/
Non oscillatory central differencing for hyperbolic conservation laws Non oscillatory central differencing for hyperbolic conservation laws

Non oscillatory central differencing for hyperbolic conservation laws - PDF document

danika-pritchard
danika-pritchard . @danika-pritchard
Follow
389 views
Uploaded On 2017-04-10

Non oscillatory central differencing for hyperbolic conservation laws - PPT Presentation

ThisresearchwassupportedbytheNationalAeronauticsandSpaceAdministrationunderNASAContractNosNAS118107andNAS118605whilethesecondauthorwasinresidenceattheInstituteforComputerApplicationsinScienceandEng ID: 338212

ThisresearchwassupportedbytheNationalAeronauticsandSpaceAdministrationunderNASAContractNos.NAS1-18107andNAS1-18605whilethesecondauthorwasinresidenceattheInstituteforComputerApplicationsinScienceandEng

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Non oscillatory central differencing for..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ReprintedfromJournalofComputationalPhysicsAllRightsReservedbyAcademicPress,NewYorkandLondonVol.87,No2.,April1990(pp.408-463)Non-oscillatoryCentralDi erencingforHyperbolicConservationLawsHaimNessyahuandEitanTadmorSchoolofMathematicalSciences,RaymondandBeverleySacklerFacultyofExactSciences,TelAvivUniversity,TelAviv,IsraelandInstituteforComputerApplicationsinScienceandEngineering,NASALangleyResearchCenter,Hampton,VirginiaReceivedAugust29,1988;revisedFebruary6,1989Manyoftherecentlydevelopedhigh-resolutionschemesforhyperbolicconservationlawsarebasedonupwinddi erencing.ThebuildingblockoftheseschemesistheaveragingofanapproximateGodunovsolver;itstimeconsumingpartinvolvesthe eld-by- elddecompositionwhichisrequiredinordertoidentifythe\directionofthewind."Instead,weproposetouseasabuildingblockthemorerobustLax-Friedrichs(LxF)solver.Themainadvantageissimplicity:noRiemannproblemsaresolvedandhence eld-by- elddecompositionsareavoided.ThemaindisadvantageistheexcessivenumericalviscositytypicaltotheLxFsolver.Wecompensateforitbyusinghigh-resolutionMUSCL-typeinterpolants.Numericalexperimentsshowthatthequalityoftheresultsobtainedbysuchconvenientcentraldi erencingiscomparablewiththoseoftheupwindschemes.AcademicPress,Inc.INTRODUCTIONInthispaperwepresentafamilyofnon-oscillatory,secondorder,centraldi erenceapproximationstonon-linearsystemsofhyperbolicconservationlaws.Theseapproximationscanbeviewedasnaturalextensionsofthe rst-orderLax-Friedrichs(LxF)scheme.Inparticular,total-variationandentropyestimatesareprovidedinthescalarcase,andunliketheupwindframework,noRiemannproblemsneedtobesolvedinthecaseofsystemsofconservationlaws.Theuseofsecond-orderpiecewise-linearapproximantsinsteadofthe rst-orderpiecewise-constantones,compensatesfortheexcessiveLxFviscosity,andresultsinsecond-orderresolutionRiemann-solver-freefamilyofcentraldi erenceschemes.Thepaperisorganizedasfollows.InSection2,wederiveourfamilyofhighresolutioncentraldi er-encingschemes,usingtheLxFsolvertogetherwithMUSCL-typeinterpolants.Thus,ateachtime-levelwereconstructfromthepiecewiseconstantnumericaldata,anon-oscillatorypiecewiselinearapproximationofsecondorderaccuracy.Wethenfollowtheevolvingsolutiontothenexttimelevel,andendupbypro-jectingitbacktoapiecewiseconstantsolution.Theresultisafamilyofschemeswhichtakesaneasilyimplementedpredictor-correctorform.Theresolutionofourmethodhingesuponthechoiceofcertainlocalnumericalderivativeswithwhichonereconstructsthepiecewise-linearMUSCL-typeinterpolantsfromthepiecewise-constantdata.InSection3,weconcentrateonthescalarconservationlaw.Wediscussavarietyofchoicesfornumericalderivatives,andprovethattheresultingscalarfamilyofschemes,undertheappropriateCFLlimitation,satis esboththeTotalVariationDiminishing(TVD)propertyandacellentropyinequality.Thesepropertiesguaranteetheconvergencetotheuniqueentropysolution,atleastinthegenuinelynon-linearscalarcase. ThisresearchwassupportedbytheNationalAeronauticsandSpaceAdministrationunderNASAContractNos.NAS1-18107andNAS1-18605whilethesecondauthorwasinresidenceattheInstituteforComputerApplicationsinScienceandEngineering(ICASE),NASALangleyResearchCenter,Hampton,VA23665.AdditionalsupportwasprovidedbyU.S.-IsraelBSFGrantNo.85-00346,andbyNSFGrantNo.DMS85-03294whileinresidenceatUCLA,LosAngeles,CA90024.Copyright1990byAcademicPress,Inc. non-oscillatorycentraldifferencingInSection4,wedescribeseveralwaystoextendourscalarfamilyofcentraldi erencingschemestosystemsofconservationlaws.Themainissueliesagaininthechoiceofvectorsofnumericalderivatives.First,wedescribeacomponent-wiseextensionforthede nitionofthesevectors,whichsharethesimplicityofthescalarfamilyofschemes.Next,wedemonstratethe exibilityofourcentraldi erencingframework,whichenablesustoincorporatecharacteristicinformation{wheneveravailable,intothede nitionofnumericalderivatives.Wecontinue,byusingthischaracteristic-wiseframeworktoisolatethecontactwavewheretheArti cialCompressionMethod(ACM)isemployed,whiletreatingthemorerobustsoundwavesusingthelessexpensivecomponent-wiseapproach.WeendupbypresentingacorrectivetypeACM,whichisimplementedinacomponent-wisemanner.Thisbothimprovesthecontactresolution,andretainsthesimplicityoftheRiemann-solver-freescalarapproach.Finally,inSection5wepresentnumericalexperimentswithourhigh-resolutionnon-oscillatorycentraldi erenceschemes,andcomparetheresultswiththecorrespondingupwind-basedones.Boththequantitativeandqualitativeresultsforarepresentativesampleofcompressible owproblemsgovernedbytheEulerequations,arefoundtobeincompleteagreementwiththeresolutionexpectedbythescalaranalysis.Takingintoaccounttheeaseofimplementation,robustnessandtimeperformance,theseresultscomparefavorablywiththeresultsobtainedbythecorrespondingupwind-basedschemes.2.AFAMILYOFHIGH-RESOLUTIONCENTRALDIFFERENCINGMETHODSManyoftherecentlydevelopedhigh-resolutionschemes,whichapproximatetheonedimensionalsystemofconservationlaws @t+@ ))=0arebasedonupwinddi erencing.TheprototypeofsuchupwindapproximationsistheGodunovscheme[4];itcomputesapiecewiseconstantapproximatesolutionovercellsofwidth 2�xj�1 ,whichisoftheform, x;t 2xxj+1 Toproceedintime,theGodunovscheme rstevolvesthepiecewiseconstantsolution, x;t),forasucientlysmalltimestep.Initiatedwith x;t),equation(2.1)consistsofasuccessivesequenceofnon-interactingRiemannproblems.Theirresultingsolutionattimelevel,canbeexpressedintermsoftheRiemannsolver, x;t 2 Thissolutionisthenprojectedbackintothespaceofpiecewiseconstantgridfunctions,seeFig.2.1, x;t xZxj+1 2xj�1 y;tdy;x 2xxj+1 2: nessyahuandtadmor txvj(t)vj�1(t)vjt)vj(t)xj�1 2xj+1 Fig.2.1Integrationof(2.1)overatypicalcell[ 2+1 t;t]yields ThisshowstheupwindpropertyoftheGodunovscheme.Namely,ifthecharacteristicspeedsthroughouttherelevantneighboringcells,[],areallpositive(respectively,negative),then(2.5)issimpli edintotof(vj(t))�f(vj�1(t))](respectively,,f(vj+1(t))�f(vj(t))]).However,amorecomplexsituationoccurswhenthereisamixtureofbothrightgoingandleftgoingwaves.Inthiscase,thecomputationofGodunov'snumerical uxin(2.5)requiresustoidentifythe\directionofthewind,"i.e.,todistinguishbetweentheleft-andrightgoingwavesinsidetheRiemannfan.Theexact(orapproximate)solutionoftheRiemannfanmaybeanintricatetask,andinthiscontext,wementionthe eld-by- elddecompositionproposedbyRoe[19],whichintendstosimplifythistask.Instead,inthissectionweproposeahighresolutionapproximationof(2.1),whichisbasedonthestaggeredformoftheLax-Friedrichs(LxF)scheme, 2(t vj+vj+1]�[f(vj+1(t))�f(vj(t))]:(2:6)TheLxFscheme,[13],isaprototypeofacentraldi erenceapproximation,whicho ersagreatsimplicityovertheupwindGodunovscheme(2.5).Weobservethat(2.6)canalsobeinterpretedasapiecewiseconstantprojectionofsuccessivenon-interactingRiemannproblems,whichareintegratedoverastaggeredgrid,seeFig.2.2, 2(t) x;t xZxjjR(x�xj+1 2 dx;x non-oscillatorycentraldifferencing txxjxj+1 2xjj+1 Fig.2.2TherobustnessoftheLxFscheme,(2.7),stemsfromthefactthatunliketheGodunovcase,hereweintegrateovertheentireRiemannfan,takingintoaccountboththeleft-andrightgoingwaves.Thisenablesustoignoreanydetailedknowledgeabouttheexact(orapproximate)Riemannsolver).Unfortunately,theLxFstaggeredsolver,(2.7),whichresultsinthesimplerecipe(2.6),su ersfromexcessivenumericalviscosity,whichisevidentfromtheviscousform[23] 2[f(vjt)�f(vj�1(t1 2[Qj+1 2vj+1 2(t)�Qj�1 2vj�1 2(tvj+1 Indeed,theclassofupwindschemesischaracterizedbyanumericalviscositycoecientmatrix 2j Aj+1 ,(here j+1 referstoanapproximateaverageoftheJacobianofx;t))overthecell[[t;t],e.g.,[22]).BytheCFLlimitation,thisamountofnumericalviscosityisalwayslessthantheamountofnumericalviscositypresentinthecentralLxFscheme,whosenon-staggeredformcorrespondsto.Consequently,theupwindGodunov-likeapproximationshavebetterresolutionthanthecentralLxFapproximation,thoughtheybothbelongtothesameclassof rst-orderaccurateschemes.Thisisoneofthemainmotivationsforusingupwindschemesasbuildingblocksforthemodernshockcapturingmethodsofhigher(than rst-order)resolution,e.g.[7],[17],[24].Alternatively,ourproposedmethodwillusethesimplercentralLxFsolverasthebuildingblockforafamilyofhigh-resolutionschemes.InthismannerweshallretaintheLxFmainadvantageofsimplicity:noRiemannproblemsaresolvedandhence eld-by- elddecompositionsareavoided.Themaindisadvantageofexcessivenumericalviscositywillbecompensatedbyusinghigh-resolutionMUSCLinterpolants,[24],insteadofthe rst-orderpiecewiseconstantonesin(2.2).Tothisend,ateachtimelevelwe rstreconstructfrom(2.2)apiecewiselinearapproximationoftheformx;t xv0j�1 2xxj+1 Thisformretainsconservation,i.e.,(heretheoverbardenotesthe[]-cellaverage), x;t x;tsecond-orderaccuracyisguaranteediftheso-calledvectorofnumericalderivative, ,whichisyettobedetermined,satis es xv0j=@ (x=xj):9b) nessyahuandtadmorNext,wecontinuewithasecondstage,similartotheconstructionofthecentralLxFrecipe:weevolvethepiecewiselinearinterpolant,(2.9),whichisgovernedbythesolutionofsuccessivesequencesofnoninteractingGeneralizedRiemann(GR)problems,[1],seeFig.2.3,x;tx;tx;tx;t txvj+1 x;tx;t 2xj Fig.2.3Finally,theresultingsolutionisprojectedbackintothespaceofstaggeredpiecewise-constantgridfunc-tions 2(t x;t y;tdy;xInviewoftheconservationlaw(2.1),thelastintegralequals 2(t x24Zxj+1 x;t x;t The rsttwolinearintegrandsontherightof(2.11),x;t)andx;t),aregivenby(2.9a)andcanbeintegratedexactly.Moreover,iftheCFLconditionmaxx;t ismet,thenthelasttwointegrandsontherightof(2.11),))and)),aresmoothfunctions;hencetheycanbeintegratedapproximatelybythemidpointruleattheexpenseoflocaltruncationerror.Thuswearriveat 2(t vj(t)+vj+1(t)]+ 8[v0j�v0j�[f(v(xjt 2f(v(xjt ByTaylorexpansionandtheconservationlaw(2.1), 2j(t)�1 2j; non-oscillatorycentraldifferencingmayserveasourapproximatemidvalue, withinthepermissiblesecond-orderaccuracyrequire-ment.Here, standsforanapproximatenumericalderivativeofthe ux xf0j=@ ))+whichisyettobespeci ed.WeshouldemphasizethatwhileusingthecentraltypeLxFsolver,weintegratedovertheentireRiemannfan,seex;t)in(2.10),whichconsistsofboththeleft-andrightgoingwaves.Ontheonehand,thisenabledustoignoreanydetailedknowledgeabouttheexact(orapproximate)generalizedRiemannsolver);ontheotherhand,thisenablesustoaccuratelycomputethenumerical ux,x;whosevaluesareextractedfromthesmoothinterfaceoftwonon-interactingRiemannproblems.Insummary,ourfamilyofcentraldi erencingschemestakestheeasilyimplementedpredictor-correctorform, 2j(t)�1 2j;)vj+1 2(t vj(t)+vj+1(t)]+ 8[v0j�v0j�[f(vjt+t 2)�f(vj(t+t Herethenumericalderivativesofbothgridfunctions,and,shouldobeytheaccuracyconstraints(2.9b)and(2.15).Inthismannerthesecond-orderaccuratecorrectorstep(2.16b),augmentsthe rst-orderaccuratepredictorstep(2.16a),andresultsinahigh-resolutionsecond-ordercentraldi erenceapproximationof(2.1).Remarks.1.Thechoice xv0j1 0in(2.16),recoverstheoriginal rst-orderaccurateLxFscheme(2.6).2.Ifinsteadof(2.6)weusethenon-staggeredversionoftheLxFscheme, 2[vjtj�1(t f(vj+1(t))�f(vj�1(t))];(2:17)andrepeatthereconstruction,evolutionandprojectionstepsdescribedabove,thentheresultinghighreso-lutioncentraldi erencingapproximationamountsto 2j(t)�1 2j;)vj(t vj+1(t)+vj�1(t)]+ 4[v0j�1�v0j� 2[f(vjt+t 2)�f(vj�1(t+t Toguaranteethedesirednonoscillatorypropertyoftheseapproximations,thetwofreeingredientsatourdisposal{thenumericalderivatives and ,shouldbecarefullychosen.Thisissuewillbediscussedinthenexttwosections.3.THESCALARPROBLEMInthissection,weareconcernedwithnon-oscillatoryhigh-resolutioncentraldi erencingapproximationsofthescalarconservationlaw @t@ ))=0Ourfamilyofhigh-resolutioncentraldi erencingschemes(2.16)canberewrittenintheform 2(t vj(t)+vj+1(t)]�[gj+1�gj];(3:2a)wheretheso-calledmodi ednumerical ux,,[18],isgivenby ))+ 8v0j(t+t 2j(t)�1 2j:2b) nessyahuandtadmorHere, isanapproximateslopeatthegridpoint xv0j=@ and isthenumericalderivativeofthegridfunction xf0j=@ ))+Theconstraints(3.3)withsmooth(=Lipschitzcontinuous) rstorderperturbationsontheirright,guaranteethesecond-orderaccuracyofthecentraldi erencingschemes(3.2).Inordertoensurethattheseschemesarealsonon-oscillatoryinthesensetobedescribedbelow,ournumericalderivatives, ,shouldsatisfyforeverygridfunctionsgn Const:MinMod 2;wj�1 Here,theMinModstandsfortheusuallimiter,x;yMinModx;y sgnsgnMinandcanbesimilarlyextendedtoincludemore(thantwo)variables.Theconstraint(3.4)isrequiredinordertoguaranteetheTotalVariationDiminishing(TVD)propertyforthefamilyofcentraldi erencingschemes(3.2).WerecallthatTVDisadesirablepropertyinthecurrentsetup,foritimpliesnospuriousoscillationsinourapproximatesolutionx;t),[7].However,itiswellknown,e.g.[7],[18],thatonecannotsatisfyboththeaccuracyrequirement,(3.3),andtheTVDrequirement,(3.4),atthenon-soniccriticalgridvalues,,where 2vj�1 Therefore,thesecond-orderaccuracyrequirement,(3.3),mustbegivenupatthesecriticalgridvalues.Di erenceschemeswith(formal)secondorderofaccuracyatallbutthesecriticalgridvaluesmaybeclassi edashavingsecondorderresolutioninthesensethatthelocaltruncationerrorisalmosteverywhereandtheoverallsecond-orderaccuracydoesnotseemtobedegradedinsuchcases,atleastinthe-norm.WeshallverifytheTVDpropertyofthecentraldi erencingschemes,(3.2),withthehelpofLemma3.1Thescheme(3.2a)isTVD,ifitsmodi ednumerical ux,,satis esthefollowinggeneralizedCFLcondition 2 vj+1 2 2;gj+1 Indeed,by(3.2a),thedi erence 2(t)�vj�1 )equals 2(t)�vj�1 )= 2(1 2�gj+1 2 vj+1 )+ 2(1 2+gj�1 2 vj�1 Condition(3.5)tellsusthatthetermsinsidetheparenthesisarepositiveandTVDfollowsalongthelinesof[7], 2(t)�vj�1 Equippedwithlemma3.1weturntoTheorem3.2Letthenumericalderivatives and in(3.3)bechosensuchthattheTVDrequirement(3.4)holds,say,sgn Const 2;vj�1 ;Constsgn Const 2;vj�1 27b) non-oscillatorycentraldifferencingAssumethatthefollowingCFLconditionissatis edmax ; Const Const 2 (p Thenthefamilyofhigh-resolutioncentraldi erencingschemes(3.2),(3.3)isTVD.Proof:By(3.2b)wehave: 2 vj+1 2jf(vjt+t 2f(vj(t+t 2 vj+1 2j+1 8v0j+1 2 vj+1 2jf(vjt+t 2f(vj(t+t 2 jt+t 2)�vj(t+t jj 2t)�vj(t+t 2) vj+1 2j+1 8jv0j+1 2 vj+1 OurCFLcondition(3.8)impliesthatthe rsttermontherightof(3.9)doesnotexceed 2f(vj(t+t 2 jt+t 2)�vj(t+t Usingthemidvalue )in(3.2b),wecanestimatethesecondtermontherightof(3.9), 2)�vj(t+t 2) vj+1 2 2jf0j+1 2 vj+1 2j;f0j+1 whereinviewof(3.7b)and(3.8), 2 vj+1 max vj+1 2j;jf0j vj+1 Const :Finally,theTVDrequirement,(3.7a),givesusanupperboundforthethirdtermontherightof(3.9), 2 vj+1 max( vj+1 2j;jv0j vj+1 Using(3.10),(3.11)and(3.12),we ndthat(3.9)boilsdowntothequadraticinequality(1+ 2 8 1 whosesolutionyieldstheCFLlimitation(3.8).Remarks.1.Thevalueswhichpermitapositivesolutionof(3.8),0,are02.TheTVDconstraints(3.7)with=0yields0,whichrecoversthestaggeredLxFscheme(2.6)withthecorrespondingCFLcondition 3.TheCFLrestriction(3.5)isasucientbutnotnecessaryconditionfortheTVDproperty.Inpracticeonemayusehighervaluesof,upto 4.Asimilaranalysiscarriedoutforthenon-staggeredform,(2.18),yields (p insteadof(3.8).Inpracticeonemayuse1inthiscase.Weshallnowdiscussafewexamplesofnumericalderivatives,whichretainboththesecondorderreso-lutionconstraint,(3.3),andtheTVDconstraints,(3.7).Asour rstexampleforthenumericalderivative,,wechoose 2;vj�1 2g:) nessyahuandtadmorThischoicemayoversmearastrong\discontinuity",wheretheorderofaccuracyislesssigni cant.Apreferablesecondchoice,whichallowsforasteeperslopenearsuchdiscontinuitiesandyetretainshigheraccuracyinsmoothregions,isgivenby 2;1 2(vjvj�1)vj�1 Thelimitingparametercanrangebetweenthevalues=1,whichcorrespondstothebasicMinModlimiterin(3.13a),andupto4,whichispermittedbytheCFLcondition(3.8).Similarly,the uxnumericalderivativemaybechosenas 2;fj�1 whichisaspecialcaseof 2;1 2(fjfj�1)fj�1 Asimpleralternativefor(3.14)isgivenbywhereisalreadycomputedby(3.13).WeobservethatthischoicesaveshalfthecomputationtimeoftheMinModoperation;yet,itrequiresthecomputationoftheJacobian,),whendealingwithsystemsofconservationlaws.Thenumericalderivativechosenin(3.13a),(3.14a)satis es(3.7)with=1,whichimpliestheTVDpropertyundertheCFLlimitation(3.8)with 2(p Thenumericalderivativechosenin(3.13b),(3.14b)clearlysatis es(3.7)andconsequentlytheTVDproperty,foreverypermissible4.WesummarizetheabovebystatingCorollary3.3Letthenumericalderivative bechosenby 2;vj�1 ;(3letthe uxnumericalderivativebechoseneitherby 2;fj�1 Thenthefamilyofhighresolutioncentraldi erencingschemes(3.2),(3.16)isTVDundertheCFLcondition ; 2(p SimilarilywehaveCorollary3.4Letthenumericalderivative bechosenby 2;1 2(vjvj�1);j�1 ;(3letthe uxnumericalderivativebechoseneitherby 2;1 2(fjfj�1);j�1 2g:) non-oscillatorycentraldifferencingThenthefamilyofhighresolutioncentraldi erencingschemes(3.2),(3.17)isTVD,undertheCFLcondi-tion ; 2(p Remarks.1.WenotethattheCFLlimitationsinCorollaries3.3and3.4arenotsharp.Inthe rstcase,(3.16),wherealimiterparameter=1wasused,thereconstructionstepisaTVDoperation;replacingtheexactTVDevolutionoperatorbythemidpointrulein(2.11)togetherwiththe nalaveragingstepisalsoTVD,undertheCFLlimitation .Similarly,onecanarguethatinthesecondcase,(3.17),wherealimiterparameter=2wasused,theaveragingstepretainstheTVDproperty(thoughnotnecessarilytheentropycondition),aslongastheCFLcondition ismet.Indeed,thisCFLconditionwasveri edasthestabilitiylimitation,bythenumericalexperimentsreportedinSection5.2.Recently,non-oscillatoryschemeswereconstructed,suchthatbysacri cingtheTVDproperty,theyachievehigher(thansecond-order)resolutionincludingthecriticalgridvalues,e.g.,theUNOschemein[12]andtheENOclassofapproximationsin[9].Toimplementsuchideaswithinourframework,onecanborrowtheirde nitionofnumericalderivative.Forexample,insteadoftheTVDchoices(3.4),ourcentraldi erencingscheme(3.2)maybeaugmentedbytheUNOchoice(here 2+1 2vj�1;2vj);vj+1 2�1 Theorem3.2anditscorollaries3.3and3.4demonstratehigh-resolutioncentraldi erencingmethodswhichsatisfythenon-oscillatoryTVDproperty,andhenceareconvergenttoalimitsolutionx;t).Toguaranteethatthislimitsolutionistheuniqueentropysolutionofthescalarconservationlaw(3.1),weshallappealtothefollowingcellentropyinequality,see[10], 2(t1 U(vj)+U(vj+1)]�[Gj+1�Gj]:(3:19)Here)isaconvexentropyfunctionand)isthenumericalentropy uxwhichisconsistentwiththecorrespondingdi erentialoneu;u;uWerecallthatLaxhasveri edsuchcellentropyinequalityfortheLxFscheme,[14].FollowingLax,wewillcontinuouslydeforminto+(1(0)=(1)=andinasimilarmanner,wewillfurtherdeform)intor;s)+(1IntheAppendixweproveLemma3.5Letbeapiecewisedi erentiableinterpolantofthegridfunction.Thenthefollowingidentityholds 2(t1 2[U(vj(vjZvjjU0(v)g0(v)RUj+1 Heretheresidualterm, 2(g)RUj+1 isgivenby, ))=( r;s r;s dsdr:Addingandsubtracting nessyahuandtadmorthenafterintegrationbyparts,therighthandsideof(3.21)willamountto: ))= 2[U(vj(vj[F(vj�F(vj(v)(g(v)�f(vvjj+ZvjjUv)(g(v)�f(vdvRUj+1 Consequently,theinequality providesuswithasucientconditionforthefamilyofcentraldi erencingschemes(3.2)tosatisfythecellentropyinequality,(3.19),withnumericalentropy ux)).ThisbringsusLemma3.6Letbethepiecewiselinearinterpolantofthemodi ed uxgridfunction 2 vj+1 min(max(Assumethatthecentraldi erencingschemes(3.2),satisfytheTVDconstraint(consult(3.7)),sgn Const 2;v+j�1 ;Constwhere 2vj+1 �(max Theentropydissipativelimiterin(3.25b),isintroducedinordertopreventthenonexpansiveentropyviolatingrarefactions,consult[18,Section8].Moreover,assumethatthe uxnumericalderivativesatis estheTVDconstraint:sgn Const 2;vj�1 Const ConstsothattheCFLcondition(3.8)holds.Thenthefollowinginequalityholds 2(g(v0u Remarks.1.WeobservethatintheGenuinelyNon-Linear(GNL)case,where,say,0,theentropyentropy(3.25b)becomese ectiveonlyinrarefactioncellswhere 0,inagreementwith[18].Itretainsthesecond-orderresolutionofthecentraldi erencingschemes(3.2),exceptfora nitenumberofcriticalcellswhichcontainstrongrarefactions,( 1,whereitreduces(3.2),(3.3)totheoriginalLxFscheme.2.Lemma3.6appliestochoicesofnumericalderivatives,,subjecttotheTVDconstraint(3.7a)with0Inpractice,highervalues,1,canbeused.Lemma3.6-whichisprovedintheappendix,showsthatourcentraldi erencingTVDschemes(3.2),(3.7)ful llthesucientcondition(3.23)andconsequentlythecellentropyinequality(3.19),withrespecttothequadraticentropyfunction .Thus,thelimitsolutionofourcentralTVDschemes,x;tsatis es 1 2u2 du:Thissinglesoutx;t)astheuniqueentropysolutionof(3.1),atleastintheGNLcase[2].WehaveshownTheorem3.7ConsidertheGNLscalarconservationlaw(3.1).Itisapproximatedbythefamilyofhighresolutioncentraldi erencingschemes(3.2),(3.3)whichsatisfytheTVDandentropyconstraints,(3.25).Then,iftheCFLcondition(3.8)holds,wehave: non-oscillatorycentraldifferencing1.Second-orderresolution;2.TotalVariationDiminishingproperty;3.Aconsistentquadraticcell-entropyinequality;and,asaconsequenceof2.and3.:4.thecorrespondingcentraldi erencingschemesconvergetotheuniquephysicallyrelevantsolutionoftheGNLconservationlaw(3.1).Weshallclosethissectionwithsomescalarnumericalexamples.WeconsidertheapproximatesolutionoftheinviscidBurger'sequation usingseveralofthepreviouslymentionedcentraldi erencingschemes.Theyinclude:1.The rst-orderLxFschemeinitsnon-staggeredform(2.17).2.Thesecond-ordernon-oscillatorycentraldi erencingscheme(2.18),(3.13a),(3.15).Thisistheordinarynon-staggeredversionofourcentraldi erencingwhichwillbereferredtoasORD.3.Thesecond-ordernon-oscillatorycentraldi erencingscheme(3.2),(3.13a),(3.15).Thisisthestaggeredversionofourcentraldi erencingwhichwillbereferredtoasSTG.Equation(3.27)issolvedwithtwosetsofinitialconditions.Inthe rstcase,wehavethesmooth1-periodicinitialdata,0)=Thewellknownsolutionof(3.27),(3.28a),e.g.[15],developsashockdiscontinuityat31.TableIshowsusthenormoftheerrorsatthepre-shocktime15.Itindicatesthe rstorderaccuracyoftheLxFschemeincontrasttothesecondorderaccuracyofourcentraldi erencing,ORDandSTG.InTableIwealsorecordedthesameerrorsatthepost-shocktime4.Thepresenceofashockdiscontinuityreducestheglobalerrorto rstorder.However,thecentraldi erencingSTGschemeperformssomewhatbetterthanthecentraldi erencingORDschemeandtheybothhavebetterresolutionthanthe rst-orderLxFschemeinshock-freezones.TABLEI-NormoftheErrorsforNumericalSolutionsof0)=sin( t4 NLxFORDSTGLxFORDSTG 400.0237020.0026200.0008590.0444490.0036120.000849800.0122490.0006670.0002320.0234860.0012910.0002771600.0062460.0001690.0000610.0113830.0004980.0000983200.0031580.0000430.00000160.0052350.00002090.000038 nessyahuandtadmor 0.00.20.40.60.81.01.21.41.61.82.0 0.00.20.4U(X,T=0.4) 0.00.20.40.60.81.01.21.41.61.82.0 0.00.20.4U(X,T=0.4) 0.00.20.40.60.81.01.21.41.61.82.0 0.00.20.60.8U(X,T=0.4) 0.00.20.40.60.81.01.21.41.61.82.0 0.00.20.60.8U(X,T=0.4) 0.00.20.40.60.81.01.21.41.61.82.0 0.00.20.4U(X,T=0.4) 0.00.20.40.60.81.01.21.41.61.82.0 0.00.20.4U(X,T=0.4) Figure3.1: non-oscillatorycentraldifferencingThisbehaviorisampli edinthesecondcaseofsolvingtheRiemanproblem(3.27),withRiemaninitialdata:0)=Inthiscasethesteadyshocksolutionisresolvedbythenumericalschemesasaviscouspro leshoeninFig.3.1.Figure3.1illustratestheover-smearingoftheLxFpro le,whencomparedwiththoseoftheORDandSTGschemes.Oncemore,weobservethattheSTGschemehassomewhatbetterresolutionthenitsnon-staggeredcounterpartORD.Yet,theCFLlimitationinthenon-staggeredform,1,resultsinabettertimepreformancethantheSTGschemewhichissubjecttotheCFLlimitation .(WerecallthatthesucientTVDconstraintinTheorem3.2ismorerestrictivethantheusualCFLlimitation;indeed,wenotethatthenumericalsolutionbytheORDversionofourschemeisTVDunderCFLlimitationyetitsvariationslightlyincreaseswith95.)Ineithercase,theseeasilyimplementednon-oscillatorycentraldi erencingoutperformthe rst-orderLxFone.4.SYSTEMSOFCONSERVATIONLAWSInthissection,wedescribehowtoextendourscalarfamilyofcentraldi erencingschemestotheone-dimensionalsystemofconservationlaws, @t@ ))=0Herex;t)istheunknown-vectoroftheformx;tx;tx;tand)isthe uxvector,)=(;:::;fwithanJacobianmatrix, p;q;:::;N:Ourapproximatesolutionatthegridpointisgivenbythe-vector;:::;vj;Nandthecorrespondingvectorofdi erences, ,consistsof-componentsdenotedby j;kEquippedwiththesenotations,ourfamilyofhigh-resolutioncentraldi erencingschemes(3.2),(3.3),takestheform, 2(t vj(t)+vj+1(t)]�[gj+1�gj];(4:2a)wherethemodi ednumerical ux,,isgivenby ))+ 8v0j(t+t 2j(t)�1 Asbefore,thecomputationofand )requiresthenumericalderivativesofthegridfunctionsand.ThistimewehavetochoosetwoN-vectorsofnumericalderivatives, j;N j;N nessyahuandtadmorIntherestofthissection,weshalldescribetheprosandconsofseveralchoicesforthesevectorsofnumericalderivatives.Our rstchoiceisacomponent-wiseextensionofthescalarde nitioninSection3.Tothisendwemayuseeither(4.4a),j;k 2vj�1 ;:::;N;orthemoregeneral(4.4b),j;k 21 2(vjvj�1vj�1 ;:::;N;orinstead,usetheUNO-likenumericalderivativein(3.18),j;k 21 j;k 21 j;k;:::;N:Apossiblechoiceforthevectorofnumerical uxderivativemaybeThisapproachinvolvesmultiplicationoftheJacobianmatrixbythevectorofderivatives,.Thismultipli-cationmaybeavoidedifweuseacomponent-wisede nitionforthevectorofnumerical uxderivatives,inanalogyto(3.14).Forexample,wemayusej;k 2fj�1 oralternatively,j;k 21 2(fjfj�1fj�1 WeobservethattheJacobianFreeForm(JFF),(4.4),(4.6)avoidstheuseoftheJacobianmatrixrequiredby(4.4),(4.5),attheexpenseofcarryingouttheMinModoperationtwice.Theresultingcentraldi erencingschemes,(4.2),whicharebaseduponthecomponent-wisede nitionofthenumericalderivativesin(4.4)-(4.6),sharethesimplicityofthescalarframework.Namely,noRiemannproblemsaresolvedandconsequentlycharacteristicdecompositions{requiredinordertodistinguishbetweentheleftandrightgoingwavesinsidetheRiemannfan,areavoided.Atthesametime,ourcentraldi erencingapproachis exibleenoughsothatitenablesustoincorporatecharacteristicinformation,wheneveravailable,inordertoachieveimprovedresolution.Ournextchoiceshowshowtoincorporatethecharacteristicinformationintothede nitionofthenu-mericalderivatives.TothisendweshallemployaRoeMatrix, ),namely,anaveragedJacobian, ,satisfying,e.g.[11],[19], andhavingcompleterealeigensystem 2^Rj+1 ;:::;N:Letusprojectthevectorofdi erences onto ,i.e.weusethecharacteristicdecomposition 2=Xk^ j+1 2^Rj+1 ;:::;N;where 2^Lj+1 2vj+1 ;:::;N:Thenthecorrespondingprojectionofthe uxvectorofdi erencesisgivenby 2=Xk^ j+1 2aj+1 2Rj+1 2 non-oscillatorycentraldifferencingNow,apossiblecharacteristic-wisechoiceforthenumericalderivativesinanalogywith(4.4),maybe(herej;kisdenotestheaveragedeigenvectorcenteredatj;k 2^ j�1 j;kandthenumerical uxderivativescanbecalculatedas OnceagainwecanusetheJFFandavoidthemultiplicationofRoe'smatrixbythevectorofnumericalderivatives,ifinsteadof(4.11)weemploy,consult(4.9),j;k 2aj+1 2^ j�1 2aj�1 j;kAsanexample,letusconsidertheEulerequations, 4mE35+@ 4m+pu(E+p)35�(E�1 Here;u;mu;pandarerespectivelythedensity,velocity,momentum,pressureandtotalenergy.ThecorrespondingRoematrix,),isassociatedwiththeeigensystem 2^Rj+1 wheretheeigenvalues^ aregivenby 2;1j+1 2�^cj+1 2;^aj+1 2;2j+1 2;^aj+1 2;3j+1 2j+1 andtherighteigenvectorsaregivenby 2;1=241^u�^c^H�^u^c35j+1 2^Rj+1 2;2=241^u1 2^u235j+1 2^Rj+1 2;3=241^u^H^c35j+1 Theaveragequantitiesontherightof(4.14)-(4.15)givenin[19]are, u� p ^H=p H� p ^c=r 1)( 2^u2)=Ej+pj where&#xw-38; )denotestheusualarithmeticmean.Thisbringsustothecharacteristicdecomposition(4.8),wherethecharacteristicprojections, 2;1=1 2(1�2);^ j+1 2;2j+1 2�1;^ j+1 2;3=1 areexpressedintermsof,whicharegivenby 2=^c2j+1 =( 2�j+1 2^uj+1 2)=^cj+1 Wenotethatthesecondcontact eldassociatedwith isindependentofthesquarerootwhichisrequiredonlyinthecomputationofthemeanvaluesoundspeed^ .Sincethis eldisalinearlydegenerate,itlacksthestrongentropyenforcementtypicaltotheothertwogenuinelynon-linear eld,andtherefore,isusuallysmearedbynumericalschemes.Inournextchoiceofnumericalderivatives,weincorporateonlypartialcharacteristicinformation.Namely,weisolatethelessexpensive(i.e.,squareroot-free)characteristicprojectiononthecontact eld,andusethecomponent-wiseapproachfortheothertwo elds. nessyahuandtadmorThus,we rstseparatethecontact eld, 2j+1 2~Ej+1 237524j+1 2mj+1 2Ej+1 235�^ j+1 2;2241^u1 2^u235j+1 andthende nethevectorofnumericalderivativeas 2;2;^ j�1 241^1 2^u2�35j+64j+1 2;j�1 2j+1 2;j�1 2~Ej+1 2;~Ej�1 Similarly,computingthenumerical uxderivativewithacharacteristicapproachappliedonlytotheisolatedcontactwave, 2;1~fj+1 2;2~fj+1 2;337524fj+1 2;1fj+1 2;2fj+1 2;335�^ j+1 2;2^aj+1 2;2241^u1 2^u235j+1 amountsto 2;2^aj+1 2;2;^ j�1 2;2^aj�1 2;2)241^1 2^u2�35j+64~fj+1 2;1;~fj�1 2;1~fj+1 2;2;~fj�1 2;2~fj+1 2;3;~fj�1 Thelatterapproachenablesustousee ectivelytheArti cialCompressionMethod(ACM)ontheisolatedcontact eld,e.g.[6],[7].Tothisend,thecontactwaveisolatedin(4.19)ismodi edby 2;2;^ j�1 2;2g+jrj]241^u1 2^u235j+64j+1 2;j�1 2j+1 2;j�1 2~Ej+1 2;~Ej�1 whereandaregivenby 2;2�^ j�1 2;2j j^ j+1 2;2j+j^ j�1 2;2j;)rj=1 2^uj+1 2)2^ j+1 2;2;1 2^uj�1 2)2^ j�1 Finally,weshallmentionanalternativeapproachtothecharacteristicimplementationoftheACMin(4.22).Tothisend,theArti cialCompressionisimplementedasafurthercorrectorsteptothecomponent-wiseapproachpresentedin(4.2a)-(4.2b).ThiscorrectivetypeACMtakestheform, 2�Wj�1 Here,thecompressioncoecient,,andaregivenby 2=8�������:wj;wj+1 2vj+1 2�0;wj=vj�1 2;vj+1 2g;wjwj+1 2vj+1 whereisrelatedtosubcellresolutioninformation(Harten,privatecommunication,[8]), 2(jj�1)j=vj�1 2;vj+1 2g:) non-oscillatorycentraldifferencingTheresultisthecentraldi erencingscheme(4.2),appendedbythecomponent-wisede nitionsofnumer-icalderivativesin(4.10)-(4.12),andcomplementedbytheACMcorrectorstep(4.23).Thisscheme,unlikethecharacteristic-wiseimplementationoftheACMin(4.22),enjoysthesimplicityofthecomponent-wiseapproach,andatthesametime,enablesustodeale ectivelywiththedelicatecontactwave.WeremarkthatoneshouldbecarefulnottoovercompressdiscontinuitiesusingsuchcorrectivetypeArti cialCom-pression:itshouldbeimplementedaftertherarefactionwaveshaveevolvedusinganappropriatelychosencompressioncoecient5.NUMERICALEXAMPLESInthissection,wewillpresentnumericalexampleswhichdemonstratetheperformanceofourfamilyofhighresolutioncentraldi erencingschemesforsystemsofconservationlaws.WeconsidertheapproximatesolutionoftheEulerequationsofgasdynamics,seesection4, 4mE35+@ 4mu(E+p)35�(E�1 Weexperimentwiththefollowingmembersfromourfamilyofhigh-resolutioncentraldi erencingschemes:1.Thecentraldi erencingscheme(4.2),(4.4a),(4.5).Thisisthecomponent-wiseextensionofthescalarSTGschemepresentedinSection3andisthereforereferredtobythesameabbreviation.2.Thecentraldi erencingscheme(4.2),(4.4b),(4.5)withalimitervalue=2.ThisschemeisreferredtoasSTG2.3.Thecomponent-wiseUNO-typeversionofourscheme,(4.2),(4.4c),(4.5).ItisreferredtoasSTGU.4.TheschemeSTGwiththeadditionofthecorrectivetypeACMdescribedby(4.23)isreferredtoasAlltheaboveexamplesusecomponent-wisede nitionsforthevectorsofnumericalderivatives,andarebasedonthestaggeredgridformulation.Ourlastexampleisbasedonnon-staggeredLxFscheme,namely,5.Thecentraldi erencingscheme(2.18),(4.4a),(4.5).Thisisthecomponent-wiseextensionofthescalarORDschemepresentedinsection3andisthereforereferredtobythesameabbreviation.Forthepurposeofperformancecomparisonweincludeheretheresultsofseveralwellknownupwindandcentralschemesaswell.Theseschemesinclude:1.The rstordercentralnon-staggeredLxFscheme,(2.17),[13].2.The rstorderaccurateGodunov-typeschemeofRoe,e.g.[7].3.Harten'ssecondorderaccurateupwindULT1scheme,[7].4.Harten'ssecondorderaccurateupwindULT1Cscheme,[7],whereArti cialCompressionisaddedtoULT1inthelinearilydegeneratecontact eld.ItisreferredtoasULTC.Wesolvethesystem(5.1)withthreesetsofinitialconditions.Our rstexampleistheRiemannproblemproposedbySod[21](abbreviatedhereafterasRIM1),whichconsistsofinitialdata0)=;x=(1;x�=(0TableIIshowsthenormoftheerrors.Thoughtheresultsare elddependent,the\quantitativepicture"isfavourablewiththecentraldi erencingschemes.TableIIIshowsthetimeperformanceofthevariousschemes.Alltheschemeshavetimeperformancesoforder,whereisthenumberofspatialcells.Figures5.1-5.4includeacomparisonbetweenthenumericalsolutionandtheexactsolution(shownby nessyahuandtadmorthesolidline),e.g.[3],[20],at1644.Asexpected,theoverallresolutionofthe rstorderschemesisoutperformedbythesecondorderschemes.Weobservethatoursecondorderstaggeredschemes,STG,STG2,andSTGU,andsimilarily,thesecondorderupwindULT1scheme,smeartheshockdiscontinuityovertwocells.Thecontactdiscontinuity,however,ismoredelicate:hereweobservesmearingofabout5-6cellsbythesecondorderschemes,bothinthecentralandupwindcases.Wecanalsoobservetheover-andundershootsgeneratedbyboththeupwindULT1andcentralORD.TheseunsatisfactoryresultssuggesttointroduceACMinthecontact eld.ForthispurposewepresenttheupwindULTCschemeandthecentralcomponent-wiseSTGCschemeinFig.5.4.WenotethattheACMisappliedinSTGConlyatthelast10%ofthetimestepswiththecompressioncoecientThisresultsin2cellsresolutionofthecontactwave,andsomewhatbetterresolutionintheotherwavesaswell.Yet,smallover-andundershootswhichareduetoovercompression,stillremain.OursecondRiemanntestproblem(abbreviatedhereafterasRIM2),istheoneproposedbyLax[5].Itisinitiatedwith,=(0=(0andtheresultsat16canbefoundinFig.5.5-5.8.Thedensitypro leinRIM2lacksthemonotonicitywehadinRIM1,andtherefore,itismoredicultfor\non-oscillatory"numericalschemestorecoverthecontactwaveandtheintermediate\plateau"whichfollows.Consequently,theupwindschemesperformheresomewhatbetterthanthecentralschemes:ULTCresolutionisbetterthanSTGCwhichhasmoreover-andundershootsthanbefore.WenotethatSTG2hasbetterresolutionanderrorsthanSTGUinall elds.ThisisduetothefactthatSTG2hassteeperslopeneardiscontinuities,consultSection2.Finally,theresultsofthenonstaggeredcentraldi erenceschemeORDforbothRIM1andRIM2problemsarepresentedinFigure5.9.WerecallthattheCFLlimitationinthestaggeredcase, isnowdoubledtobeconsultSection3.Moreover,acomponent-wisereconstructionofthevectorofnumericalderivatives,enabledustoavoidanyRiemannsolverinthisnonstaggeredcase.Consequently,theORDschemeistwicefasterthanthestaggeredcentralversionsbasedonSTG,aswellastheupwindschemeULT1whichnecessitatesthe(approximate)solutionofaRiemannproblemateachcell.However,theresolutionofthisnonstaggeredversion,ORD,deteriorates,whencomparedtothestaggeredversionsandtheupwindmethods.Ourthirdproblem,discussedbyWoodward-Collelain[25],consistsofinitial-data,0)=where=100=100.Asolidwallboundaryconditions(re ection)isappliedtobothends.TheresultsarecomparedwiththefourthorderENOscheme[9],inFig.5.10-5.12.ThecontinouslineistheresultoftheENOschemewith800cells.WepresenttheresultsofSTG2andULT1with400cellsinFig.5.13-5.15atand038respectively.Weobservethattheupgradefromthe rstorderLxFschemetothesecondorderSTG2,resultsinasubstantialimprovementofresolution,seeFig.5.10-5.15;moreover,STG2comparesfavourablywiththesecondorderupwindULT1scheme.Insummary,wemayconcludethatwhenstrongdiscontinuitiesarepresent,STG2seemstoo erthebestresults,STGCcanbetunedtoobtainsharpresolutionattheexpenseofovercompression,andORDversionwasfoundtobethemosteconomical.Furtherextensivenumericalexperimentsdonealongtheselinesarereportedin[16]. WethankA.HartenforallowingustousehisENOresultsin[9]. non-oscillatorycentraldifferencingTABLEIIComputationTimeofRiemannProblems,resultsat ULT1/CSTGROEORDLxFSTGCSTGUSTG2NX 1.231.230.740.690.221.431.471.37504.934.752.922.710.855.675.885.4310019.8119.3211.6810.713.3722.7423.4921.662002.872.741.721.550.483.243.353.075011.5410.936.836.161.9012.8813.3012.2210046.3443.5027.2724.407.5251.4653.2048.83200 Notes.1.Duetoourmethodofimplementation,ULT1andULTChavethesamecomputationtime.InfactULT1issomewhatfasterthenULTC.2.AlltheaboveschemesuseaCFLnumberof0.95,exceptfortheversions,STG*,whichuseaCFLnumberof0.475.TABLEIIIRiemannProblems,NormErrors DensityVelocityPressure Nx501002005010020050100200 SchemeRiemanProblem-RIM1,t=0.1644LxF.03121.02460.01769.06651.04583.02814.03602.02458.01582ROE.01918.01308.00836.03224.02090.01145.01762.01109.00666ORD.01868.01026.00578.03315.01807.00959.01630.00861.00460STG.01495.00741.00409.02812.01105.00550.01232.00581.00294ULT1.01338.00806.00437.02933.01177.00820.01285.00736.00362STG2.01241.00619.00297.02449.01132.00494.01019.00487.00228STGU.01146 .00544 .00291 .02300 .00816 .00403 .00961 .00432 .00216 STGC.00982 .00322 .00172 .01994 .00481 .00276 .00705 .00270 .00153 ULTC.01269.00715.00361.02923.01761.00804.01283.00735.00362RiemanProblem-RIM2,t=0.16LxF.12162.09044.06165.13523.09294.05557.15860.10767.06537ROE.06630.04334.02827.07397.04144.02192.08399.04826.02655ORD.06791.03824.02231.07158.03623.01709.07836.04056.01995STG.04972.02903.01776.04392.02416.01307.05118.02669.01426ULT1.04518.03572.01477.05570.02603.01094.06075.02841.01206STG2.03473.02129.01151.03369.01655 .00849 .03956.02037.00988 STGU.03668.02152.01302.03323 .01657.01046.03907 .02031 .01121STGC.02764 .01291 .00647 .02285 .01356 .00836 .02355 .01409 .00873 ULTC.03001 .01566 .00872 .05504.02545.01074.05997.02784.01183 Notes.1.AlltheaboveschemesuseCFLnumberof0.95,exceptforthestaggeredversions,STG*,whichuseaCFLnumberof0.475.2.Theunderlinedresultsindicatethesmallestnormerrorsineverycolumn. nessyahuandtadmor 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4VELOCITY 0.00.20.40.60.81.0 0.00.20.4VELOCITY 0.00.20.40.60.81.0 0.00.20.4PRESSURE 0.00.20.40.60.81.0 0.00.20.4PRESSURE Figure5.1:RIM1-ROEvs.ULT1 non-oscillatorycentraldifferencing 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4VELOCITY 0.00.20.40.60.81.0 0.00.20.4VELOCITY 0.00.20.40.60.81.0 0.00.20.4PRESSURE 0.00.20.40.60.81.0 0.00.20.4PRESSURE Figure5.2:RIM1-LXFvs.STG2 nessyahuandtadmor 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4VELOCITY 0.00.20.40.60.81.0 0.00.20.4VELOCITY 0.00.20.40.60.81.0 0.00.20.4PRESSURE 0.00.20.40.60.81.0 0.00.20.4PRESSURE Figure5.3:RIM1-STGvs.STGU non-oscillatorycentraldifferencing 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4VELOCITY 0.00.20.40.60.81.0 0.00.20.4VELOCITY 0.00.20.40.60.81.0 0.00.20.4PRESSURE 0.00.20.40.60.81.0 0.00.20.4PRESSURE Figure5.4:RIM1-ULTCvs.STGC nessyahuandtadmor 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.51.01.52.0VELOCITY 0.00.20.40.60.81.0 0.00.51.01.52.0VELOCITY 0.00.20.40.60.81.0 0.01.02.03.04.0PRESSURE 0.00.20.40.60.81.0 0.01.02.03.04.0PRESSURE Figure5.5:RIM2-ROEvs.ULT1 non-oscillatorycentraldifferencing 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.51.01.52.0VELOCITY 0.00.20.40.60.81.0 0.00.51.01.52.0VELOCITY 0.00.20.40.60.81.0 0.01.02.03.04.0PRESSURE 0.00.20.40.60.81.0 0.01.02.03.04.0PRESSURE Figure5.6:RIM2-LXFvs.STG2 nessyahuandtadmor 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.51.01.52.0VELOCITY 0.00.20.40.60.81.0 0.00.51.01.52.0VELOCITY 0.00.20.40.60.81.0 0.01.02.03.04.0PRESSURE 0.00.20.40.60.81.0 0.01.02.03.04.0PRESSURE Figure5.7:RIM2-STGvs.STGU non-oscillatorycentraldifferencing 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.51.01.52.0VELOCITY 0.00.20.40.60.81.0 0.00.51.01.52.0VELOCITY 0.00.20.40.60.81.0 0.01.02.03.04.0PRESSURE 0.00.20.40.60.81.0 0.01.02.03.04.0PRESSURE Figure5.8:RIM2-ULTCvs.STGC nessyahuandtadmor 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4DENSITY 0.00.20.40.60.81.0 0.00.20.4VELOCITY 0.00.20.40.60.81.0 0.00.51.01.52.0VELOCITY 0.00.20.40.60.81.0 0.00.20.4PRESSURE 0.00.20.40.60.81.0 0.01.02.03.04.0PRESSURE Figure5.9:RIM1andRIM2byORD non-oscillatorycentraldifferencing 0.00.51.0 0.00.5DENSITY AT T=0.01 0.00.20.40.60.81.0 0.01.05.06.0DENSITY AT T=0.01 0.00.51.0 0.00.5VELOCITY AT T=0.01 0.00.20.40.60.81.0 -10.0-5.00.010.015.0VELOCITY AT T=0.01 0.00.51.0 0.00.5PRESSURE AT T=0.01 0.00.20.40.60.81.0 0.0100.0200.0PRESSURE AT T=0.01 Figure5.10:WC-BANGT=0.01-ENOvs.LXF(theENOresultsarein[9]) nessyahuandtadmor 0.00.51.0 0.00.5DENSITY AT T=0.03 0.00.20.40.60.81.0 0.05.010.0DENSITY AT T=0.03 0.00.51.0 0.00.5VELOCITY AT T=0.03 0.00.20.40.60.81.0 -7.0-5.0-1.01.05.07.09.011.0VELOCITY AT T=0.03 0.00.51.0 0.00.5PRESSURE AT T=0.03 0.00.20.40.60.81.0 0.0100.0400.0500.0800.0PRESSURE AT T=0.03 Figure5.11:WC-BANGT=0.03-ENOvs.LXF(theENOresultsarein[9]) non-oscillatorycentraldifferencing 0.00.51.0 0.00.5DENSITY AT T=0.038 0.00.20.40.60.81.0 0.01.03.04.0DENSITY AT T=0.038 0.00.51.0 0.00.5VELOCITY AT T=0.038 0.00.20.40.60.81.0 -1.01.03.09.011.015.0VELOCITY AT T=0.038 0.00.51.0 0.00.5PRESSURE AT T=0.038 0.00.20.40.60.81.0 0.050.0100.0200.0250.0350.0400.0PRESSURE AT T=0.038 Figure5.12:WC-BANGT=0.038-ENOvs.LXF(theENOresultsarein[9]) nessyahuandtadmor 0.00.20.40.60.81.0 0.01.05.06.0DENSITY AT T=0.01 0.00.20.40.60.81.0 0.01.05.06.0DENSITY AT T=0.01 0.00.20.40.60.81.0 -10.0-5.00.010.015.0VELOCITY AT T=0.01 0.00.20.40.60.81.0 -10.0-5.00.010.015.0VELOCITY AT T=0.01 0.00.20.40.60.81.0 0.0100.0200.0PRESSURE AT T=0.01 0.00.20.40.60.81.0 0.0100.0200.0PRESSURE AT T=0.01 Figure5.13:WC-BANGT=0.01-STG2vs.ULT1 non-oscillatorycentraldifferencing 0.00.20.40.60.81.0 0.05.010.0DENSITY AT T=0.03 0.00.20.40.60.81.0 0.05.010.0DENSITY AT T=0.03 0.00.20.40.60.81.0 -7.0-5.0-1.01.05.07.09.011.0VELOCITY AT T=0.03 0.00.20.40.60.81.0 -7.0-5.0-1.01.05.07.09.011.0VELOCITY AT T=0.03 0.00.20.40.60.81.0 0.0100.0400.0500.0800.0PRESSURE AT T=0.03 0.00.20.40.60.81.0 0.0100.0400.0500.0800.0PRESSURE AT T=0.03 Figure5.14:WC-BANGT=0.03-STG2vs.ULT1 nessyahuandtadmor 0.00.20.40.60.81.0 0.01.03.04.0DENSITY AT T=0.038 0.00.20.40.60.81.0 0.01.03.04.0DENSITY AT T=0.038 0.00.20.40.60.81.0 -1.01.03.09.011.015.0VELOCITY AT T=0.038 0.00.20.40.60.81.0 -1.01.03.09.011.015.0VELOCITY AT T=0.038 0.00.20.40.60.81.0 0.050.0100.0200.0250.0350.0400.0PRESSURE AT T=0.038 0.00.20.40.60.81.0 0.050.0100.0200.0250.0350.0400.0PRESSURE AT T=0.038 Figure5.15:WC-BANGT=0.038-STG2vs.ULT1 non-oscillatorycentraldifferencingAPPENDIX:ONACELLENTROPYINEQUALITYInthissection,weprovidethepromisedproofsforLemmatta3.7and3.8,whichverifythecellentropyinequalityforourscalarfamilyofhigh-resolutioncentraldi erencemethods.WebeginwithaproofofLemma3.7. )denotethedi erence, 2(g 2[U(vj(vjZvjjU0(v)g0(v)U(vj+1 Wenowcontinuouslydeform+(1,between(0)and(1),see(3.20a).Withthisinmind, )mayberewrittenintheform 2(g10d RHS�From(3.2a)wemay ndthedependenceof )onthecontinuationparameter(forsimplicityweomittheexplicitdependenceontime): 2(s v(s)+vj+1]�[gj+1�g(v(s))];(A:3)whichinviewof (svj+1 2;(d (vj+1 ))= 2(s 2+(v(svj+1 Inasimilarmanner,wehave ))= andLeibnitzrulegivesus �Zvj(s)U0(v)g0(v)(v(s0(v(svj+1 Substitutionof(A.5),(A.6),and(A.7)into(A.2)yields 2(gvj+1 2Z10[1 2+(v(s[U0(v(sU0(vj+1 Next,weusethecontinuationr;s)+(1in(3.20b)inordertoexpressthelastdi erenceontherightas ))= 0(vj+1 r;sdr:Thisequalitycomesaboutasfollows:inviewof(3.20b),(3.2a), r;s)isgivenby r;s v(s)+v(r;ssg(v((r;s))];( 2(s)+1 2j+1 )and(A.9)follows.Notingthat r;s thenbycarryingoutthedi erentiatonontheRHSof(A.9)weobtain, 0(vj+1 r;s))= r;s r;s 2:( nessyahuandtadmorSubstituting(A.9),(A.11)and(A.12)into(A.8),wewillendupwiththedesiredidentity(3.22) WeclosethissectionwiththeproofofLemma3.8.Thepiecewiselinearinterpolantofthegridfunction,,chosenin(3.24), 2 vj+1 hasa xedslopeateachcell:r;s))=))= 2 vj+1 �From(A.14)and(3.22)weobtainthatinthecaseofquadraticentropyfunctionwhere 2(g 2j+1 2)2241 4� gj+1 2 vj+1 Moreover,thedi erence)betweentwoneighboringvaluesand,coversanareaofsize, 2[gjgjj+1 dv:Thus,inviewof(A.15)and(A.16),thedesiredinequality,(3.26),boilsdownto 2[gjgj]vj+1 2�Zvjjf(v)1 2(gj+1 2 vj+1 2)2�1 8j+1 Toverifytheinequality(A.17),werecallthatby(3.2a),(3.2b)wehave ))+ 8v0m=f(vm(t)� 2f0m j;jandTaylor'sexpansionyields 8v0m4 2j+1 2)2vj+1 Thisenablesustowritethe rsttwotermsontheleftof(A.17)as 2[gjgj]vj+1 2�Zvjjf(v)1 84 2)(v0jv0j j+1 2)j+1 2)2+Oj+1 Considernowthethirdtermontheleftof(A.17):by(A.19)wehave 2=fj+1 2+1 84 2)(v0j+1 2 vj+1 2)vj+1 inserting 2= vj+1 2+Oj+1 into(A.21a),squaringtheresultandrearrangingweobtain 2(gj+1 2)2= 2 2j+1 2)2+ 84 2)(v0j+1 2 vj+1 2)j+1 2)2++1 4 2)2(v0j+1 2 vj+1 2)2j+1 2)2+Oj+1 2)3:() non-oscillatorycentraldifferencingWenotethatthecubictermontherightof(A.20),(A.21b),consistsoftheerrorinthetrapezodialrule 2[f(vj(vjj+1 2�Zvjjf(v) v( xj+1 aswellasadditionalcontributionswhichareofthesameorderofmagnitude 2)3[fv( xj+1 Inserting(A.20),(A.21b),and(A.22)intotheinequality(A.17)givesus 8j+1 2)2"v0jv0j j+1 2�v0j+1 2 vj+1 2+1�4 2 v0j+1 2 vj+1 max Finally,sinceandagreeinsignwith ,theexpressioninsidetheleftbracketscanbeupperboundedby vj+1 2v0jv0j 20jv0j 2j��1 2)jv0j+1 2 vj+1 2j+1�4 2 v0j+1 2 vj+1 BytheCFLlimitation, ,thesumofthelasttwotermsisnonpositive,andweareleftwiththeinequalitymax vj+1 2;v0j vj+1 max whichismetbythechoiceofentropysatisfyinglimiterin(3.25a),(3.25b). nessyahuandtadmor[1]Ben-Arzi,M.andFalcovitz,J.,\AnUpwindSecond-OrderSchemeforCompressibleDuctFlows,"SIAMJ.Sci.Stat.Comput.,Vol.7,No.3,July1986.[2]DiPerna,R.J.,\ConvergenceofApproximateSolutionstoConservationLaws,"Arch.Rat.Mech.Anal.,Vol.82,1983,pp.27-70.[3]Dutt,P.,\ARiemannSolverBasedonaGlobalExistenceProoffortheRiemannProblem,"ICASEReportNo.86-3,January1986.[4]Godunov,S.K.,\AFiniteDi erenceMethodfortheNumericalComputationofDiscontinuousSolutionsoftheEquationsofFluidDynamics,"Mat.Sb.,Vol.47,1959,pp.271-290,inRussian.[5]Harten,A.,\TheMethodofArti cialCompresssion:I.ShocksandContactDiscontinuities,"ResearchDevelop.Report,COU-3077.50,CourantInstitute,N.Y.U.,June1974[6]Harten,A.,\TheArti cialCompressionMethodforComputationofShocksandContactDiscontinu-ities,III.Self-AdjustingHybridSchemes,"Math.Comput.,Vol.32,NewYork,1978,pp.363-389.[7]Harten,A.,\HighResolutionSchemesforHyperbolicConservationLaws,"J.Comput.Physics,Vol.49,1983,pp.357-393.[8]Harten,A.,\ENOSchemeswithSubcellResolution,"JCPVol.83,1989,pp.148-.[9]Harten,A.,Engquist,B.,andOsher,S.,andChakravarthy,S.R.\UniformlyHighOrderAccurateEssentiallyNon-OscillatorySchemesIII,"JCPVol.71,1987,pp.231-.[10]Harten,A.,Hyman,J.M.,andLax,P.D.,\OnFiniteDi erenceApproximationsandEntropyCondi-tionsforShocks,"Commun.PureAppl.Math.,Vol.29,1976,pp.297-322.[11]Harten,A.andLax,P.D.,\ARandomChoiceFiniteDi erenceSchemeforHyperbolicConservationLaws,"SIAMJ.Num.Anal.,Vol.18,1981,pp.289-315.[12]Harten,A.andOsher,S.,\UniformlyHighOrderAccurateNon-OscillatorySchemeI,"SINUMVol.24,1987,pp.279-.[13]Lax,P.D.,\WeakSolutionsofNon-LinearHyperbolicEquationsandTheirNumericalComputations,"Commun.PureAppliedMath.,Vol.7,1954,pp.159-193.[14]Lax,P.D.,\ShockWavesandEntropyinContributionstoNonlinearFunctionalAnalysis,"EditorE.A.Zarantonello,AcademicPress,NewYork,Vol.31,1971,pp.611-613.[15]Lax,P.D.,\HyperbolicSystemsofConservationLawsandtheMathematicalTheoryofShockWaves,"RegionalConf.SeriesinAppl.Math.,1973,SIAM,Phila.[16]Nessyahu,H.,\Non-OscillatorySecondOrderCentralTypeSchemeforSystemsofNon-LinearHyper-bolicConservationLaws,"M.Sc.Thesis,Tel-AvivUniversity,1987.[17]Osher,S.,\RiemannSolvers,TheEntropyConditionandDi erenceApproximating,"SIAMJ.Num.Anal.,Vol.21,1984,pp.217-235.[18]Osher,S.andTadmor,E.,\OntheConvergenceofDi erenceApproximationstoScalarConservationLaws,"Math.Comp.,Vol.50,1988,pp.19-.[19]Roe,P.L.,\ApproximateRiemannSolvers,ParameterVectors,andDi erenceSchemes,"J.Comput.Phys.,Vol.43,1981,pp.357-372.[20]Smoller,J.,\ShockWavesandReaction-Di usionEquations,"SpringerVerlag,N.Y.,1983. non-oscillatorycentraldifferencing[21]Sod,G.A.,\ASurveyofSeveralFiniteDi erenceMethodsforSystemsofNonlinearHyperbolicCon-servationLaws,"J.Comp.Phys.,Vol.27,1978,pp.1-31.[22]Tadmor,E.,\TheLargeTimeBehaviouroftheScalar,GenuinelyNonlinearLax-FriedrichsScheme,"Math.Comp.,Vol.43,1984,pp.353-368.[23]Tadmor,E.,\NumericalViscosityandtheEntropyConditionforConservativeDi erenceSchemes,"Math.Comp.,Vol.43,1984,pp.369-382.[24]VanLeer,B.,\TowardstheUltimateConservativeDi erenceSchemeV.A.Second-OrderSequeltoGodunov'sMethod,"J.Comp.Phys.,Vol.32,1979,pp.101-136.[25]Woodward,P.andCollellaP.,\TheNumericalSimulationofTwo-DimensionalFluidFlowwithStrongShocks,"J.Comp.Phys.,Vol.54,1984,pp.115-173.