/
Control design with guaranteed ultimate bound for feedback linearizable systems Ernesto Control design with guaranteed ultimate bound for feedback linearizable systems Ernesto

Control design with guaranteed ultimate bound for feedback linearizable systems Ernesto - PDF document

danika-pritchard
danika-pritchard . @danika-pritchard
Follow
551 views
Uploaded On 2014-12-17

Control design with guaranteed ultimate bound for feedback linearizable systems Ernesto - PPT Presentation

Seron CONICET Depto de Electr57524onica Fac de Cs Exactas Ing y Agrim Universidad Nacional de Rosario Riobamba 245bis 2000 Rosario Argentina Centre for Complex Dynamic Systems and Control The Univers ity of Newcastle Callaghan NSW 2308 Australia Abs ID: 25377

Seron CONICET Depto

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Control design with guaranteed ultimate ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ControldesignwithguaranteedultimateboundforfeedbacklinearizablesystemsErnestoKofman;1FernandoFontenlaHernanHaimovichMaraM.SeronCONICET;Depto.deElectronica,Fac.deCs.Exactas,Ing.yAgrim.,UniversidadNacionaldeRosario,Riobamba245bis,2000Rosario,Argentina.CentreforComplexDynamicSystemsandControl,TheUniversityofNewcastle,Callaghan,NSW2308,Australia. Abstract:Foraclassofperturbedfeedbacklinearizablenonlinearsystems,weconsiderthecomputationandassignmentofprescribedultimateboundsonthesystemstates.Weemployarecentlyproposedcomponentwiseboundcomputationprocedure,whichdirectlytakesintoaccountboththesystemandperturbationstructuresbyperformingcomponentwiseanalysis.We rstderivesucientconditionstoensurethatthetrajectoriesoriginatingfrominitialconditionsinanappropriatesetareultimatelybounded.Secondly,andmostimportantly,forstate-feedback-linearizablenonlinearsystemswithmatchedperturbations,weprovideasystematicdesignproceduretocomputeastatefeedbackcontrolthatensuresaprescribedultimateboundfortheclosed-loopsystemstates.Theprocedurecombinesnonlinearstate-feedback-linearizingcontrolwithastate-feedbackmatrixcomputedviaaneigenstructureassignmentmethodpreviouslyreportedbytheauthors.Asimulationexampleillustratesthesimplicityandsystematicityoftheproposeddesignmethod. 1.INTRODUCTIONThispaperconsidersthecomputationandassignmentviastatefeedbackofultimateboundsontheclosed-looptra-jectoriesofperturbedstate-feedback-linearizablenonlinearsystems.Perturbationsindynamicsystemsmayarisefromunknowndisturbancesignals,modeluncertainty,compo-nentageing,etc.Boundsontheperturbationvariablesaretypicallyknownandmaybeusedtoobtain,undercer-tainconditions,ultimateboundsontheperturbedsystemtrajectories.AstandardapproachforthecomputationofultimateboundsistheuseoflevelsetsofsuitableLyapunovfunc-tions[see,forexample,Section9.2ofKhalil(2002)].AnalternativeapproachwasproposedinKofman(2005),Kof-manetal.(2007a)andHaimovich(2006),wherecompo-nentwiseultimateboundformulaewerederivedexploitingthesystemgeometryinmodalcoordinatesaswellastheperturbationstructure,withoutrequiringthecomputationofaLyapunovfunctionforthesystem.Forsomesystemandperturbationstructures,thiscomponentwiseapproachwasshowntoprovideboundsthataremuchtighterthanthoseobtainedviastandardLyapunovanalysis.Forlinearsystemswithmatchedperturbations(thatis,perturbationsthatspanthesamespacespannedbythecontrolinput),anultimateboundontheclosed-looptrajectoriescanbearbitrarilyassignedbystatefeedbackcontrol(SchmitendorfandBarmish,1986).Severalcontroldesignmethods,basedonaLyapunovapproach,whichcanachieveanarbitrarilysmallultimateboundforlinearuncertainsystemshavebeenreportedintherobustcontrol 1email:kofman@fceia.unr.edu.arliterature(see,forexample,Barmishetal.,1983;TrinhandAldeen,1996;CaoandSun,1998;Oucheriah,1999).TakingadeparturefromLyapunovanalysisandexploit-ingtheaforementionedcomponentwiseapproachforulti-mateboundcomputation,weproposedinKofmanetal.(2008,2007b)anewcontrollerdesignmethodforlin-ear,continous-timesystemsthatguaranteesaprespeci edultimateboundontheclosed-loopsystemtrajectories.Themethodtakesadvantageofthedependencyofthecomponentwiseultimateboundexpressionsonthesystemeigenstructure.Usingtechniquesofeigenvalueandeigen-vectorassignmentbystatefeedback,weshowedthatastatefeedbackgaincanbedesignedsuchthattheulti-mateboundexpressiondecreasestozeroasa\scaling"parameter,associatedwiththemagnitudeoftheclosed-loopeigenvalues,increases.Theproposeddesignprocedureissystematicinthesensethat,onceadesired\normalized"con gurationischosenfortheclosed-loopeigenvalues,itonlyrequirestoincreasethescalingparameteratmostonceforthedesiredultimateboundoneachcomponentofthestatetobeachieved.InthecurrentpaperweextendthedesignmethodofKofmanetal.(2008,2007b)toperturbedstate-feedback-linearizablenonlinearsystems(Isidori,1995).Thelatteraresystemswhich,undersuitablenonlinearfeedbackandcoordinatetransformation,canbeexpressedasalinearasymptoticallystablesystemwithnonlinearperturbationterms.Forthesesystems,wederivesucientconditionstoensurethatthetrajectoriesoriginatingfrominitialconditionsinanappropriatesetareultimatelybounded.Moreover,forstate-feedback-linearizablenonlinearsys-temswithmatchedperturbations,weprovideanalgorithm tosystematicallydesignastatefeedbackcontrolthatensuresaprescribedultimateboundfortheclosed-loopsystemstates.Theproposedalgorithmcombinesstandardnonlinearfeedbacklinearizingcontrol[see,forexample,Isidori(1995)]withastate-feedbackmatrixdesignedbasedonthemethodofKofmanetal.(2008,2007b).Anexam-pleofasynchronousgeneratorillustratesthesimplicityandsystematicityoftheapproach.Simulationresultsforthisexampleunderpersistentperturbationssatisfyingap-propriateboundsalsodemonstratethepotentialofthemethodtoobtainrelativelytightboundsontheclosed-looptrajectories.Theremainderofthepaperisorganizedasfollows.Section2presentstheclassofnonlinearsystemsun-derconsiderationandoutlinesthegoalsofthepaper.Section3reviewssomepreliminaryresultsneededtoachievethedesiredgoals.Section4presentsthemaincontributionsofthepaper,namely,asystematicmethodtocomputecomponentwiseultimateboundsforstate-feedback-linearizablesystemsandasystematiccontrolde-signmethodologysothatanydesiredultimateboundisachievedinthecaseofmatchedperturbations.Section5illustratestheresultswithanexampleofasynchronousgenerator.Finally,Section6concludesthepaper.Notation.Inthesequel,RandCdenotethesetsofrealandcomplexnumbers,respectively.jMjandRe(M)denotetheelementwisemagnitudeandrealpart,respec-tively,ofa(possiblycomplex)matrixorvectorM.Theexpressionxy(xy)denotesthesetofcomponent-wise(strict)inequalitiesbetweentheelementsoftherealvectors(ormatrices)xandy,andsimilarlyforxy(xy).R+andR+;0denotethepositiveandnonnegativerealnumbers,respectively.Forc2C, cdenotesitscomplexconjugate.2.PROBLEMSTATEMENTConsiderthefollowingcontinuous-timenonlinearsystemwithnstates,minputs,andkdisturbancevariables:_x=f(x)+mXi=1gi(x)ui+kXj=1hj(x)wj;(1)wherex(t)2Rn,f(0)=0,andsuchthatf;g1;:::;gm,h1;:::;hkaresmooth(C1)vector eldsde nedonanopensetUxRncontainingtheorigin.Thedisturbancevariablesw1;:::;wkareassumedtobeboundedasfollows:jwj(t)jj(x(t));forallt0;forj=1;:::;k;(2)wherej(x)0forallx2Ux.Wewrite(2)incondensedformasfollows:jw(t)j(x(t));forallt0;(3)withw=col(w1;:::;wk)and=col(1;:::;k).Also,wehereafterdenoteu=col(u1;:::;um),g=[g1j:::jgm]andh=[h1j:::jhk].Associatedwith(1)isthenominalsystem_x=f(x)+mXi=1gi(x)ui=f(x)+g(x)u:(4)Thenominalsystem(4)isassumedtobestate-feedback-linearizableinUx(Isidori,1995),thatis,thereexistacoordinatetransformation(di eomorphism)z=(x)andapairoffeedbackfunctions (x)and (x),allde nedonUx,sothat (x)isnonsingularforallx2Uxand@ @x(f(x)+g(x) (x))x=1(z)=A0z;(5)@ @x(g(x) (x))x=1(z)=B0;(6)whereA0=diag(A1;:::;Am);B0=diag(b1;:::;bm);(7)Ai2Rdidi,bi2Rdi1,Ai=266666664010:::0......1..................0............10:::::::::0377777775;bi=26666640......013777775;(8)fori=1;:::;m,andPmi=1di=n.Therefore,inthiscaseapplicationofthestate-feedbacklawu= (x)+ (x)vtosystem(1),wherev=col(v1;:::;vm)isanewinput,jointlywiththechangeofcoordinatesz=(x),yields_z=A0z+B0v+@ @xh(x)x=1(z)w:(9)Applicationoftheadditionalstate-feedbacklawv=Kzto(9)or,equivalently,applicationofu= (x)+ (x)K(x)(10)to(1),yields_z=(A0+B0K)z+@ @xh(x)x=1(z)w:(11)Aparticularimportanttypeofsystemsoftheform(1)isgivenbythecaseof\matchedperturbations",namelythecasewhenh(x)=g(x)\r(x),forsomematrix\r(x)ofsmoothfunctionsde nedonUx.Forthistypeofsystems,applicationof(10)yieldstheclosed-loopsystem_z=(A0+B0K)z+B0 1(x)\r(x)x=1(z)w:(12)Thisworkhasthefollowinggoals:G1)toprovidesucientconditionstoensurethatthetrajectoriesofsystem(1),underafeedbacklawoftheform(10),areultimatelybounded.G2)toestimateanultimateboundforsuchclosed-loopsystem,andG3)todesignmatrixKin(10)sothatthesystemstatetrajectoriesareultimatelyboundedandsatisfyagivenultimateboundinthecaseofmatchedpertur-bations.Beforeproceedingwithsomepreliminaryresultsrequiredtoachievetheabovegoals,weobservethatthesetting(1)-(3)canaccommodateanycombinationofthefollowingtypesofuncertainty:Uncertaintyinthesystemevolutionfunction,where_x(t)=(f(x)+f(x))+g(x)u(t),andjf(x)j(x),8t0;inthiscase,wecantakeh(x)=Inin(1)and(x)=(x)in(3).Uncertaintyinthesysteminputfunction[assumingafeedbacku=(x)in(1)],where_x(t)=f(x)+(g(x)+g(x))(x),andjg(x)j\r(x),8t0;inthiscase, wecantakeh(x)=Inin(1)and(x)=\r(x)j(x)jin(3).Boundeddisturbances,wherejw(t)jw,8t0;inthiscase,wecantake(x)=win(3).3.PRELIMINARYRESULTSInthissection,westatepreviousresultsthatareneededtoachievethegoalsoutlinedabove.Section3.1presentsamethodforcomputingacomponentwiseultimateboundforalinearsystemwithanadditiveperturbationhavingaboundthatmaydependonthelinearsystemstate.Section3.2recallsaresultthatshowshowalinearstatefeedbackmaybedesignedtoassignclosed-loopeigenvaluesandeigenvectorsforalinearsystem.3.1UltimateBoundofaPerturbedLinearSystemThefollowingresultcomputesacomponentwiseultimateboundforaLTIsysteminpresenceofperturbationsthatarecomponentwiseboundedbyfunctionsofthesystemstate.Thisresultisamodi edversionofTheorem2ofKofmanetal.(2007a).Theorem1.Considerthesystem_x(t)=Ax(t)+Hv(t);(13)wherex(t)2Rn,v(t)2Rk,H2Rnk,andA2RnnisHurwitzwith(complex)Jordancanonicalform=V1AV.Supposethatjv(t)j(x(t))8t0;(14)where:Rn!Rk+;0isacontinuousmapverifyingjx1jjx2j)(x1)(x2):(15)ConsiderthemapT:Rn!Rn+;0de nedbyT(x),jVjSH(x);(16)whereSH, [Re()]1 V1H :(17)Supposethatthereexistsxm2Rnsatisfying,T(xm)xm.Then,1)b,limr!1Tr(xm)existsandsatis es0bxm.2)IfjV1x(0)jSH(xm),thena)jV1x(t)jSH(xm)forallt0.b)Also,givenapositivevector2Rn+,a nitetimetfexistssothatforallttf,i)jV1x(t)jSH(b)+.ii)jx(t)jb+jVj.TheproofofthistheoremisalmostidenticaltothatofTheorem2ofKofmanetal.(2007a),theonlydi erencebeingthepresenceofmatrixH.Inthesequel,wewillequivalentlyexpressTheorem1part2)b)ii)asfollows:IfjV1x(0)jSH(xm),thenxisultimatelyboundedtotheregionfx:jxjbg.3.2EigenvalueandEigenvectorAssignmentbyFeedbackThefollowingresultispartofTheorem4.1ofKofmanetal.(2007b)andalsopartofTheorems4.2and4.3ofKofmanetal.(2008).Thisresultshowshowastate-feedbackmatrixcanbecomputedsothatdesiredeigenvaluesandeigenvectorsareassignedtotheclosed-looplinearsystem.Inaddition,theresultestablisheshowsomematriceschangeasthedesiredeigenvaluesarescaledaccordingtoascalingfactor.Theorem2.Take�0andselectaneigenvaluematrix=~=diag(~1;:::;~n),where~i2C,i=1;:::;n,satisfy~i=~jwheneveri=j,Re(~i)0,andif~i=2R,theneither~i1= ~ior~i+1= ~i.Selectcomplexnumbersei;j2C,i=1;:::;m,j=1;:::;nsothatei;j+1= ei;jwhenever~j+1= ~jandsuchthatthematrixVde nedasV,"V1;1:::V1;n.........Vm;1:::Vm;n#;Vi;j,264ei;j(~j)(di1)...ei;j(~j)1ei;j375;(18)haslinearlyindependentcolumns,wheredi,i=1;:::;m,arethedimensionsofAiandbiin(7){(8).De neR,jVj [Re()]1 V1B0 ;(19)and,K=(BT0B0)1BT0(VV1A0):(20)Then,i)TheentriesofthematrixRarenonincreasingfunctionsof.ii)A0+B0K=VV1.4.MAINRESULTSInthissection,wepresentthemaincontributionofthepa-per.Namely,weprovideasystematicmethodtocomputecomponentwiseultimateboundsforthestate-feedback-linearizablesystem(1),(3)andasystematiccontrolde-signmethodologysothatanydesiredultimateboundisachievedinthecaseofmatchedperturbations,thatis,foraclosed-loopsystemoftheform(12).4.1ComponentwiseUltimateBoundAnalysisThefollowingtheorempresentssucientconditionstoensuretheultimateboundednessofthestatetrajectoriesofaperturbedsystemunderstate-feedbacklinearization.Thistheoremalsoshowshowtocomputeanultimatebound.Theorem3.Considersystem(1),wheretheperturbationw(t)satis es(3).Supposethattheassociatednominalsystem(4)isstate-feedback-linearizable,andletz=(x)bethecoordinatetransformation,and (x)and (x)bethefeedbackfunctions,sothat(1)istransformedinto(11)underapplicationofthefeedbacklaw(10).LetKbechosensothatA,A0+B0KisHurwitz,andlet=V1AVbethe(complex)JordancanonicalformofA.ConsiderSI,de nedin(17)withH=I,andletR,jVjSI.De ne(z),sup:jjjzj @ @xh(x) (x)x=1()(21)andletT(z),R(z).LetUz,(Ux)andsupposethatT(zm)zmforsomezm2Uz.Inaddition,letBm,fz:jV1zjSI(zm)gandsupposethatBmUz.Then, i)bz,limr!1Tr(zm)existsandifx(0)21(Bm)thetrajectoriesoftheclosed-loopsystem(1),(10)areultimatelyboundedtotheregionjxjb,supz:jV1zjSI(bz)j1(z)j:(22)ii)If,inaddition,h(x)=g(x)\r(x)[matchedperturba-tions,recall(12)],theni)abovealsoholdsifwereplaceSIabovewithSB0[de nedasin(17)withH=B0andB0asin(6)]andabovebym,de nedasm(z),sup:jjjzjh 1(x)\r(x) (x)ix=1():(23)Proof.De ningv(t),@ @xh(x)x=1(z(t))w(t);(24)system(11)canberewrittenas_z(t)=Az(t)+v(t)(25)From(3)and(21),itfollowsthatjv(t)j(z(t))where(z)veri es(15).If,inaddition,h(x)=g(x)\r(x),thenv(t)=B0s(t)[see(12)],wheres(t)= 1(x)\r(x)x=1(z(t))w(t)(26)satis esjs(t)jm(z(t))[see(23)]andmalsoveri- es(15).Then,Theorem1,part1)establishestheex-istenceofbz.Next,applyingTheorem1,part2)a)tosystem(25)weconcludethatanytrajectorystartingfromaninitialconditionz(0)2BmdoesnotleavetheregionBmUz.Moreover,itfollowsfromTheorem1,part2)b)i)thatz(t)isultimatelyboundedtotheregionBz=fz:jV1zjSI(bz)gBmUz.Asimilarargumentap-pliedtothecaseofmatchedperturbationsyieldsthatz(t)isultimatelyboundedtotheregionBz=fz:jV1zjSB0m(bz)gBmUz.Takingintoaccountthatx=1(z)(with1beingadi eomorphismde nedinUz),andthatz(t)cannotabandonUz,itfollowsthatx(t)isultimatelyboundedtotheregionBx=1(Bz).Then,takingbasthesupremumofjxjinBxweobtaintheultimateboundofEq.(22).24.2RobustcontroldesignThenexttheoremestablishesdesignconditionstoachieveadesiredultimateboundinaperturbedsystemwithstate-feedback-linearizationunderthehypothesisofmatchedperturbations.Theresultisthentranslatedintoadesignalgorithmthatconstitutesthecoreoftheproposedsys-tematiccontroldesignmethodology.Theorem4.Considersystem(1),wheretheperturbationw(t)satis es(3).Supposethattheassociatednominalsystem(4)isstate-feedback-linearizable,andletz=(x)bethecoordinatetransformation,and (x)and (x)bethefeedbackfunctions,sothat(5){(8)hold.Assumealsothath(x)=g(x)\r(x)(matchedperturbations).SelectV;accordingtoTheorem2,calculateRfrom(19),andconsidermasde nedin(23)andT(z),Rm(z)(27)Letzc2Uz,zc0,besuchthatfz:jzjzcgUz.Then,i)ThecomponentsofthevectorT(zc)arenon-increasingfunctionsoffor�0.ii)Let�0besuchthatT(zc)zc.Then,thefeedbacklaw(10)withK=Kgivenby(20)ensuresthattheclosed-loopsystem(12)isultimatelyboundedtotheregionjxjb,supz:jV1zjSB0m(bz)j1(z)j(28)whereSB0andmareasde nedinTheorem3ii)andbz=limr!1Tr(zc)zc.Proof.i):theprooffollowsstraightforwardlyfromTheo-rem2i)andthefactthatm(z)doesnotdependon.ii):De ningv(z;w), 1(1(z))\r(1(z))w,theclosed-loopsystem(11)undermatchedperturbationsandwithK=Ktakestheform_z(t)=(A0+B0K)z(t)+B0v(z(t);w(t)):(29)AccordingtoTheorem2ii),A,A0+B0K=VV1,which,since=diag(~1;:::;~n)andRe(~i)0ensuresthatAisHurwitz.From(3)and(23),itfollowsthatjv(z;w)jm(z).Also,itcanbestraightforwardlyveri edthatmsatis es(15).Then,takingH=B0andapplyingTheorem1ii)tosystem(29)weconcludethatanytrajectorysuchthatjV1z(0)jSB0(zc)cannotleavetheregionBc=fz:jV1zjSB0(zc)g.NoticethatBcisentirelycontainedintheregionfz:jzjzcgUzandthenBcUz.Then,applicationofTheorem3yieldsthatxisultimatelyboundedtotheregion(28).2Theorem4i)statesthatthecomponentsofthevectorT(zc)decrease(atleastinverse-linearly)with.There-fore,theconditionT(zc)zccanalwaysbeachievedthroughthechoiceofasucientlylargevalueof.The-orem4ii)canbeappliedinordertodesignmatrixKin(10)sothattheclosed-loopsystemexhibitsanarbitraryultimatebound.Thefollowingalgorithmimplementsthisidea.Algorithm1.Givenadesiredcomponentwiseultimateboundb2Rn+;0forthestatex,(i)Findthechangeofcoordinatesz=(x),jointlywiththefeedbackfunctions (x)and (x),sothat(5){(8)aresatis ed.(ii)Takezc0sothatjzjzc)z2Uz,and,supz:jzjzcj1(z)jb(30)(iii)Calculatem(z)accordingto(23).(iv)Selectanarbitrary&#x-5.1;䘘0,andandVasspeci edinTheorem2.(v)ComputeRfrom(19).(vi)EvaluateT(zc)accordingto(27).IfT(zc)zc,gotostep(viii).(vii)Compute2maxi((T(zc))i=zci)andsetthenewequaltothisvalue.ReevaluateVaccordingto(18).(viii)ComputeK=Kaccordingto(20).Algorithm1,accordingtoTheorem4,. ndsthefeedbackmatrixKofthefeedbacklaw(10)thatguaranteesanultimateboundbgivenby(28).Thisboundbcanbeproventobelessthanorequaltob(thedesiredultimatebound)asfollows. 2(T(zc))idenotesthei-thcomponentofT(zc).Similarlyforzci. First,noticethattheconditionjV1zjSB0m(bz)in(28)impliesthatjzjzcsincejzj=jVV1zjjVjjV1zjjVjSB0m(bz)=T(bz)=bzzc.Thus,thesupremumofj1()jonz:jzjzcisgreaterthanorequaltothesupremumonz:jV1zjSB0m(bz).Then,comparing(28)and(30)itfollowsthatbb.Remark1.Thedesignprocedurebeginsbyfeedbacklin-earizingthenonlinearplant.Then,eigenvalue/eigenvectorassignmentisperformed,similarlytoKofmanetal.(2008).Westressthattheprocedureisnotjustastraightforwardapplicationofthelatterresultssince,evenafterfeedbacklinearization,theperturbationsexhibitnonlineardepen-denceonthestatevariables.TheultimateboundishenceestimatedviathetechniquedevelopedinKofmanetal.(2007a),wheretheultimateboundestimateisgivenbythe xedpointofanonlinearmapinsteadofthesimpleclosed-formexpressionofKofmanetal.(2008).Inaddition,thenonlinearcoordinatetransformationrequiredposesanad-ditionalproblem,becauserelationshipsbetweenboundsontheoriginalandthelinearcoordinatesmustbecomputed.Thecontributionofthisworkliespreciselyinprovidingasolutiontoalltheseproblems.5.EXAMPLESThedynamicsofasynchronousgeneratoronanin nitebuscanbeexpressedbyEq.(1),withf(x)="x2p[(1+x3)sin(x1+d)sind]qx2rx3+s[cos(x1+d)cosd]#;g(x)=g1(x)=h(x)=h1(x)=[001]T;wherep,q,r,s,darerealparametersandwhereweconsideraboundedperturbationtermjw(t)jwm.Theassociatednominalplant(4)isstate-feedback-linearizable.Themapz=(x),where(x)="x1x2p[(1+x3)sin(x1+d)sind]qx2#;jointlywiththefeedbackfunctions (x)=px2(1+x3)cos(x1+d)pqsind+q2x2 psin(x1+d)++q(1+x3)+rx3s[cos(x1+d)cosd])and (x)=1 psin(x1+d);issuchthat(5){(8)aresatis edwithA0=A1="010001000#;B0=b1="001#;forallx2Ux=fx:0x1+dg.Also,Uz=(Ux)=fz:0z1+dg.ThegoalistodesignthefeedbackmatrixKin(10)sothattheclosed-loopsystem(1),(10)isultimatelyboundedtotheregionjxjb=[0:10:050:001]T.Weconsiderthesetofparametersp=136:0544;q=4;r=0:4091;s=0:2576;d==4,andtheperturbationboundwm=0:001.WenextfollowAlgorithm1.Step(i)ofAlgorithm1wasperformedabove.AtStep(ii),zccanbechoseninmanyways.Apossibleselectioniszc=[0:05000:00255:0098]T:(31)Notethatjzjzc)z2Uz.Step(iii)requiresthecalculationofm(z),accordingto(23),where\r(x)=1and(x)=wm=0:001.Thiscomputationyieldsm(z)=psin(jz1j+d)wmif(jz1j+d)=2;pwmotherwise.AtStep(iv)wetake=1,andproposetheeigenvaluecon guration=diag(1;5;20).ForV,wetakee1;j=1forj=1;2;3in(18).ThischoiceyieldsV="1:00000:04000:00251:00000:20000:05001:00001:00001:0000#:(32)Step(v)yieldsR=[0:01670:03330:1667]TandforStep(vi)wecalculateT(zc)=Rm(zc)=[0:0016820:0033630:01682]T.SincetheconditionT(zc)zcisnotsatis ed,weproceedwithStep(vii),computingmaxi((T(zc))i=zci)=1:3452,setting=1:3452andrecalculatingVforthisnewvalueof.Finally,Step(viii)givesthefeedbackmatrixK=[243:4226:234:98].Theorem4ensuresthattheultimateboundoftheclosed-loopsystem(1),(10)withK=Kisatleastastightasb.Wecanalsoemploy(28)toestimatea(possibly)tighterbound.The xedpointbzofmapTiteratedfromzcisbz=[0:65911:773311:93]T103,andthen,using(28)weconcludethatjx(t)jisboundedtobx=[0:65911:77330:7101]T103.Figures1and2showtheregionde nedinthestatespacebytheboundbxandsimulationresultsfortheclosed-looptrajectorieswithzeroinitialconditionsandfordi erentperturbationssatisfyingEq.(2).Forthissimulation,sev-eralsinusoidalandpulsetrainperturbationsofdi erentfrequencieswereapplied. -8 -6 -4 -2 0 2 4 6 8x 10-4 -2 -1 0 1 2x 10-3 -8 -6 -4 -2 0 2 4 6 8x 10-4 x1x3x2bxFig.1.Ultimateboundregion(dashedbox)andclosed-looptrajectoriesfordi erentperturbations.Weobservefromthe guresthattheproposeddesignprocedureachievesrelativelytightboundsunderalargerangeofpersistentperturbations.Alsonotefromthestepscarriedoutinthisexample,thesystematicityoftheapproachandthesimplicityofthecomputationsinvolved. 0 2 4 6 8x 10 4 2 1.5 1 0.5 0 0.5 1 1.5 2x 10 3 0 2 4 6 8x 10 4 8 6 4 2 0 2 4 6 8x 10 4 5 5 0 0.5 1 1.5 2x 10 3 8 6 4 2 0 2 4 6 8x 10 4 x1x1 x2x2x3x3Fig.2.Ultimateboundregion(dashedbox)andclosed-looptrajectoriesfordi erentperturbations.6.CONCLUSIONSForaclassofperturbedfeedback-linearizablenonlinearsystems,wehavepresentedasystematicdesignproceduretocomputeastatefeedbackcontrolthatensuresapre-scribedultimateboundfortheclosed-loopsystemstates.Theprocedureutilizesacomponentwiseboundcomputa-tionmethodpreviouslyintroducedbytheauthors,andcombinesnonlinearstate-feedback-linearizingcontrolwithlinearstatefeedbackcomputedviaeigenstructureassign-ment.Theproposedprocedurewasillustratedonanex-ampleofasynchronousgenerator.Futureworkwillconsiderthemorepracticaloutputfeed-backcase,bothforlinearandnonlinearsystemsREFERENCESB.R.Barmish,I.R.Petersen,andA.Feuer.Linearultimateboundednesscontrolofuncertaindynamicalsystems.Automatica,19(5):523{532,1983.Y.-Y.CaoandY.-X.Sun.Robuststabilizationofuncer-tainsystemswithtime-varyingmultistatedelay.IEEETrans.onAutomaticControl,43(10):1484{1488,1998.H.Haimovich.Quantisationissuesinfeedbackcontrol.PhDthesis,SchoolofElectricalEngi-neeringandComputerScience,TheUniversityofNewcastle,Australia,March2006.URLhttp://usuarios.fceia.unr.edu.ar/haimo.AlbertoIsidori.NonlinearControlSystems.Springer,London,3rdedition,1995.H.Khalil.NonlinearSystems.Prentice-Hall,NewJersey,3rdedition,2002.E.Kofman.NonconservativeultimateboundestimationinLTIperturbedsystems.Automatica,41(10):1835{1838,2005.E.Kofman,H.Haimovich,andM.M.Seron.Asystem-aticmethodtoobtainultimateboundsforperturbedsystems.InternationalJournalofControl,80(2):167{178,2007a.E.Kofman,M.M.Seron,andH.Haimovich.Robustcon-troldesignwithguaranteedstateultimatebound.In3rdInternationalConferenceonIntegratedModelingandAnalysisinAppliedControlandAutomationIMAACA,BuenosAires,Argentina,2007b.E.Kofman,M.M.Seron,andH.Haimovich.Controldesignwithguaranteedultimateboundforperturbedsystems.Automatica,2008.InPress.S.Oucheriah.Robusttrackingandmodelfollowingofuncertaindynamicdelaysystemsbymemorilesslinearcontrollers.IEEETrans.onAutomaticControl,44(7):1473{1477,1999.W.E.SchmitendorfandB.R.Barmish.Robustasymp-totictrackingforlinearsystemswithunknownparame-ters.Automatica,22:355{360,1986.H.TrinhandM.Aldeen.Outputtrackingforlinearuncertaintime-delaysystems.IEEProceedings,ControlTheoryandApplications,143(6):481{488,1996.