/
2212-8271 2212-8271

2212-8271 - PDF document

crunchingsubway
crunchingsubway . @crunchingsubway
Follow
343 views
Uploaded On 2020-11-19

2212-8271 - PPT Presentation

Selection andor peerreview under responsibility of Professor Mamoru Mitsuishi and Professor Paulo Bartolo doi 101016jprocir201301044 Procedia CIRP 5 2013 222 ID: 817664

fig 2013 professor procedia 2013 fig procedia professor cirp 222 bail 225 1wt 0wt projection microstereolithography 5wt photoinitiator 2009

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2212-8271" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2212-8271© 2013 The Authors. Published b
2212-8271© 2013 The Authors. Published by Elsevier B.V.Selection and/or peer-review under responsibility of Professor Mamoru Mitsuishi and Professor Paulo Bartolodoi: 10.1016/j.procir.2013.01.044 Procedia CIRP 5 ( 2013 ) 222 – 225 TheFirstCIRPConferenceonBiomanufacturingTheeffectofatypeIphotoinitiatoroncurekineticsandcelltoxicityinprojection-microstereolithographyR.Baila*,A.Patelb,H.Yanga,C.M.Rogersb,F.R.A.J.Roseb,J.I.Segala,S.M.RatchevaaManufacturingResearchDivision,FacultyofEngineering,UniversityofNottingham,UniversityPark,NottinghamNG72RD,U.K.bWolfsonCentreforStemCells,TissueEngineeringandModelling(STEM),CentreforBiomolecularSciences,SchoolofPharmacy,UniversityPark,NottinghamNG72RD,U.K.*Correspondingauthor.Tel.:+44-(0)115-956-6083;fax:+44-(0)115-951-3800;E-mailaddress:epxrb2@nottingham.ac.ukAbstractProjection-microstereolithographyisanadditivemanufacturingtechniquebasedonthespatiallycontrolledsolidificationofaliquidphotopolymeronexposuretodigitallymanipulatedlightpatterns.Thisstudypresentsamethodologytoevaluatetheeffectofatype-Iphotoinitiatoronthereactionkineticsintheprocessandthecytocompatibilityoftheproducedcomponents.Whilethereactionspeedanddegreeofconversionwereheavilydependentontheappliedamountoftheinitiator,acleartoxiceffectwasobservedwithalltestedconcentrations,andapost-processingstepof7dayswasrequiredtoleachouttheinitiatorresidues.©2012TheAuthors.PublishedbyElsevierB.V.Selectionand/orpeer-reviewunderresponsibilityofProfessorMamoruMitsuishiandProfessorPauloBartoloKeywords:Microstereolithography;photopolymerization;photoinitiator;BAPO;FTIR;AlamarBlueassay1.IntroductionStereolithographyisaprocessinitiallyappliedinrapidprototypingandbasedonthespatiallycontrolledsolidificationofaliquidandlight-sensitivepolymer(resin)uponinteractionwithalightsource(photo-polymerization).Projection-microstereolithography(PMSL)appliesapatterngenerator,usuallyanLCDoraDigitalMicromirrordevice(DMD),todigitallymodulatealaserorlightbeamaccordingtolayerprofilesdeterminedfromanSTLfile[1].Onceanarrayoflightspots(pixels)isprojectedontotheresinsurface,thelightpropagateswithineachilluminatedvoxelinthedirectionofthebeamwhereitprovidestheenergythatleadstosimultaneoussolidificationintheirradiatedpixels.Thiscuringprocessisrepeatedlayerbylayer.Thesolidificationofastereolithographicresininahighlycrosslinked3Dpolymernetworkresultsfromadistinctivecuringmechanismthatinvolvesthesuccessivegelationandvitrificationofthephoto-polymer.Photopolymerizationreactionscanbeinitiatedbyfreeradicals,inwhichcaseoligomerswithphoto-crosslinkablegroupsarerequiredaswellasfreeradicalsthataregeneratedbyaphotoinitiator(PI)whenirradiatedwithlight.Bisacylphosphineoxide(BAPO)derivativesbelongtotheNorrishtypeIinitiatorsthatundergoalpha-cleavageofacarbonylorcarbonyl-phosphinoylbondwhenirradiatedwithlightandthatexhibitabsorbancemaximabetween365and416nm,dependingontheirexactchemicalcomposition[2].characterizethecrosslinkingofmonomersinathechemicalstructureandchainlengthofthemonomer[3],itisalsoinfluencedbytheappliedPIandlightalmost80%canbeachievedinsetupsusingaquartz-tungstenhalogenlamp(380-500nm)andaviolet-LEDlightsource(390-430nm)[4].Anotherrequirementwithbiomedicalcomponentsisthebiocompatibilityofthephotoinitiatorattheappliedconcentration.BAPOistoleratedinconcentrationsofupto0.5wt%byosteoblast-likecells[5],andupto1.0Available online at www.sciencedirect.com© 2013 The Authors. Published by Elsevier B.V.Selection and/or peer-review under responsibility of Professor Mamoru Mitsuishi

and Professor Paulo BartoloOpen access
and Professor Paulo BartoloOpen access under CC BY-NC-ND license.Open access under CC BY-NC-ND license. R. Bail et al. / Procedia CIRP 5 ( 2013 ) 222 – 225 wt%byMC3T3pre-osteoblastsonaphotopolymerscaffold[6].Withothercelllineshowever,thetolerancelevelforBAPOcanbemuchlower[7].Projection-microstereolithographyisapowerfultechniquetomanufacturemicrostructureswithcomplexgeometriesforbiomedicalapplications.Akeychallenge,however,istoidentifyPIcompositionsandtheoptimumconcentrationswhereasufficientcuringspeedcanbeachievedwithoutcompromisingbiocompatibility.Thisstudysuggestsasystematicmethodologytospecificallyevaluatetheconcentration-dependentperformanceofatypeIphotoinitiatorinaPMSLprocessregardingthecuringspeed,thedegreeofconversionandthetoxiceffectswithinacell-containingenvironment.2.MaterialsandMethods2.1.MaterialpreparationPhenylbis(2,4,6-trimethylbenzoyl)phosphineoxideservedasphotoinitiatordissolvedinPoly(ethyleneglycol)-dimethacrylate(PEGDMA),M=750g/mol,atroomtemperatureandintermediatestirringratefor5hours.Fourdifferentphotopolymermixturescontaining0.1,0.25,0.5and1.0wt%initiatorwerepreparedinseparateunitsandusedinthekineticsandtoxicityassessments.PEGDMAandinitiatorwerepurchasedfromSIGMAAldrichandusedasreceived.Cell-culturemediawasmadeusingDulbecco’smodifiedeagle’smedium(DMEM)andfetalcalfserum(FCS)at10%v/v.Atransformedcelllineofgreenfluorescentprotein(GFP)MouseEmbryonicFibroblastNIH3T3cells(ECACC)wereculturedinDMEMmedia.When80-90%confluent,cellsweredetachedfromtheculturesurfacewith0.25%()trypsin0.02%)EDTAinPBS.Cellswerecentrifuged(250)for5minutes,resuspendedinDMEMmediumandsplit1in5.Theculturemediawaschangedevery3daysandkeptina37C,5%COhumidifiedincubator.AnAlamarBlue®assaysolutionwasproducedbydilutinginHanksBalancedSaltsSolution(HBSS)inaoftheassaysolutionwaspipettedintoeachwellandcontrolplatethatwerelefttoincubate(37°C,5%CO90min).Then100lofthesolutionwastakenfromeachwellintriplicateandplacedintoa96wellplatetomeasurefluorescenceat570nminaTecanmicroplatereader.Thesolutionwasreplacedwith1mlDMEM,andtheassaywasrepeatedatday1,2,3,6and7.2.2.KineticassessmentTheinfraredabsorbancespectraintheuncuredandcuredresinweremonitoredusingaBrukerTensor27®FourierTransformInfrared(FTIR)spectrophotometer.Athinfilmcellwasmadebysandwichingtworound25mmsodiumchloride(NaCl)crystalwindowsinaPresslok®cellholderlockedinpositionwithalid.Absorptionspectrawererecordedfrom2,000towavenumberataresolutionof4cm,andchangeswereassessedinthe1,700to1,550cmregion.AnEnvisiontecPerfactory®Mini-MultiLensprojection-microstereolithographymachineemittingvisiblebluelightof380-480nmwavelengthservedastheirradiationsource.TheprojectorbrightnessofthePMSLsystemwasadjustedtoalightintensityof600mW/dm,whichcorrespondedto500mW/dmwhenprojectedthroughoneNaCldiskhorizontallyplacedonthecalibrationplateofthemachine.Thelightbeamwasrecalledviathe‘Showcompensationmask’functionandexposuretimes(t)of5,10,20,30and60secondsweremanuallycontrolledwithastopwatch.Thefinalexposurewascarriedoutwith2000flashesinaG171Otoflash®UV-flashpostcuringdevice.AninfraredabsorbancereadingforasingleandcleanNaCldiscwasusedasthebackgroundreading,A.ThethinfilmcellwasloadedwiththephotopolymertogeneratetheIRreadingsfortheuncuredmaterial,andafterexposureinthePMSLmachineforthe(partly)calculatedassignedtotheC=Cstretchingvibrationsat1637cmforeachexposureaccordingtoequation(1):)([])([1)(000AtAAtAtCCiCCiCCWhere,AC=C)quantifiestheIRabsorptionpeakat1637cmintheuncuredmaterial,AC=C)istheabsorptioninthecuredmaterialafteranexposuretimetandAisthebackgroundnoise.2.3.BiocompatibilityassessmentSquarechipsmeasurin

g10x10x2mmweremodeledinCADandmadeinsetso
g10x10x2mmweremodeledinCADandmadeinsetsof3ontheabovePMSLmachine(500mW/dm,20sec)intheresinatthefourinitiatorconcentrations.Thepartswererinsedforthreeminutesinanultrasonicbathwithisopropylalcohol,airdried,sterilizedunderUVlight,andthentheresinchips(n=3)wereplacedintwo12wellplatesin1mlofDMEMandleftinthemediafor24hours.Cellswereseededataconcentrationof2.5x10cellsperwell,centrifuged,thesupernatantwasaspiratedoffandthecellpelletswereplacedina24wellplate.700ofthesupernatantinthechip-containingwell(n=2)wasaddedtothecorrespondingpellet-containingwell.Afurther700lfromthethirdchipwasaddedtoanemptywell.Fig.1showsthepositivecontrolcontaining2.5xcellsin1mlmedia(n=3)andthenegativecontrolcontaining1mlofpurecell-culturemedia(n=3).Eachresinchipwasthenre-suspendedin1mlmedia.Astandardcurveofcellcountversusfluorescenceat590nmwasproducedfordifferentcellcountsfrom30x R. Bail et al. / Procedia CIRP 5 ( 2013 ) 222 – 225 cellsto12.5x10cells(n=3).Toeachoftheinitiatorandthestandard-curvewells,1mlofAlamarBluesolutionwasadded.Thewellplateswerelefttoincubateandafluorescencereadingat590nmwasrun.Theremaining300loneachchipwascollectedandfrozenforlateruseinthereleasestudy.Fig.1.SchematicdiagramofthebiocompatibilityassessmentbasedonsupernatantcollectedfromresinchipscontainingdifferentBAPOconcentrations(0.1,0.25,0.5and1wt%)setupina24wellplate.ThewavelengthpeakandastandardcurveofabsorbanceatthepeakwavelengthversusBAPOconcentrationinDMEMwasgeneratedinanabsorbancescanat300-550nm.ToquantitativelyassessthePIreleasefromthechips,the300-lsamplestakenfromtheresinchipsatday1,2,3,6,7,8,9,10,13and14werethawed.100lofeachsamplewasplacedina96wellplate(n=3)foreachdayandconcentration.Anabsorbancescanwasperformedatthepeakwavelengthandagraphwasplottedtodeterminehowmuchofthephotoinitiatorhadbeenreleased.3.Results3.1.KineticcharacterizationTheinfraredabsorbancereadingsweretakenfortheuncuredmaterialandaftereachexposuretolight,andthiswasrepeatedlycarriedoutforthefourtestedinitiatorconcentrations.Alargenumberofpeakswasobservedinthe‘FingerprintRegion’between1,500and1,000cmthatcanbeassignedtovibrationsofthewholemolecularskeletonandtheP=Ostretchinthephotoinitiatormolecule.Irrespectiveofthat,thepeakofinterestat1,637cmwasclearlyvisibleandhighlyresponsivetoexposuretothelightbeamofthePMSLmachine.ThepeakheightsdecreasedwithincreasingexposuretimesasshowninFig.2,whiletheextendofthischangestronglydependedonthephotoinitiatorcontent.AlthoughtheinitialpeakheightslightlyvariedwiththematerialvolumeappliedbetweentheNaCldiscsforthedifferentmaterialsets,thisdidnotaffectthecalculatedinrelationtotheinitialpeakheight.Fig.2.FTIRdataforthePEG-basedphotoresincontaining0.5wt%BAPOphotoinitiator,revealingagradualchangeintheIR-absorbancepeakat1,637cmwithincreasingexposuretothelightsourceintheprojection-microstereolithographymachineusedascuringunit.increasingexposuretimesfordifferentBAPO-initiatorconcentrationsinthePEG-basedphotopolymermatrix.Withallfourinitiatorconcentrations,characteristickineticprofilesofaphoto-polymerizationreactionappearedalthoughthesensitivityofthecrosslinkingprocesswashighlydependentontheBAPOcontent.Largedifferenceswereobservedinthekineticratesofthechemicalcontrolledstage,thepositionoftheonsetpoints,andthemaximumconversion.ThemostBAPOconcentrationof1.0wt%,whilealethargicreactionwasrecordedforthelowestconcentrationof0.1wt%.Withalltestedmaterials,theonsetpointswherethechemically-controlledstagepassesintoamuchidentifiable.TheonsettimesincreasedwithincreasingBAPOcontentasshowninFig.3.Bycontrast,thedegreeofcrosslinkingintheonsetpointandthe R. Bail et al. / Procedia CI

RP 5 ( 2013 ) 222 – 225 maximumdegr
RP 5 ( 2013 ) 222 – 225 maximumdegreeofconversiondecreasedwithhigherinitiatorcontents,exceptforthelowestconcentration.mixcontaining0.25%initiator,whereastheresincompositionswiththehighest(1.0wt%)andthelowest(0.1wt%)initiatorcontentsyieldedvaluesbelow70%.3.2.ToxicityandreleaseWhilethecellcountonthetissuecultureplasticshowedasteadyincreaseoverthe7days,adecliningnumberoflivingcellsandlowcellviabilitywithculturetimewereobservedinthePI-containingwells(Fig.4).ThisindicatedaconsiderabletoxiceffectoftheBAPOinitiatoratalltestedconcentrationsontheusedcells.AlthoughtheviablecellcountincreasedoverthefirstthreedaysforthelowestBAPOconcentrationof0.1wt%andthiswasalsothemaximumpeakcomparedtothehigherconcentrations,itdeclinedbackatday7.Forthe0.25wt%and0.5wt%resinchips,thenumberofproliferatingcellspeakedatday2andthengraduallydecreased.TheAlamarBlueassayfurtherconfirmedthattherewasnoconsiderablenumberofviablecellsthroughouttheexperimentfortheresinchipscontaining1wt%initiator.Theopticalinspectionofthecellsattheendofday7showednocellsunderfluorescenceforallBAPOconcentrationsandonlycelldebrisremained.Fig.4.NumberofviablecellsontissuecultureplasticandforcomparisonatdifferentBAPOconcentrationsintheresinchipsoveraperiodof7days.Datapresentedasamean+/-SEM(n=6);absolutecellcountsindicatedforpurecellcultureand0.10wt%photoinitiator.TheweightreleaseofthePIfromtheswollenchipswasmeasuredviatheabsorbanceat400nminthesupernatant.Thedataindicatedahysteresiscurvewithlowreleaseratesoverthefirst4days,areleasepeakforallconcentrationsonday7,followedbylowreleaseratesafterthat(Fig.5).Thehighestreleasewasobservedfromthe1wt%resinchips,closelyfollowedbythe0.5and0.25wt%chips.Asub-peakintheleachingrateat1wt%BAPOoccurredonday2,whilethiswasnotobservedfortheotherchips.Fig.5.Cumulativephotoinitiatorrelease(weight%)fordifferentBAPOconcentrations,datapresentedasamean+/-SEM(n=6).4.ConclusionsTheresultsdemonstratetheefficiencyofBAPOphotoinitiatorsintheprocessbutatoxiceffectattherequiredconcentrationsonMouseEmbryonicFibroblastNIH3T3cells,suggestingthefurtherinvestigationoftypeIphotoinitiatorswithdifferentcelltypes.AcknowledgementsTheauthorsaregratefulforthetechnicalsupportprovidedbytheEPSRCCentreforInnovativeManufacturinginRegenerativeMedicineandthePrecisionManufacturingCentreinNottingham.[1]Sun,C.,Fang,N.,Wu,D.M.,Zhang,X.,2005.Projectionmicro-stereolithographyusingdigitalmicro-mirrordynamicmask,SensorsandActuators,A:Physical121,p.113.[2]Ikemura,K.,Ichizawa,K.,Yoshida,M.,Ito,S.,Endo,T.,2008.UV-VISspectraandphotoinitiationbehaviorsofacylphosphineoxideandbisacylphosphineoxidederivativesinunfilled,light-cureddentalresins,DentalMaterialsJournal27,p.765.[3]Sideridou,I.,Tserki,V.,Papanastasiou,G.,2002.Effectofchemicalstructureondegreeofconversioninlight-cureddimethacrylate-baseddentalresins,Biomaterials23,p.1819.[4]Arikawa,H.,Takahashi,H.,Kanie,T.,Ban,S.,2009.Effectofvariousvisiblelightphotoinitiatorsonthepolymerizationoflight-activatedresins,DentalMaterialsJournal28,p.454.[5]Schuster,M.,Turecek,C.,Kaiser,B.,Stampfl,J.,Liska,R.,Varga,F.,2007.EvaluationofbiocompatiblephotopolymersI:Photoreactivityandmechanicalpropertiesofreactivediluents.JournalofMacromolecularScience,PartA44,p.547.[6]Lee,J.W.,Ahn,G.,Kim,D.S.,Cho,D.W.,2009.Developmentofnano-andmicroscalecomposite3DscaffoldsusingPPF/DEF-HAandmicro-stereolithography,MicroelectronicEngineering86,p.1465.[7]Zhang,H.,Wang,L.,Song,L.,Niu,G.,Cao,H.,Wang,G.etal.,2011.Controllablepropertiesandmicrostructureofhydrogelsbasedoncrosslinkedpoly(ethyleneglycol)diacrylateswithdifferentmolecularweights.JournalofAppliedPolymerScience121,p.531.