A Practical Guide What you should already know well What you need to know and use in this lab More details available in handout Introduction to Experimental Error 2 nd Year Web page ID: 429767 Download Presentation
J. Moffat of Mechanical Engineering, Stanford University, Stanford, California is no longer acceptable, in most circles, to present experimental results without describing the uncertainties involved.
I. n . M. easurements and in Calculations. Types of . Experimental. Errors:. Random Errors. :. A result of variations in the performance of the instrument and/or the operator. Do NOT consistently occur throughout a lab.
Problem Solving class 1 for Physics 1A and Higher Physics 1A. What are problem solving classes?. These form a bridge between lecture material, labs and the exam.. In some problem solving classes you will be introduced to material covered in the lab part of the course..
Phys. Accuracy and Precision. The . accuracy. of a measurement tells you how close the measurement is to the “true” or accepted value. . The . precision. of a measurement tells you something about the .
Aims. To be able to calculate the percentage uncertainty of a measurement. To be able to combine these uncertainties to evaluate the overall uncertainty in a derived result. A Speed camera takes two images of a moving car and works out speed by calculating distance/time. How do you think this image would help somebody appeal their fine in court?.
What are problem solving classes?. These form a bridge between lecture material, labs and the exam.. In some problem solving classes you will be introduced to material covered in the lab part of the course..
. with Monte Carlo random trials. Alexander Kramida. National Institute of Standards and Technology,. Gaithersburg, Maryland, USA. . Parameters in atomic codes. Transition matrix elements. Slater parameters.
1st FCC-ee Workshop on Radiative Corrections discussion A. Blondel. 1. 1. . Please. . refer. to the . experimental. . precisions. as . stated. in the TLEP . paper. . . and future upgrades. .
Rrs. ) and output ocean color data:. a brief review. Stéphane. . Maritorena. – ERI/UCSB. Uncertainties in output products. Ideally, the uncertainties associated with ocean color products should be determined through comparisons with in situ measurements (matchups).
Oswaldo. Carrillo. Ruth Yanai. The State University of New York. Visit our website: . www.quantifyinguncertainty.org. Download papers and presentations. Share sample code. Stay updated with QUEST News.
A Practical Guide. What you should already know well. What you need to know, . and use. , in this lab. More details available in handout ‘Introduction to Experimental Error’ (2. nd. Year Web page)..
Download Presentation - The PPT/PDF document "Experimental Uncertainties:" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Slide1
Experimental Uncertainties:A Practical Guide
What you should already know well
What you need to know,
and use
, in this lab
More details available in handout ‘Introduction to Experimental Error’ (2
nd
Year Web page).
In what follows I will use the word uncertainty instead of error, although in the literature the both are used:
Everybody uses the term “error-bar” in graphs.Slide2
Why are Uncertainties Important?
Uncertainties absolutely central to the scientific method.
Uncertainty on a measurement at least as important as measurement itself!
Example 1:
“The observed frequency of the emission line was 8956 GHz. The expectation from quantum mechanics was 8900 GHz”
Nobel Prize?Slide3
Why are Uncertainties Important?
Example 2:
“The observed frequency of the emission line was 8956
± 10
GHz. The expectation from quantum mechanics was 8900 GHz”
Example 3:
“The observed frequency of the emission line was 8956
± 10
GHz. The expectation from quantum mechanics was 8900
± 50
GHz”Slide4
Types of Uncertainty
Statistical Uncertainties (
aka random error
):
Quantify random uncertainties in measurements between repeated experiments
Mean of measurements from large number of experiments gives correct value for measured quantity
Measurements often approximately
gaussian-distributed
Systematic Uncertainties (
aka syst error, bias
):
Quantify systematic shift in measurements away from ‘true’ value
Mean of measurements is also shifted
‘bias’Slide5
Examples
Statistical Uncertainties:
Measurements
gaussian-distributed
No system. uncertainty (bias)
Quantify uncertainty in measurement with standard deviation (see later)
In case of gaussian-distributed measurements std. dev. =
s
in formula
Probability interpretation (gaussian case only): 68% of measurements will lie within ± 1
s of mean.
True ValueSlide6
Examples
True Value
Statistical + Systematic Uncertainties:
Measurements still
gaussian-distributed
Measurements biased
Still quantify statistical uncertainty in measurement with standard deviation
Probability interpretation (gaussian case only): 68% of measurements will lie within ± 1
s
of mean.
Need to quantify systematic uncertainty separately
tricky!Slide7
Systematic Uncertainties
How to quantify uncertainty?
What is the ‘true’ systematic uncertainty in any given measurement?
If we knew that we could correct for it (by addition / subtraction)
What is the probability distribution of the systematic uncertainty?
Often assume gaussian distributed and quantify with
s
syst
.
Best practice: propagate and quote separately
True ValueSlide8
Calculating Statistical Uncertainty
Mean and standard deviation of set of independent measurements (unknown errors, assumed uniform):
Standard deviation estimates the likely error of any one measurement
Uncertainty in the mean is what is quoted:Slide9
Propagating Uncertainties
Functions of one variable (general formula):
Specific cases:Slide10
f
=
Apply equation
Simplify
Propagating Uncertainties
Functions of >1 variable (general formula):
Specific cases:Slide11
Combining Uncertainties
What about if have two or more measurements of the same quantity, with different uncertainties?
Obtain combined mean and uncertainty with:
Remember we are using the uncertainty in the mean here:Slide12
Fitting
Often we make measurements of several quantities, from which we wish to
determine whether the measured values follow a pattern
derive a measurement of one or more parameters describing that pattern (or
model
)
This can be done using curve-fitting
E.g. EXCEL function
linest.
Performs linear least-squares fitSlide13
Method of Least Squares
This involves taking measurements
y
i
and comparing with the equivalent fitted value
y
i
f
Linest then varies the model parameters and hence
y
if until the following quantity is minimised:
Linest will return the fitted parameter values (=mean) and their uncertainties (in the mean)
In this example the model is a straight line
y
i
f = mx+c. The model parameters are m and
c
In the second year lab never
use the equations returned by ‘Add Trendline’ or linest to estimate your parameters!!!Slide14
Weighted Fitting
Those still awake will have noticed the least square method does not depend on the uncertainties (error bars) on each point.
Q: Where do the uncertainties in the parameters come from?
A: From the scatter in the measured means about the fitted curve
Equivalent to:
Assumes errors on points all the same
What about if they’re not?Slide15
Weighted Fitting
To take non-uniform uncertainties (error bars) on points into account must use e.g. chi-squared fit.
Similar to least-squares but minimises:
Enables you to propagate uncertainties all the way to the fitted parameters and hence your final measurement (e.g. derived from gradient).
This is what is used by chisquare.xls (download from Second Year web-page)
this is what we expect you to use in this lab!Slide16
General Guidelines
Always:
Calculate uncertainties on measurements and plot them as error bars on your graphs
Use chisquare.xls when curve fitting to calculate uncertainties on parameters (e.g. gradient).
Propagate uncertainties correctly through derived quantities
Quote uncertainties on all measured numerical values
Quote means and uncertainties to a level of precision consistent with the uncertainty, e.g: 3.77±0.08 kg, not 3.77547574568±0.08564846795768 kg.
Quote units on all numerical valuesSlide17
General Guidelines
Always:
Think about the meaning of your results
A mean which differs from an expected value by more than 1-2 multiples of the uncertainty is, if the latter is correct, either suffering from a hidden systematic error (bias), or is due to new physics (maybe you’ve just won the Nobel Prize!)
Never:
Ignore your possible sources of error: do not just say that any discrepancy is due to error (these should be accounted for in your uncertainty)
Quote means to too few significant figures, e.g.: 3.77±0.08 kg not 4±0.08 kg
© 2021 docslides.com Inc.
All rights reserved.