/
Waves S8P4. Students will explore the wave nature of sound and electromagnetic radiation. Waves S8P4. Students will explore the wave nature of sound and electromagnetic radiation.

Waves S8P4. Students will explore the wave nature of sound and electromagnetic radiation. - PowerPoint Presentation

contera
contera . @contera
Follow
343 views
Uploaded On 2020-08-28

Waves S8P4. Students will explore the wave nature of sound and electromagnetic radiation. - PPT Presentation

a Identify the characteristics of electromagnetic and mechanical waves What are waves Waves carry energy Rhythmic disturbances that carry energy without carrying matter are called waves Models of Waves ID: 810059

wave waves wavelength energy waves wave energy wavelength amplitude frequency matter electromagnetic mechanical sound light compressional medium transverse distance

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "Waves S8P4. Students will explore the wa..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Waves

S8P4. Students will explore the wave nature of sound and electromagnetic radiation.

a. Identify the characteristics of electromagnetic and mechanical waves.

Slide2

What are waves?

Waves carry energy

Rhythmic disturbances that carry energy without carrying matter are called waves.

Slide3

Models of Waves

How does a wave carry energy without transporting matter?

Slide4

Waves

Waves transfer energy, but do not transfer matter.

Slide5

Mechanical Waves

Waves that require matter to transfer energy are mechanical waves.

The matter through which a mechanical wave travels is called a medium.

A mechanical wave travels as energy is transferred from particle to particle in the medium.

There are two kinds of mechanical waves.

Slide6

Transverse Waves

A type of mechanical wave.

The wave energy causes the matter in the medium to move up and down or back and forth at right angles to the direction the wave travels.

Slide7

Compressional Waves

A type of mechanical wave.

In a compressional wave, matter in the medium moves forward and backward along the same direction that the wave travels.

Slide8

Sound Waves

Sound waves are compressional waves.

Slide9

Electromagnetic Waves

Waves that can travel through space where there is no matter are electromagnetic waves.

There are different types of electromagnetic waves, including radio waves, X rays, and gamma rays.

These waves can travel in matter or in space.

Slide10

Radiant Energy

The sun emits electromagnetic waves that travel through space and reach Earth.

The energy carried by electromagnetic waves is called radiant energy.

Most of the radiant energy that reaches Earth from the sun is carried by infrared and visible light waves.

Slide11

Summary

What is a wave?

Waves transfer energy, but do not transfer matter.

Mechanical WavesMechanical waves require a medium in which to travel.

When a transverse wave travels, particle of the medium move at right angles to the direction the wave is traveling.

Slide12

Summary (continued)

Mechanical Waves (continued)

When a compressional wave travels, particles of the medium move back and forth along the same direction the wave is traveling.

Sound is a compressional wave.

Electromagnetic WavesElectromagnetic waves can travel through empty space.The sum emits different types of electromagnetic waves, including infrared, visible light, and ultraviolet waves.

Slide13

Wave Properties

S8P4

f. Diagram the parts of the wave and explain how the parts are affected by changes in amplitude and pitch.

Slide14

Amplitude

The distance above or below the resting position of a wave is the amplitude.

Slide15

Amplitude and Energy

A wave’s amplitude is related to the energy that the wave carries.

The brighter the light the greater the amplitude the dimmer the light the lower the amplitude.

The louder the sound the greater the amplitude the quieter the sound the lower the amplitude.

Slide16

Transverse wave diagram

Slide17

Compressional wave diagram

Slide18

Wavelength

For a transverse wave, wavelength is the distance from the top of one crest to the top of the next crest, or from the bottom of one trough to the bottom of the next trough.

Slide19

Wavelength

For a compressional wave, the wavelength is the distance between the center of one compression and the center of the next compression, or from the center of one rarefaction to the center of the next rarefaction.

Slide20

Electromagnetic waves

Slide21

Frequency

The frequency of a wave is the number of wavelengths that pass a given point in one second.

The unit of frequency is the number of wavelengths per second, or hertz (Hz).

Slide22

Frequency and Wavelength

High frequencies result in shorter wavelength.

Shorter frequencies result in longer wavelengths.

Slide23

Color

Because frequency and wavelength are related, either the wavelength or frequency of a light wave determines the color of the light.

For example, blue light has a larger frequency and shorter wavelength than red light.

Slide24

Pitch

Either the wavelength or frequency determines the pitch of a sound wave.

Pitch is how

high or low a sound seems to be.The frequency of the notes on a musical scale increases as the notes get higher in pitch, but the wavelength of the notes decreases.

Slide25

Summary

Amplitude

In a transverse wave, the amplitude is one-half the distance between a crest and a trough.

The larger the amplitude, the greater the energy carried by the wave.

WavelengthFor a transverse wave, wavelength is the distance from crest to crest, or from trough to trough.

Slide26

Summary (continued)

Wavelength (continued)

For a compressional wave, wavelength is the distance from compression to compression, or rarefaction to rarefaction.

Frequency

The frequency of a wave is the number of wavelengths that pass a given point in one second (1 s).For waves the travel at the same speed, as the frequency of the wave increases, its wavelength decreases.