cmuedu Tuomas Sandholm Computer Science Department Carnegie Mellon University Pittsburgh PA 15213 sandholmcscmuedu ABSTRACT We demonstrate our game theorybased Texas Holdem poker player To overcome the computational di64259culties stem ming from Texa ID: 4238 Download Pdf
Sequential Incomplete-Information Games. Tuomas Sandholm. Professor. Carnegie Mellon University. Computer Science Department. Most real-world games are incomplete-information games with sequential (& simultaneous) moves.
POKER-6S. Files Organization. Download poker.zip from:. http://samyzaf.com/braude/OOP/PROJECTS/poker.zip. Unzip this file in drive C (or D), so your project will. reside in: C:\poker (or D:\poker). You will find there all the files you need for the Poker project.
\"^#DOWNLOAD@PDF^# The Theory of Poker A Professional Poker Player Teaches You How to Think Like One ^R.E.A.D.^
Trusted since 2010
\"
cards, letters, and hexes. Todd W. Neller. Outline. Learn and play Poker Squares. Generalize game. concepts. Learn and play two closely related games:. Word Squares. Take it. Easy!. Future Human vs. Machine Poker Squares Competition?.
fallsviewcasinoresortcom 1 888 325 5788 Must be at least 19 years of age to enter the casino brPage 2br SiC BO A dice game of Asian origin Sic Bo is a very simple table game with no limit as to the number of Players It is played with three dice th
EAAI NSG Challenge. What is the EAAI NSG. . Challenge?. Goal: a. fun way to encourage good, faculty-mentored undergraduate research experiences that includes an option for peer-reviewed paper publication and presentation at a major CS conference..
wwwpokerstarscompokerpromotionspokershootout0855 How to Beat the Online Blackjack Games Martin J Silverthorne How to Beat the Online Blackjack Games SILVERTHORNE PuBLICATIONS wwwsilverthornepublicationsnetSystem3BlackjackdnSys Holdem Poker For Advan
vs.. poker games. Yikan. Chen (yc2r@virginia.edu). Weikeng. Qin (wq7yt@virginia.edu). 1. Outline. 2. Evolutionary Algorithm. Poker!. Artificial Neural Network. E-ANN. Evolutionary algorithm. 3. Evolutionary algorithm.
Case study: . Poker. Tuomas Sandholm. Carnegie Mellon University. Computer Science Department. Sequential imperfect information games. Players face uncertainty about the state of the world . Sequential (and simultaneous) moves.
with Bounds. Outline. Motivation. Abstractions . of extensive-form games. Theoretical guarantees on abstraction quality. Computing . abstractions. Hardness. Algorithms. Experiments. Nash equilibrium.
Published bydanika-pritchard
cmuedu Tuomas Sandholm Computer Science Department Carnegie Mellon University Pittsburgh PA 15213 sandholmcscmuedu ABSTRACT We demonstrate our game theorybased Texas Holdem poker player To overcome the computational di64259culties stem ming from Texa
Download Pdf - The PPT/PDF document "A Texas Holdem poker player based on aut..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
ATexasHold'empokerplayerbasedonautomatedabstractionandrealtimeequilibriumcomputation¤AndrewGilpinComputerScienceDepartmentCarnegieMellonUniversityPittsburgh,PA15213gilpin@cs.cmu.eduTuomasSandholmComputerScienceDepartmentCarnegieMellonUniversityPittsburgh,PA15213sandholm@cs.cmu.eduABSTRACTWedemonstrateourgametheory-basedTexasHold'empokerplayer.Toovercomethecomputationaldi±cultiesstem-mingfromTexasHold'em'sgiganticgametree,ourplayerusesautomatedabstractionandreal-timeequilibriumap-proximation.Ourplayersolvesthe¯rsttworoundsofthegameinalargeo®-linecomputation,andsolvesthelasttworoundsinareal-timeequilibriumapproximation.Partici-pantsinthedemonstrationwillbeabletocompeteagainstouropponentandexperience¯rst-handthecognitiveabili-tiesofourplayer.Someofthetechniquesusedbyourplayer,whichdoesnotdirectlyincorporateanypoker-speci¯cex-pertknowledge,includesuchpokertechniquesasblu±ng,slow-playing,check-raising,andsemi-blu±ng,alltechniquesnormallyassociatedwithhumanplay.CategoriesandSubjectDescriptorsI.2[Arti¯cialIntelligence]:GeneralGeneralTermsAlgorithms,EconomicsKeywordsKeywords:gametheory,equilibriumcomputation,gameplaying1.INTRODUCTIONInenvironmentswithmultipleself-interestedagents,anagent'soutcomeisa®ectedbyactionsoftheotheragents.Consequently,theoptimalactionofoneagentgenerallyde-pendsontheactionsofothers.Gametheoryprovidesanormativeframeworkforanalyzingsuchstrategicsituations.Inparticular,gametheoryprovidesthenotionofanequi-librium,astrategypro¯leinwhichnoagenthasincentivetodeviatetoadi®erentstrategy.Thus,itisinanagent's ¤ThismaterialisbaseduponworksupportedbytheNa-tionalScienceFoundationunderITRgrantsIIS-0121678andIIS-0427858,andaSloanFellowship.Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprotorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationontherstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecicpermissionand/orafee.AAMAS'06May8–122006,Hakodate,Hokkaido,Japan.Copyright2006ACM1595933034/06/0005...5.00.interesttocomputeequilibriaofgamesinordertoplayaswellaspossible.Gamescanbeclassi¯edaseithergamesofperfectinforma-tionorimperfectinformation.ChessandGoareexamplesoftheformer,and,untilrecently,mostgameplayingworkinAIhasbeenongamesofthistype.Tocomputeanoptimalstrategyinaperfectinformationgame,anagenttraversesthegametreeandevaluatesindividualnodes.Iftheagentisabletotraversetheentiregametree,shesimplycom-putesanoptimalstrategyfromthebottom-up,usingtheprincipleofbackwardinduction.Thisisthemainapproachbehindminimaxwith®--pruning.Thesealgorithmshavelimits,ofcourse,particularlywhenthegametreeishuge,butextremelye®ectivegame-playingagentscanbedevel-oped,evenwhenthesizeofthegametreeprohibitscompletesearch.Currentalgorithmsforsolvingperfectinformationgamesdonotapplytogamesofincompleteinformation.Thedis-tinguishingdi®erenceisthatthelatterarenotfullyobserv-able:whenitisanagent'sturntomove,shedoesnothaveaccesstoalloftheinformationabouttheworld.Insuchgames,thedecisionofwhattodoatanodecannotgener-allybeoptimallymadewithoutconsideringdecisionsatallothernodes(includingonesonotherpathsofplay).Thesequenceformisacompactrepresentation[7,5,10]ofasequentialgame.Fortwo-personzero-sumgames,thereisanaturallinearprogrammingformulationbasedonthese-quenceformthatispolynomialinthesizeofthegametree.Thus,reasonable-sizedtwo-persongamescanbesolvedus-ingthismethod[10,5,6].However,thisapproachstillyieldsenormous(unsolvable)optimizationproblemsformanyreal-worldgames,mostnotablypoker.Inthisresearchweapplyautomatedabstractiontechniquesfor¯ndingsmaller,strate-gicallysimilargamesforwhichtheequilibriumcomputationisfaster.Theresultingstrategiescanthenbeusedasap-proximatesolutionstotheoriginalgame.Wehavechosenpokerasthe¯rstapplicationofourequilibriumapproxima-tiontechniques.2.POKERPokerisanenormouslypopularcardgameplayedaroundtheworld.The2005WorldSeriesofPokerfeaturedmorethan$100milliondollarsinprizemoneyinseveraltourna-ments.Increasingly,pokerplayerscompeteinonlinepokerrooms,andtelevisionstationsregularlybroadcastpokertour-naments. Duetotheuncertaintystemmingfromopponents'cards,opponents'futureactions,andchancemoves,pokerhasbeenidenti¯edasanimportantresearchareainAI[2].Pokerhasbeenapopularsubjectinthegametheoryliteraturesincethe¯eld'sfounding,butmanualequilibriumanalysishasbeenlimitedtoextremelysmallgames.Veryrecently,therehasbeenconsiderableprogressintackinglargergames.Inarecentpaper[4],wedevelopedautomatedabstractiontech-niques,andappliedthemincomputingoptimalstrategiesforRhodeIslandHold'empoker[9],asmallerversionofTexasHold'emthatisstilloverfourordersofmagnitudelargerthanpreviouslysolvedpokergames.2.1TexasHold'emTexasHold'emisperhapsthemostpopularversionofpoker.ItisthegamethatisusedtodeterminetheworldchampionattheannualWorldSeriesofPoker.Inthedemon-strationwewillbeplayingheads-up,inwhichtherearejust2players(inthiscase,ahumanplayerversusourplayer).Theplayersalternateturnsbeingplayer1andplayer2.Player1isconsideredthesmallblind,andplayer2isthelargeblind.Beforeanycardsaredealt,thesmallblindcontributesonechiptothepot,andthelargeblindcontributestwochipstothepot.Bothplayersthenreceivetwocardseach,facedown;theseareknownastheholecards.Afterreceivingtheholecards,theplayerstakepartinonebettinground.Thesmallblindgoes¯rst.Eachplayermaycheckorbetifnobetshavebeenplaced.Ifabethasbeenplaced,thentheplayermayfold(thusforfeitingthegame),call(addingchipstothepotequaltothelastplayer'sbet),orraise(callingthecurrentbetandmakinganadditionalbet).InTexasHold'em,theplayersareusuallylimitedtofourraiseseachperbettinground.Inthisbettinground,thebetsareinincrementsoftwochips.Afterthebettinground,threecommunitycardsaredealtfaceup.Thesecardsarecalledthe°op.Anotherbettingroundtakeplacesatthispoint,withbetsequaltotwochips.Anothercommunitycardisdealtfaceup.Thisiscalledtheturncard.Anotherbettingroundtakesplaceatthispoint,withbetsequaltofourchips.A¯nalcommunitycardisdealtfaceup.Thisiscalledtherivercard.Anotherbettingroundtakesplaceatthispoint,withbetsequaltofourchips.Ifneitherplayerfolds,thentheshowdowntakesplace.Usingthesevenavailablecards(thetwoholecardsand¯vecommunitycards),theplayersformtheirbest5-cardpokerhands.Theplayerwhohasthebest5-cardpokerhandtakesthepot.Intheeventofadraw,thepotissplitevenly.3.TECHNICALOVERVIEWThemaincontributionofourworkistheapplicationofau-tomatedabstractiontechniquestoareal-worldgame.Pre-viousworkhasbeenlimitedtomuchsmallergames.InthissectionwegiveabriefoverviewofourdevelopmentofaTexasHold'empokerplayer.Adetaileddescriptionofourplayerisavailableinaseparatepaper[3].Therearetwotypesofabstractionemployedinourapproach:state-spaceabstractionandround-basedabstraction.Inourpreviouswork[4]wedevelopedtechniquesforau-tomaticallyreducingthesizeofagametree(aformofstate-spaceabstraction)inordertomakeequilibrium-¯ndingal-gorithmspractical.Weapplyouralgorithm,GameShrink,tothevariousgametreesweencounterinthecomputationofstrategies.Inadditiontostate-spaceabstraction,wealsoemployround-basedabstraction.Inourapproach,we¯rstsolveforanapproximateequilibriumforatruncatedgameinvolvingonlythe¯rsttworounds.Wedothisbysolvingalargelinearprograminano®-linecomputation.Aftertheturncardap-pears,ourplayercomputesupdatedcardprobabilitiesbasedonobservedbehavior,andthencomputesanequilibriumapproximationforthethirdandfourthroundsinreal-time.Theabstractionsweemployincomputingthisequilibriumapproximationaredynamicallydeterminedbasedonthein-formation(i.e.communitycards)revealedsofarinthegame.Thisallowsourcomputationtofocusonthespeci¯cportionofthegametreerelevanttothecurrenthand.Round-basedabstractionhasbeenusedinpreviouspokerwork[9,1].Theprimarydi®erencewithourapproachisthefactthatstrategiesarecomputeddynamically,usingob-servedinformationtoachieveacloserapproximation.Fur-thermore,thesizesoftheindividualmodelsarelarger.Forexample,optimalstrategiesforpre-°opTexasHold'emhavebeencomputed[8].Thisapproachrequiresmodelling169distincthands.Ourmodelnotonlyconsiders169handsinthe¯rstround,butalso2465handsinthesecondround.Solvingthismodelrequires18.8GBofRAMandtakes7.1days.Inaddition,ourabstractionsareautomaticallycom-puted,ratherthanmanuallydesignedbyanexpert.Somefeaturesofourcomputedstrategiesincludepokertechniquessuchasblu±ng,slow-playing,check-raising,andsemi-blu±ng,alltechniquesnormallyassociatedwithhu-manplay.Inthisdemonstration,participantswillcompetewithouropponentandwillexperiencethesestrategies¯rst-hand.4.REFERENCES[1]D.Billings,N.Burch,A.Davidson,R.Holte,J.Schae®er,T.Schauenberg,andD.Szafron.Approximatinggame-theoreticoptimalstrategiesforfull-scalepoker.InProceedingsoftheEighteenthInternationalJointConferenceonArti¯cialIntelligence(IJCAI),Acapulco,Mexico,2003.[2]D.Billings,A.Davidson,J.Schae®er,andD.Szafron.Thechallengeofpoker.Arti¯cialIntelligence,134(1-2):201{240,2002.[3]A.GilpinandT.Sandholm.AcompetitiveTexasHold'empokerplayerviaautomatedabstractionandreal-timeequilibriumcomputation.Mimeo,2006.[4]A.GilpinandT.Sandholm.Findingequilibriainlargesequentialgamesofimperfectinformation.InProceedingsoftheACMConferenceonElectronicCommerce(ACM-EC),AnnArbor,MI,2006.[5]D.Koller,N.Megiddo,andB.vonStengel.E±cientcomputationofequilibriaforextensivetwo-persongames.GamesandEconomicBehavior,14(2):247{259,1996.[6]D.KollerandA.Pfe®er.Representationsandsolutionsforgame-theoreticproblems.Arti¯cialIntelligence,94(1):167{215,July1997.[7]I.Romanovskii.Reductionofagamewithcompletememorytoamatrixgame.SovietMathematics,3:678{681,1962.[8]A.Selby.Optimalheads-uppre°oppoker,1999.http://www.archduke.demon.co.uk/simplex/.[9]J.ShiandM.Littman.Abstractionmethodsforgametheoreticpoker.InComputersandGames,pages333{345.Springer-Verlag,2001.[10]B.vonStengel.E±cientcomputationofbehaviorstrategies.GamesandEconomicBehavior,14(2):220{246,1996.
© 2021 docslides.com Inc.
All rights reserved.