallexplorethisabstractunderlyingstructureandshowthattheresultswehaveprovedwillgeneralizetoallmathematicalobjectswiththisunderlyingstructure.Westartwithaformalde nition.De nition3.1.ABooleanalgebraisasetBtogetherwithtwoop-erations,usuallydenoted+andsuchthatforalla;b2B,a+bandabareinB,andthefollowingpropertieshold:(i)(CommutativeLaws)Foralla;b2Bwehave(a)a+b=b+a(b)ab=ba(ii)(AssociativeLaws)Foralla;b;c2Bwehave(a)(a+b)+c=a+(b+c)(b)(ab)c=a(bc)(iii)(DistributiveLaws)Foralla;b;c2Bwehave(a)a+(bc)=(a+b)(a+c)(b)a(b+c)=(ab)+(ac)(iv)(IdentityLaws)Thereexistselements0and1inBsuchthatforalla2B: 4(a)a+0=a(b)a1=a(v)(ComplementLaws)Foreacha2B,thereexistsanelementa2Bcalledthecomplement,ornegationofasuchthat:(a)a+a=0(b)aa=1Justaswesaywithbothlogicaloperatorsandsetoperations,therearemanyfurtherlawswhichcanbederivedsuchasDeMorganslaws,andcomplementlaws(seethetext,Theorem5.3.2onpage288).We nishbyillustratinghowtoprovesuchlawsforanabstractBooleanalgebra.Theorem3.2.(AdditiveIdempotentLaw)ForallainaBooleanal-gebraB,a+a=aProof.Wehavea=a+0=a+aa=(a+a)(a+a)=(a+a)1=a+aTheorem3.3.(AdditiveAbsorptionLaw)ForallaandbinaBooleanalgebraB,(a+b)a=aProof.Wehave(a+b)a=(a+b)(a+0)=(a+b)(a+bb)=a+b(bb)=a+(bb)b=a+bb=a+0=aHomework(i)Fromthebook,pages290-293:Questions:2,6,7,13,17,19,20,23,28,31,36,39,43,49,51,52