/
The densest subgraph problem on clique graphs M The densest subgraph problem on clique graphs M

The densest subgraph problem on clique graphs M - PDF document

danika-pritchard
danika-pritchard . @danika-pritchard
Follow
420 views
Uploaded On 2015-05-27

The densest subgraph problem on clique graphs M - PPT Presentation

Liazi I Milis F Pascual and V Zissimopoulos Department of Informatics and Telecommunications University of Athens 157 84 Athens Greece mliazivassilis diuoagr Department of Informatics Athens University Economics and Business 104 34 Athens Greece ID: 75726

Liazi Milis

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "The densest subgraph problem on clique g..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Thedensestk-subgraphproblemoncliquegraphsM.Liazi1?,I.Milis2,F.Pascual3andV.Zissimopoulos11DepartmentofInformaticsandTelecommunications,UniversityofAthens,15784Athens,Greecefmliazi,vassilisg@di.uoa.gr2DepartmentofInformatics,AthensUniversityEconomicsandBusiness,10434Athens,Greecemilis@aueb.gr3IBISC,UniversityofEvry,523,PlacedesTerrassesdel'agora,91000Evry,Francefpascual@lami.univ-evry.frAbstract.TheDensestk-Subgraph(DkS)problemasksforak-vertexsubgraphofagivengraphwiththemaximumnumberofedges.TheproblemisstronglyNP-hard,asageneralizationofthewellknownCliqueproblemandwealsoknowthatitdoesnotadmitaPolynomialTimeApproximationScheme(PTAS).Inthispaperwefocusonspecialcasesoftheproblem,withrespecttotheclassoftheinputgraph.Especially,towardstheelucidationoftheopenquestionsconcerningthecomplexityoftheproblemforintervalgraphsaswellasitsapproximabilityforchordalgraphs,weconsidergraphshavingspecialcliquegraphs.WepresentaPTASforstarsofcliquesandadynamicprogrammingalgorithmfortreesofcliques.KeyWords:Densestk-subgraph,Cliquegraph,PolynomialTimeApproximationScheme,Dynamicprogramming1IntroductionIntheDensestk-subgraph(DkS)problemwearegivenagraphG=(V;E),jVj=n,andanintegerkn,andweaskforasubgraphofGinducedbyexactlykofitsverticessuch ?Theprojectisco- nancedwithinOp.EducationbytheESF(EuropeanSocialFund)andNationalResources. thatthenumberofedgesofthissubgraphismaximized.TheproblemisdirectlyNP-hardasgeneralizationofthewellknownMaximumCliqueproblem.IntheweightedversionoftheDkSwealsogivennonnegativeweightsontheedgesofGandthegoalisto ndak-vertexinducedsubgraphofmaximumtotaledgeweight.Duringlastyearsalargebodyofwork[2,3,5{7,10,14,19,20]hasbeenconcentratedonthedesignofapproximationalgorithmsforboththeDkSproblemanditsweightedversion,basedonavarietyoftechniquesincludinggreedyalgorithms,LPrelaxationsandsemidef-initeprogramming.Forabriefpresentationofthisbodyofworkthereaderisreferredtothemostrecentofthesearticles[3].However,thebestknownapproximationratiofortheDkSproblem,whichperformswellforallvaluesofk,isO(n),forsome1 3[5].Ontheotherhand,ithasbeenshownthattheDkSproblemsdoesnotadmitaPolynomialTimeApproximationScheme(PTAS)[13].However,thereisnotanegativeresultthatachievinganapproximationratioofO(n),forsome�0,isNP-hard.ConcerningapproximationalgorithmsforspecialcasesoftheproblemitisknownthattheDkSproblemadmitsaPTASforgraphsofminimumdegree\n(n)aswellasfordensegraphs(of\n(n2)edges)whenkis\n(n)[1].Moreover,algorithmsachievingapproximationfactorsof4[18]and2[11]havebeenproposedfortheweightedDkSproblemoncompletegraphswheretheweightssatisfythetriangleinequality.TheDkSproblemistrivialontrees(anysubtreeofkverticescontainsexactlyk1edges).ItisalsoknownthatDkSispolynomialforgraphsofmaximaldegreetwo[7]aswellasforcographs,splitgraphsandk-trees[4].OntheotherhandtheDkSproblemremainsNP-hardforbipartitegraphs[4],evenofmaximumdegreethree[7],aswellasforcomparabilitygraphs,chordalgraphs[4]andplanargraphs[12].TheweightedversionoftheDkSproblemispolynomialontreeseitherifweaskforaconnectedsolution[9,15,16]ornot[17].Infact,theresultforthelatercaseisimpliedbyaresultforthesolutionofthequadratic0-1knapsackproblemonedgeseries-parallelgraphsin[17]. AnoutstandingopenquestionconcernsthecomplexityoftheDkSproblemonintervalgraphsaswellasitsapproximabilityforchordalgraphs.Towardsthisdirectionwefocus,inthispaper,onchordalorintervalgraphshavingspecialcliquegraphs.Acliqueofanundirectedgraph,G=(V;E),isasubsetofitsverticesinducingacompletesubgraphinG.Theintersectiongraphofafamily,F,ofsubsetsofasetisde nedasagraph,G,whoseverticescorrespondtothesubsetsinF,andthereisanedgebetweentwoverticesofGifthecorrespondingpairofsubsetsintersect.Giventhesede nitions,thecliquegraphofagraphGisde nedastheintersectiongraphofthemaximalcliquesofG.Itiswellknownthatallmaximalcliques,andhencethecliquegraph,ofachordalgraphcanbefoundinpolynomialtime[8].Itis,clearly,convenienttostudytheDkSproblemonthecliquegraphofachordalgraphGinsteadontheGitself.Inthispaperweconsiderchordalorintervalgraphshavingspecialcliquegraphs,inordertofurtheridentifythefrontierbetweenhardandpolynomialsolvable/approximablevariantsofthetheDkSproblem.InthenextsectionwepresentaPTASforgraphsthathavingascliquegraphastar(starofcliques)andinSection3wepresentanO(nkm+1)timedynamicprogrammingalgorithmforgraphshavingascliquegraphatree(treeofcliques)ofmaximumdegreem.ThisalgorithmgivesanO(nk3)timealgorithmforgraphshavingascliquegraphapath(pathofcliques).Notethat,ingeneral,starsofcliquesaswellastreesofcliquesareneithergraphsofminimumdegree\n(n)nordensegraphs(of\n(n2)edges)forwhichaPTASisalreadyknown[1].2TheDkSproblemonstarsofcliquesInthissectionwestudygraphshavingascliquegraphastarofcliques.LetC0;C1;:::;Cm1bethemaximalcliquesofsuchastarsuchthatC0intersectswitheachothercliqueandnootherintersectionexists(byconventionwedenotebyCiboththecliqueCiandtheset ofitsvertices).SincesuchastaristhecliquegraphofagraphG,thereisnoedgeofGbetweenverticesbelongingtodi erentcliques.WeshallcalltheC0centralcliqueandallothercliques,Ci;1im1,exteriorcliques.ForeachexteriorcliqueCiwedenotebyaithenumberofverticesinitsintersectionwithC0i.e.,ai=jCi\C0jandbybithenumberofitsverticesoutsideC0i.e.,bi=jCijai�0.ByC00wedenotethecliqueconsistingoftheverticesofC0notbelongingtoanyothercliquei.e.,C00=C0nSm1i=1Ci.BySwedenoteasolutiontotheDkSproblemi.e.,asubsetofjSj=kvertices,andbyE(S)wedenotethenumberofedgesinthesubgraphinducedbyS.BySwedenoteanoptimalsolutiontotheDkSproblem.Byn�kisdenotedthetotalnumberofverticesinallcliques.WesaythatacliqueCi;0im1;iscompletelyinasolutionSifallitsverticesareinS.Ontheotherhand,wesaythatthecliquesC0andC00arepartiallyinasolutionSifanon-emptysubsetoftheirvertices,butnotall,areinS.However,wesaythatanexteriorcliqueCi;1im1;ispartiallyinSifanon-emptysubsetofitsCinC0vertices,butnotall,areinS.Wedistinguishthede nitionofthepartialinclusioninasolutionSforanexteriorcliqueCibecauseifonlysomeofitsCi\C0verticesareinS,theycanbeconsideredasverticesofC0.IngeneralwesaythatacliqueisparticipatinginasolutionSifitiseithercompletelyorpartiallyinS.ConcerninganoptimalsolutionSweobservethatifanexteriorcliqueCiispartiallyinS,thenallitsjCi\C0j=aiverticesareinS.Otherwisereplacingavertexy2CinC0;y2Sbyavertexx2Ci\C0;x=2Syieldsabettersolution,acontradiction.Inthefollowingweassumethat:(i)k�jCij;i=0;1;:::;m1.OtherwiseSconsistsofanysubsetofkverticesofsomecliqueforwhichjCijk. (ii)m�2.Form=1thepoint(i)holds.Form=2,ifk�jC0jjC1j,thenSconsistsoftheverticesofC0plusanysubsetofkjC0jverticesofC1nC0.Usingthesede nitionsandassumptionswegiveinthenextpropositionssomestructuralpropertiesofanoptimalsolutionS.Proposition1.AtmostoneofthecliquesC00;C1;:::;Cm1ispartiallyinanoptimalsolution.proof:Weprove rstthatatmostoneoftheexteriorcliquesispartiallyinS.SupposethattwoexteriorcliquesCi;Cj;1i=jm1arepartiallyinSandassumew.l.o.g.thatjS\CijjS\Cjj.Letx=2SbeavertexinCinC0andy2SbeavertexinCjnC0.ThenconsiderthesolutionSinwhichwereplaceybyx.Then,E(S)=E(S)(jS\Cjj1)+jS\CijE(S)+1,acontradictiontotheoptimalityofS.TocompletetheproofitsucestoprovethatisnotpossiblebothcliqueC00andanexteriorcliqueCjtobepartiallyinS.Thisfactfollowsbyusingthesameargumentsasbefore,butnowweconsiderC0insteadofCiandx=2StobeavertexinC00.Proposition2.(i)IfC0isthelargestcliquei.e.,jC0j�jCij;1im1,thenC0belongscompletelytoeveryoptimalsolution.(ii)IfC0ispartiallyinanoptimalsolutionS,thenjC0jjCijforeverycliqueCiparticipatinginS.proof:(i)SupposethatSdoesnotcontainsomeq�0verticesofC0andconsiderasolutionSobtainedfromSbyreplacingqverticesofexteriorcliquesnotinC0bytheqverticesofC0notinS.LetusdenotebyEandE+thenumberofedgeswhichareremovedandinserted,respectively,toE(S)bythisreplacement.Then,E(S)=E(S)E+E+. EequalstothenumberofedgesthatqverticesofexteriorcliquescontributetoE(S).Thisnumber,evenifalltheqverticesbelongtothesameexteriorclique,isstrictlylessthanq2+(jC0jq)q.Ontheotherhand,E+equalstothenumberofedgesthattheqverticesofC0notinSwillcontributetoE(S).Thisnumberisequaltoq2+(jC0jq)q.Therefore,E(S)�E(S),acontradictiontotheoptimalityofS.(ii)SupposethatthereisanexteriorcliqueCiinSsuchthatjC0j�jCijandthatSdoesnotcontainsomeq�0verticesofC0.NoticethatjC0jq�ai,sinceifjC0jqai,thennootherexteriorcliqueparticipatesinS,thatisSispartofasingleclique(eitherCiorC0).ConsiderasolutionSobtainedfromSbyreplacingverticesofS\CinotinC0byverticesofC0notinS.Letb0i=jS\(CinC0)j,0b0ibi.UsingagainEandE+asinpart(i)wehaveE(S)=E(S)E+E+.Nowwedistinguishbetweentwocasesw.r.t.thevaluesofqandb0i.Ifqb0ithenEequalstothenumberofedgesthatb0iverticesoftheexteriorcliqueCicontributestoE(S)whileE+equalstothenumberofedgesthattheb0iverticesofC0notinSwillcontributetoE(S).ThenE(S)=E(S)E+E+=E(S)(b0i2+b0iai)+(b0i2+b0i(jC0jq))=E(S)+b0i((jC0jq)ai)&#x-372;&#x.688;E(S),acontradictiontotheoptimalityofS.Ifqb0ithenEequalstothenumberofedgesthatqverticesoftheexteriorcliqueCicontributestoE(S)whileE+equalstothenumberofedgesthattheqverticesofC0notinSwillcontributetoE(S).ThenE(S)=E(S)E+E+=E(S)(q2+q(ai+b0iq))+(q2+q(jC0jq))=E(S)+q(jC0j(ai+b0i))E(S)+q(jC0jjCij)&#x-272;&#x.314;E(S),acontradictiontotheoptimalityofS. DespitethenicestructuralpropertiesofanoptimalsolutioninPropositions1and2,manynaturalgreedycriteriabasedonthesizesofthecliquesor/andthesizesofintersec-tionsfailtogivesuchanoptimalsolution.InthefollowingweareabletogiveapolynomialtimedynamicprogrammingalgorithmforthecasewherethecentralcliqueiscompletelyintheoptimalsolutionandaPTASforthegeneralcase.2.1CliqueC0iscompletelyintheoptimalsolution.Lemma1.IfcliqueC0iscompletelyintheoptimalsolution,thenthereisanO(nk2)dynamicprogrammingalgorithmfortheDkSproblemonastarofcliques.proof:SincecliqueC0iscompletelyintheoptimalsolutionwehavetochoosek0=kjC0jverticesfromexteriorcliques.IfwechooseqverticesfromanexteriorcliqueCj,thentheycontributeqaj+q2edgestothesolution.Letf(i;j)bethemaximumnumberofedgesinasolutionchoosingiverticesfromthe rstjexteriorcliques(recallthattherearem1exteriorcliques).Thusfori=0;1;2;:::;k0andj=2;3;:::;m1f(i;j)=max0qminfi;bjgff(iq;j1)+qaj+q2gForj=1thefollowingboundaryconditionsholdfor0iminfk0;b1gf(i;1)=8�&#x-4.4;内:i2+ia1;ifiminfk0;b1g1;otherwiseThecomplexityofthedynamicprogrammingalgorithmisO(nk2).Thecomputationofasinglef(i;j)valuetakesO(k)timeduetothepossiblevaluesofq(0qminfi;bjgk0k)andf(i;j)valuesarecomputedforeveryik0kandjm1n.The optimalsolution,fortheDkSproblemisf(k0;m1)+jC0j2:NoticethatifC0isthelargestclique,then,byProposition2(i),C0belongscompletelytoeveryoptimalsolutionandtheabovedynamicprogrammingalgorithmapplies.2.2APTASforthegeneralcase.Inthegeneralcase,C0ispartiallyintheoptimalsolutionand,byProposition2(i),thereareexteriorcliqueslargerthanC0.LetcbethenumberofthosecliquesofsizeatleastjC0j.Moreover,byProposition2(ii),thecliquesparticipatingintheoptimalsolutionaresomeoftheseccliques.Nextpropositiongivesaweakupperboundforthenumberc.Proposition3.IfC0ispartiallyinanoptimalsolution,thenthenumberofexteriorcliquesofsizeatleastjC0jisatmostp n.proof:Thenumber,c,ofexteriorcliquesissmallerthanorequaltojC0j,sinceCi\C0=;andCj\Ci=;;1i=jm1.Thus,ifjC0jp n,thencp n.OtherwisejC0j�p n.Then,thetotalnumberofverticesintheseccliquesisatleastcp nandatmostn.Hence,cp n:ToproceedtowardsaPTASwearguefurtheronthenumberoftheexteriorcliquesofsizeatleastjC0j.Wede ner=bk jC0jc.ThenthenumberofexteriorcliquesofsizeatleastjC0jthatcanbeinvolvedinanoptimalsolutionisatmostr.Letalsobea xednumberwhichwillbede nedlater.Comparingrwithwedistinguishbetweentwocases.Case1:rIfris"small",thenweproceedinanexhaustivemanner.WeexamineallthepossiblesetsofrcliquesoutofccliquesofsizeatleastjC0ji.e.,crsetsofcliques.Atechnicaldetail hereisthatcliqueC00shouldbealsoconsideredasoneoftheccliques.ItcanbeeasilydonebyconsideringcliqueC00asanexternalcliquewithzeroverticesoutsidecliqueC0.ByProposition3itfollowsthatthenumberofallthecrsetsofcliquesisO(nr 2).Foreachoneofthesesetsofrcliqueswecomputethekverticesthatmaximizethenumberofedgesasfollows:LetRbeasetofrcliques.ByProposition1,atmostoneofthecliquesinRispartiallyinS.Weconsiderallthe2r1subsetsofR.LetRibeoneofthesesubsetsandletCjibethejth;1jjRij,cliqueofthesetRi.ClearlyifPjRijj=1jCjijk,wediscardthesetRi.Otherwise,letk(j)=PjRijt=1;t=jjCtij,foreachj=1;2;:::;jRij.Ifk(j)&#x-282;&#x.344;kthenwediscardthisj.Otherwise(ifk(j)k)weobtainak-vertexsolutionbytakingkk(j)verticesfromcliqueCji,startingfromverticeswhichbelongtoitsintersectionwithC0.Considernowallthesolutionsobtainedforeachj=1;2;:::;jRij,andforeachRiR.Bytheirconstruction,thesesolutionsareallthepossiblek-vertexsolutionsforthesetRofcliques,undertherestrictionthatatmostoneofthemispartiallytaken.Therefore,to ndtheoptimalsolutionwesimplyhavetochoosetheonewiththemaximumnumberofedges.ForasetRofrcliques,thereare2r1subsetsRi,andforeachsubsetthereareatmostrpossiblesolutions.Therefore,thenumberofsolutionstocompareisO(r2r).RecallingthatwehavetoexamineO(nr 2)setsofrcliques,thenextlemmafollows.Lemma2.Forthecaser,bea xednumber,anoptimalsolutionfortheDkSprob-leminastarofcliquescanbefoundinO(r2rnr 2)time.Case2:rIfris"large",thenweproceedinagreedymanner.Weconsiderthesolution,S,obtainedbythefollowingsimplealgorithm: LetC1C2:::Cm1andtbethelargestintegernumbersuchthatkPti=1jCij=k0.ReturnalltheverticesofthecliquesC1C2:::Ctandkk0verticesofcliqueCt+1.Nextpropositionforthecaseofindependentcliqueswillbeusefulforboundingthedeviationofoursolutionfromtheoptimalone.Proposition4.LetR1andR2betwosetsofindependentcliqueswithallcliquesinR1ofsizeatleastLandallcliquesinR2ofsizeexactlyL.ForanypairofsetsofkverticesS1andS2inR1andR2,respectively,suchthatinbothsetsatmostonecliqueistakenpartially,itholdsthatE(S1)E(S2).proof:TransformS1toanequivalenttoS2setasfollowing.First,removefromeachcliqueinS1someverticessuchthateachcliqueinS1hasnowsizeexactlyL.Letk0thenumberoftheremovedvertices.Then,replacethek0verticeswithdk0 Lecliques,all,butone,ofsizeexactlyL.AlltheremovedverticesnowhavedegreeatmostL1whileinS1theyhaddegreeatleastL1.Thus,E(S1)E(S2).LetusnowconsiderthesolutionSobtainedbyouralgorithm.ByProposition2(ii),theoptimalsolutionSinvolvesexteriorcliquesofsizeatleastjC0j.Sinceouralgorithm ndsasolutionSbychoosingkverticesfromthelargerexteriorcliques,itfollowsthatallcliquesinSareofsizeatleastjC0j.Moreover,sincer=bk jC0jc,weneedatleastrcliquesofsizejC0jinorderto llk.Hence,choosingkverticesfromasetofindependentcliquesofsizejC0j,yieldsatleastrE(C0)edges.Therefore,byProposition4,itfollowsthatE(S)rE(C0).Clearly,anoptimalsolution,S,couldcontaincliquesofsmallersizethanthosechosenbyouralgorithm.ThesesmallcliquesareselectedbySduetotheedgesbetweentheir overlapswithC0.SincetheseedgesbelongtoC0,theoptimalsolutioncannotbegreaterthanE(S)plustheedgesofC0i.e.,E(S)E(S)+E(C0)E(S)+E(S) rE(S)+E(S) =E(S)+1 :Thus,nextlemmafollows.Lemma3.Forthecaser,where=1 ,01,thereisan(1)-approximationalgorithmfortheDkSprobleminastarofcliques.ThecomplexityofthegreedyapproximationalgorithmofLemma3isO(nlogn).ThecomplexityoftheexhaustiveoptimalalgorithmofLemma2isexponentialinr=1 ,thatisexponentialin1 .Hence,weobtainTheorem1.ThereisapolynomialtimeapproximationschemefortheDkSprobleminstarsofcliques.3TheDkSproblemontreesofcliques.InthissectionwepresentadynamicprogrammingalgorithmwhichyieldsanoptimalsolutionfortheDkSproblemforgraphshavingascliquegraphatree.LetC1;C2;:::;Ctbethecliquesofsuchatreeandmitsmaximumdegree.WeconsiderjCijk;i=1;:::;t,otherwisetheproblemistrivial.Weconsiderthetreerootedataleafclique,saycliqueCt.ThiswaytherootcliqueCthasatleastonevertexoutsideitsintersectionswithitschildrencliques.LetCibeanon-leafcliquewithmi1children,Ci1;:::;Cimi.WedenotebyQhtheintersectionofCiwithitshthchildclique,Ch,forh=i1;:::;imii.e.,Qh=Ci\Ch.WedenotebyFitheintersectionofthecliqueCiwithitsfatherclique,Cf,inthetreei.e.,Fi=Ci\CfandbyitheverticesofacliqueCinotbelongingtoanyintersectioni.e.,i=CiFiSimih=i1Qh. ByconventionweconsiderFt,fortherootcliqueCt,tobeconsistedofasinglevertexi.e.,jFtj=1.Thealgorithmtraversesthetreeofcliquesstartingfromtheleavescliques.Ineachstepitcomputesanoptimalsolutionforallthej-vertexdensestsubgraph(DjS)problems,forj=1;:::;k,onthesubtreerootedatcliqueCi.Wedenotebyfi(j)thevalueoftheoptimalsolutionoftheDjSproblemonthesubtreerootedatcliqueCi.Byfi(j;a)wedenotethevalueofanoptimalsolutiontotheDjSproblemonthesubtreerootedatcliqueCiincludingexactlyaverticesfromthecliqueFi.Itisclearthatfi(j)=max0ajFijffi(j;a)g:Tocomputeanfi(j;a)valueforanonleavecliqueCiweconsideritschildrencliquesCi1;:::;Cimi;mi1.Letfh(jh;ah)bethevalueofanoptimalsolutionofthejh-vertexdensestsubgraph,forjh=1;2;:::;k,onthesubtreerootedatcliqueCh,h=i1;:::;imi,usingahverticesofFh.NotethatfortheintersectionofthecliqueCiwithitschildChitholdsthatQh=Ci\Ch=Fh.Wecomputethevalueoffi(j;a),asfollows:Ifa=0,thennovertexofFi[ibelongstotheoptimalsolutionofthecorrespondingDjSproblemonthesubtreerootedatCi.Therefore,thevalueofthissolutionisthesameasthevalueoftheoptimalsolutiontotheDjSproblemonthesubgraphwhichistheunionofthesubtreesrootedatthechildrenofCiplustheedgesbetweentheverticesintheirQh's,thatisfi(j;a)=maxPimih=i1jh=jfimiXh=i1fh(jh;ah)+imiXi;j=i1i=jaiaj 2g: Ifa�0,thenanoptimalsolutiontotheDjSproblemincludingaverticesofFicanalsoincludeb0verticesofi,andah1vertices4ofeachQh,h=i1;:::;imi.Then,fi(j;a)=8������������&#x-4.4;傃&#x-4.4;傃&#x-4.4;傃&#x-4.4;傃&#x-4.4;傃&#x-4.4;傃&#x-4.4;傃&#x-4.4;傃&#x-4.4;傃&#x-4.4;傃&#x-4.4;傃&#x-4.4;傃:j2;ifjPimih=i1jQhj+jij+amaxa+b+Pimih=i1jh=jfimiXh=i1fh(jh;ah)+a+b2+(a+b)imiXh=i1ah+imiXi;j=i1i=jaiaj 2g;otherwise:ForallcliquesCithatareleavesinthetreethefollowingboundaryconditionsholdfor1jk:Ifa=0,thenfi(j;a)=0.If1ajFij,thenfi(j;a)=8�&#x-4.4;内:j2;ifjjij+a1;otherwise:Thealgorithmterminatesbycomputingthevalueft(k)fortherootcliqueCt.RecallthatweconsiderjFtj=1andthustheoptimalsolutionforthek-vertexdensestsubgraphproblemisft(k)=maxa=0;1fft(k;a)g.Thecomputationofasinglefi(j)valueforacliqueCiwithmichildrentakesO(kmi+1)timeduetothecombinationsofa;bandPimih=i1jh,suchthata+b+Pimih=i1jh=j.Thealgorithmcomputesfi(j),foreveryj=1;2;:::;kandforeveryi=1;2;:::;t.SinceintheworstcasetisO(n)andmaxifmig=m1thenexttheoremfollows:Theorem2.ThereisanO(nkm+1)algorithmfortheDkSproblemonatreeofcliquesofmaximumdegreem. 4orah0foradisconnectedsolution. NextcorollaryfollowsdirectlyfromTheorem2.Corollary1.ThereisanO(nk3)optimalalgorithmfortheDkSproblemonapathofcliques.4ConclusionsWehavepresentedaPTASforthedensestk-subgraphproblemonastarofcliquesandanO(nkm+1)timeoptimalalgorithmforthesameproblemontreesofcliques,wherenisthetotalnumberofverticesinallthecliquesandmthemaximumdegreeofthetree.ThislastalgorithmgivesanO(nk3)optimalalgorithmforpathsofcliques.SinceintervalandchordalgraphscanbeseenascliquegraphsourresultcouldbeexploitedinthedirectionofexploringthecomplexityandtheapproximabilityoftheDkSproblemintheseclassesofgraphs.Acknowledgment:Theauthorswouldliketothankthetwoanonymousrefereesfortheirvaluablecommentsthatsigni cantlyimprovedthepaper.References1.S.Arora,D.Karger,andM.Kaprinski.PolynomialtimeapproximationschemesfordenseinstancesofNP-hardproblems.InProceedingsofthe27thannualACMsymposiumonTheoryofComputing,pages284{293,1995.2.Y.Asahiro,K.Iwama,H.Tamaki,andT.Tokuyama.Greedily ndingadensesubgraph.JournalofAlgorithms,34(2):203{221,2000.3.A.BillionnetandF.Roupin.Adeterministicalgorithmforthedensestk-subgraphproblemusinglinearprogramming.TechnicalReportNo486,CEDRIC,CNAM-IIE,Paris,2004.4.D.G.CorneilandY.Perl.Clusteringanddominationinperfectgraphs.DiscreteAppliedMathematics,9:27{39,1984.5.U.Feige,G.Kortsarz,andD.Peleg.Thedensek-subgraphproblem.Algorithmica,29(3):410{421,2001.6.U.FeigeandM.Langberg.Approximationalgorithmsformaximizationproblemsarisingingraphpartitioning.JournalofAlgorithms,41(2):174{211,2001. 7.U.FeigeandM.Seltser.Onthedensestk-subgraphproblem.TechnicalReportCS97-16,WeizmannInstitute,1997.8.F.Gavril.Algorithmsforminimumcoloring,maximumclique,minimumcoveringbycliquesandmaximumindependentsetofchordalgraph.SIAMJournalonComputing,1(2):180{187,1972.9.O.GoldschmidtandD.Hochbaum.k-edgesubgraphproblems.DiscreteAppliedMathematicsandCombina-torialOperationsResearchandComputerScience,74(2):159{169,1997.10.Q.Han,Y.Ye,andJ.Zhang.Animprovedroundingmethodandsemide niteprogrammingrelaxationforgraphpartition.MathematicalProgramming,92(3):509{535,2002.11.R.Hassin,S.Rubinstein,andA.Tamir.Approximationalgorithmsformaximumdispersion.OperationsResearchLetters,21(3):133{137,1997.12.J.M.KeilandT.B.Brecht.Thecomplexityofclusteringinplanargraphs.JournalofCombinatorialMathematicsandCombinatorialComputing,9:155{159,1991.13.S.Khot.RulingoutPTASforgraphmin-bisection,densestsubgraphandbipartiteclique.InProceedingsofthe45thAnnualIEEESymposiumonFoundationsofComputerScience,pages136{145,2004.14.G.KortsarzandD.Peleg.Onchoosingadensesubgraph.InProceedingsofthe34thAnnualIEEESymposiumonFoundationsofComputerScience,pages692{701,1993.15.F.Maoli.Findingabestsubtreeofatree.TechnicalReport91.041,PolitechnicodiMilano,DipartimentodiElektronica,1991.16.Y.PerlandY.Shiloach.Ecientoptimizationofmonotonicfunctionsontrees.SIAMJournalofAlgebricandDiscreteMethods,4(4):512{516,1983.17.D.J.Jr.RaderandG.J.Woeginger.Thequadratic0-1knapsackproblemwithseries-parallelsupport.OperationResearchLetters,30(3):159{166,2002.18.S.S.Ravi,D.J.Rosenkrantz,andG.K.Tayi.Heuristicandspecialcasealgorithmsfordispersionproblems.OperationsResearch,42(2):299{310,1994.19.A.SrivastavandK.Wolf.Findingdensesubgraphswithsemide niteprogramming.InProceedingsoftheInternationalWorkshoponApproximationAlgorithmsforCombinatorialOptimization,pages181{191,1998.20.Y.YeandJ.Zhang..519approximationofdense-n/2-subgraph.WorkingPaper,DepartmentofManagementSciences,HenryB.TippieCollegeofBusiness,TheUniversityofIowa,1999.