/
Tinbergen Institute is the graduate school and research institute in e Tinbergen Institute is the graduate school and research institute in e

Tinbergen Institute is the graduate school and research institute in e - PDF document

danika-pritchard
danika-pritchard . @danika-pritchard
Follow
454 views
Uploaded On 2015-12-01

Tinbergen Institute is the graduate school and research institute in e - PPT Presentation

Tinbergen Institute has two locations Tinbergen Institute Amsterdam Gustav Mahlerplein 117 1082 MS Amsterdam The Netherlands Tel 31020 525 1600 Tinbergen Institute Rotterdam Burg Oudlaan 50 30 ID: 211395

Tinbergen Institute has two

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Tinbergen Institute is the graduate scho..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Tinbergen Institute is the graduate school and research institute in economics of Erasmus University Rotterdam, the University of Amsterdam and VU University Amsterdam. More TI discussion papers can be downloaded at http://www.tinbergen.nl Tinbergen Institute has two locations: Tinbergen Institute Amsterdam Gustav Mahlerplein 117 1082 MS Amsterdam The Netherlands Tel.: +31(0)20 525 1600 Tinbergen Institute Rotterdam Burg. Oudlaan 50 3062 PA Rotterdam The Netherlands Tel.: +31(0)10 408 8900 Fax: +31(0)10 408 9031 Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the ambition to support innovative research and offer top quality academic education in core areas of finance. DSF research papers can be downloaded at: http://www.dsf.nl/ Duisenberg school of finance Gustav Mahlerplein 117 1082 MS Amsterdam The Netherlands Tel.: +31(0)20 525 8579 TimeVaryingTransitionProbabilitiesforMarkovRegimeSwitchingModelsMarcoBazzi(a),FranciscoBlasques(b)SiemJanKoopman(b;c),AndreLucas(b)(a)UniversityofPadova,Italy(b)VUUniversityAmsterdamandTinbergenInstitute,TheNetherlands(c)CREATES,AarhusUniversity,DenmarkAbstractWeproposeanewMarkovswitchingmodelwithtimevaryingprobabilitiesforthetransitions.Thenoveltyofourmodelisthatthetransitionprobabilitiesevolveovertimebymeansofanobservationdrivenmodel.Theinnovationofthetimevaryingprobabilityisgeneratedbythescoreofthepredictivelikelihoodfunction.Weshowhowthemodeldynamicscanbereadilyinterpreted.WeinvestigatetheperformanceofthemodelinaMonteCarlostudyandshowthatthemodelissuccessfulinestimatingarangeofdi erentdynamicpatternsforunobservedregimeswitchingprobabilities.WealsoillustratethenewmethodologyinanempiricalsettingbystudyingthedynamicmeanandvariancebehaviourofU.S.IndustrialProductiongrowth.We ndempiricalevidenceofchangesintheregimeswitchingprobabilities,withmorepersistenceforhighvolatilityregimesintheearlierpartofthesample,andmorepersistenceforlowvolatilityregimesinthelaterpartofthesample.Somekeywords:HiddenMarkovModels;observationdrivenmodels;generalizedautoregressivescoredynamics.JELclassi cation:C22,C32. Theauthorsthankparticipantsofthe\2014WorkshoponDynamicModelsdrivenbytheScoreofPredictiveLikelihoods",LaLaguna,andseminarparticipantsandVUUniversityAmsterdamforusefulcommentsanddiscussions.BlasquesandLucasthanktheDutchScienceFoundation(NWO,grantVICI453-09-005)for nancialsupport.KoopmanacknowledgessupportfromCREATES,CenterforResearchinEconometricAnalysisofTimeSeries(DNRF78),fundedbytheDanishNationalResearchFoundation.1 1IntroductionMarkovregimeswitchingmodelshavebeenwidelyappliedineconomicsand nance.SincetheseminalapplicationofHamilton(1989)toU.S.realGrossNationalProductgrowthandthewell-knownNBERbusinesscycleclassi cation,themodelhasbeenadoptedinnumerousotherapplications.Examplesareswitchesinthelevelofatimeseries,switchesinthe(autoregressive)dynamicsofvectortimeseries,switchesinvolatilities,andswitchesinthecorrelationordependencestructurebetweentimeseries;seeHamiltonandRaj(2002)forapartialsurvey.ThekeyattractivefeatureofMarkovswitchingmodelsisthattheconditionaldistributionofatimeseriesdependsonanunderlyinglatentstateorregime,whichcantakeonlya nitenumberofvalues.ThediscretestateevolvesthroughtimeasadiscreteMarkovchainandwecansummarizeitsstatisticalpropertiesbyatransitionprobabilitymatrix.Dieboldetal.(1994)andFilardo(1994)arguethattheassumptionofaconstanttransi-tionprobabilitymatrixforaMarkovswitchingmodelistoorestrictiveformanyempiricalsettings.TheyextendthebasicMarkovswitchingmodeltoallowthetransitionprobabili-tiestovaryovertimeusingobservablecovariates,includingstrictlyexogenousexplanatoryvariablesandlaggedvaluesofthedependentvariable.Althoughthisapproachcanbeusefulande ective,itisnotalwaysclearwhatvariablesorwhichfunctionalspeci cationweshouldusefordescribingthedynamicsinthetransitionprobabilities.Ourmaincontributioninthispaperistoproposeanew,dynamicapproachtomodeltimevariationintransitionprobabilitiesinMarkovswitchingmodels.Weletthetransitionprobabilitiesvaryovertimeasspeci ctransformationsofthelaggedobservations.Henceweadoptanobservationdrivenapproachtotimevaryingparametermodels;seeCox(1981)foradetaileddiscussion.Observationdrivenmodelshavetheadvantagethatthelikeli-hoodistypicallyavailableinclosedformusingapredictionerrordecomposition.Ourmainchallengeistospecifyasuitablefunctionalformtolinkpastobservationstofuturetransi-tionprobabilities.Forthispurpose,weusethescoresofthepredictivelikelihoodfunction.SuchscoredrivendynamicshavebeenintroducedbyCrealetal.(2011,2013)andHarvey(2013).Scoredrivenmodelsencompassmanywell-knowntimeseriesmodelsineconomicsand nance,includingtheARCHmodelofEngle(1982),thegeneralizedARCH(GARCH)modelofBollerslev(1986),theexponentialGARCH(EGARCH)modelofNelson(1991),theautoregressiveconditionalduration(ACD)modelofEngleandRussell(1998),andmanymore.Inaddition,varioussuccessfulapplicationsofscoremodelshaveappearedinthere-centliterature.Forexample,Crealetal.(2011)andLucasetal.(2014)studydynamicvolatilitiesandcorrelationsunderfat-tailsandpossibleskewness;HarveyandLuati(2014)introducenewmodelsfordynamicchangesinlevelsunderfattails;Crealetal.(2014)inves-tigatescore-basedmixedmeasurementdynamicfactormodels;OhandPatton(2013)andDeLiraSalvatierraandPatton(2013)investigatefactorcopulasbasedonscoredynamics;andKoopmanetal.(2012)showthatscoredriventimeseriesmodelshaveasimilarfore-2 castingperformanceascorrectlyspeci ednonlinearnon-Gaussianstatespacemodelsoverarangeofmodelspeci cations.WeshowthatthescorefunctioninourMarkovswitchingmodelhasahighlyintuitiveform.Thescorecombinesallrelevantinnovativeinformationfromtheseparatemodelsassociatedwiththelatentstates.Theupdatesofthetimevaryingparametersarethereforebasedontheprobabilitiesofthestates,givenallinformationuptotimet�1.Inoursimulationexperiments,thenewmodelperformswellandsucceedsincapturingarangeoftimevaryingpatternsfortheunobservedtransitionprobabilities.WeapplyourmodeltostudythemonthlyevolutionofU.S.IndustrialProductiongrowthfromJanuary1919toOctober2013.Weuncoverthreeregimesforthemeanandtworegimesforthevarianceoverthesampleperiodconsidered.Thecorrespondingtransitionprobabilitiesaretimevarying.Inparticular,thehighvolatilityregimeappearstobemuchmorepersistentintheearlierpartofthesamplecomparedtothelaterpart.Theconverseholdsforthelowvolatilityregime.Suchchangesinthedynamicsofthetimeseriesarecapturedinastraightforwardwaywithinourmodel.Moreover,the tofthenewmodeloutperformsthe tofseveralcompetingmodels.Asa nalcontribution,itisworthwhilementioningthatourmodelalsopresentsaninterestingmixofparameterdriven(Markovswitching)dynamicswithobservationdrivenscoredynamicsforthecorresponding(transitionprobability)parameters.Inparticular,itisinterestingtoseethatscoredrivenmodelscanstillbeadoptedwhenanadditional lteringstep(fortheunobserveddiscretestates)isrequiredtocomputethescoreoftheresultingconditionalobservationdensity.Thisfeatureofthenewdynamicswitchingmodelisinterestinginitsownright.SimilardevelopmentsforalinearGaussianstatespacemodelhavebeenreportedbyCrealetal.(2008)andDelleMonacheandPetrella(2014)Theremainderofthepaperisorganizedasfollows.InSection2webrie ydiscussthemainset-upoftheMarkovswitchingmodelanditsresidualdiagnostics.InSection3weintroducethenewMarkovswitchingmodelwithtimevaryingtransitionprobabilitiesbasedonthescoreofthepredictivelikelihoodfunction.InSection4wediscusssomeofthestatisticalpropertiesofthemodel.InSection5wereporttheresultsofaMonteCarlostudy.InSection6wepresenttheresultsofourempiricalstudyintothedynamicsalientfeaturesofU.S.IndustrialProductiongrowth.Section7concludes.2MarkovswitchingmodelsMarkovswitchingmodelsarewell-knownandwidelyusedinappliedeconometricstudies.WerefertothetextbookofFruhwirth-Schnatter(2006)foranextensiveintroductionanddiscussion.ThetreatmentbelowestablishesthenotationanddiscussessomebasicnotionsofMarkovswitchingmodels.3 Letfyt;t=1;:::;TgdenoteatimeseriesofTunivariateobservations.Weconsiderthetimeseriesfyt;t=1;:::;Tgasasubsetofastochasticprocessfytg.Theprobabilitydistributionofthestochasticprocessytdependsontherealizationsofahiddendiscretestochasticprocesszt.Thestochasticprocessytisdirectlyobservable,whereasztisalatentrandomvariablethatisobservableonlyindirectlythroughitse ectontherealizationsofyt.ThehiddenprocessfztgisassumedtobeanirreducibleandaperiodicMarkovchainwith nitestatespacef0;:::;K�1g.ItsstochasticpropertiesaresucientlydescribedbytheKKtransitionmatrix,,whereijisthe(i+1;j+1)elementofandisequaltothetransitionprobabilityfromstateitostatej.Allelementsofarenonnegativeandtheelementsofeachrowsumto1,thatisij=P[zt=jjzt�1=i];K�1Xj=0ij=1;ij0;8i;j2f0;:::;K�1g:(1)Letp(ji; )beaparametricconditionaldensityindexedbyparametersi2and 2 ,whereiisaregimedependentparameterand isnotregime-speci c.Weassumethattherandomvariablesy1;:::;yTareconditionallyindependentgivenz1;:::;zT,withdensitiesytj(zt=i)p(ji; ):(2)Forthejointstochasticprocessfzt;ytg,theconditionaldensityofytisp(ytj ;It�1)=K�1Xi=0p(ytji; )P(zt=ij ;It�1);(3)whereIt�1=fyt�1;yt�2;:::gistheobservedinformationavailableattimet�1.Allparam-eters and0;:::;K�1areunknownandneedtobeestimated.TheconditionalmeanofytgivenztandIt�1maycontainlagsofytitself.FrancqandRoussignol(1998)andFrancqandZakoan(2001)derivetheconditionsfortheexistenceofanergodicandstationarysolutionforthegeneralclassofMarkovswitchingARMAmodels.Inparticular,theyshowthatglobalstationarityofytdoesnotrequirethestationarityconditionswithineachregimeseparately.Asanexample,considerthecaseK=2foracontinuousvariableytwithconditionaldensityp(jzt)=N�(1�zt)0+zt1;2;(4)where0and1arestaticregime-dependentmeans,and2isthecommonvariance.Thelatenttwo-stateprocessfztgisdrivenbythetransitionprobabilitymatrix= 001�001�1111!;(5)4 wherethetransitionprobabilitiessatisfy000;111.Wehavei=ifori=0;1,and =(2;00;11)0.Toevaluateequation(3),werequirethequantitiesP(zt=ij ;It�1)forallt.Wecancomputetheseecientlyusingtherecursive lteringapproachofHamilton(1989).Assumingwehaveanexpressionforthe lteredprobabilityP(zt�1=ij ;It�1),wecanobtainthepredictiveprobabilitiesP(zt=ij ;It�1)asP(zt=ij ;It�1)=K�1Xk=0kiP(zt�1=kj ;It�1):(6)Hence,theconditionaldensityofytgivenIt�1isgivenbyp(ytj ;It�1)=K�1Xi=0K�1Xk=0p(ytji; )kiP(zt�1=kj ;It�1):(7)Wecanrewritethisexpressionmorecompactlyinmatrixnotation.De net�1astheK�dimensionalvectorcontainingthe lteredprobabilitiesP(zt�1=ij ;It�1)attimet�1andlettbetheK�dimensionalvectorcollectingthedensitiesp(ytji; )attimetfori=0;:::;K�1.Itfollowsthat(7)reducestop(ytj ;It�1)=0t�1t:(8)The lteredprobabilitiestcanbeupdatedbytheHamiltonrecursiont=�0t�1 t 0t�1t;(9)where denotestheHadamardelementbyelementproduct.The lterneedstobestartedfromanappropriatesetofinitialprobabilitiesP(z0=ij ;I0).ThesmoothedestimatesoftheregimeprobabilitiesP(zt=ij ;IT)canbeobtainedfromthealgorithmofKim(1994).TheHamilton lterin(9)isimplementedfortheevaluationofthethelog-likelihoodfunctionwhichisnumericallymaximizedwithrespecttotheparametervector(00;:::;0K�1; 0)0usingaquasi-Newtonoptimizationalgorithm.Toavoidlocalmaxima,weconsiderdi erentstartingvaluesforthenumericaloptimization.DiagnosticcheckinginMarkovregimeswitchingmodelsissomewhatmorecomplicatedwhencomparedtoothertimeseriesmodelsbecausethetrueresidualsdependonthelatentvariablezt.Hencetheresidualsareunobserved.AstandardsolutionistheuseofgeneralizedresidualswhichhavebeenintroducedbyGourierouxetal.(1987)inthecontextoflatentvariablemodels.TheyhavebeenusedinthecontextofMarkovregimeswitchingmodelsbyTurneretal.(1989),Gray(1996),MaheuandMcCurdy(2000),andKimetal.(2004).Giventhe lteredregimeprobabilitiesP(zt=ij ;It�1),fori=0;:::;K�1,letiand2i5 denotetheconditionalmeanandtheconditionalvarianceofytinregimei.Thestandardizedgeneralizedresidualetisde nedaset=K�1Xi=0yt�i iP(zt=ij ;It�1);t=1;:::;T:(10)Alsointhecontextofswitchingmodels,Smith(2008)adoptsthetransformationproposedbyRosenblatt(1952)andde nestheRosenblattresidual~etas~et=�1 K�1Xi=0P(zt=ij ;It�1)��1i(yt�i)!;(11)wheredenotesthecumulativedistributionfunctionofastandardnormalwiththecorre-spondinginversefunction�1.IfytisgeneratedbythedistributionimpliedbytheMarkovswitchingmodel,thentheRosenblattresidual~etisstandardnormallydistributed.Further-more,Smith(2008)showsinanextensiveMonteCarlostudythatLjung-BoxtestsbasedontheRosenblatttransformationhavegood nite-samplepropertiesforthediagnosticcheckingofserialcorrelationinthecontextofMarkovregimeswitchingmodels.3TimevaryingtransitionprobabilitiesIntheprevioussectionweconsideredthetransitionprobabilitymatrixtobeconstantovertime.Dieboldetal.(1994)andFilardo(1994)argueforhavingtimevaryingtransitionprobabilitiest.Theyproposetolettheelementsoftbefunctionsofpastvaluesofthedependentvariableytandofexogenousvariables.TheHamilton lterandKimsmoothercaneasilybegeneralizedtohandlesuchcasesoftimevaryingt.Akeychallengeistospecifyanappropriateandparsimoniousfunctionthatlinksthelaggeddependentvariablestofuturetransitionprobabilities.Forthespeci cationofthedynamicsoft,weadoptthegeneralizedautoregressivescoredynamicsofCrealetal.(2013);similardynamicscoremodelshavebeenproposedbyCrealetal.(2011)andHarvey(2013).WeprovidethedetailsofthescoredrivenmodelfortimevaryingtransitionprobabilitiesintheMarkovregimeswitchingmodel.Thenewdynamicmodelisparsimoniousandtheupdatingmechanismishighlyintuitive.Eachprobabilityupdateisbasedontheweightingofthelikelihoodinformationp(ji; )in(2)foreachseparateregimei.3.1DynamicsdrivenbythescoreofpredictivelikelihoodTheparametervector containsboththetransitionprobabilitiesaswellasotherparameterscapturingtheshapeoftheconditionaldistributionsp(ytj ;It�1).Withaslightabuseofnotation,wesplit intoadynamicparameterftthatweusetocapturethedynamic6 transitionprobabilities,andanewstaticparameter thatgathersallremainingstaticparametersinthemodel,aswellassomenewstaticparametersthatgovernthetransitiondynamicsofft.Forexample,inthetwo-stateexampleofSection2wemaychooseft=(f00;t;f11;t)0withf00;t=logit(00;t)andf11;t=logit(11;t),wherelogit(00;t)=log(00;t)�log(1�00;t),andlog()referstothenaturallogarithm.Atthesametime,weset =(2;!;A;B),where!,A,andBarede nedbelowinequation(12).Fortheremainderofthispaper,wedenotetheconditionalobservationdensitybyp(ytjft; ;It�1).IntheframeworkofCrealetal.(2013),thedynamicprocessesfortheparametersaredrivenbyinformationcontainedinthescoreoftheconditionalobservationdensityp(ytjft; ;It�1)withrespecttoft.ThemainchallengeinthecontextofMarkovswitchingmodelsisthattheconditionalobservationdensityisitselfamixtureofdensitiesusingthelatentmixingvariablezt.Therefore,theshapeofourconditionalobservationdensityasgivenbyequation(3)issomewhatinvolved.Theupdatingequationforthetimevaryingparameterftbasedonthescoreofthepredictivedensityisgivenbyft+1=!+Ast+Bft;st=Strt;rt=@ @ftlogp(ytjft; ;It�1);(12)where!isavectorofconstants,AandBarecoecientmatrices,andstisthescaledscoreofthepredictiveobservationdensitywithrespecttoftusingthescalingmatrixSt.Theupdatingequation(12)canbeviewedasasteepestascentorNewtonstepforftusingthelogconditionaldensityattimetasitscriterionfunction.AninterestingchoiceforSt,asrecognizedbyCrealetal.(2013),isthesquarerootmatrixoftheinverseFisherinformationmatrix.ThisparticularchoiceofStaccountsforthecurvatureofrtasafunctionofft.Also,forthischoiceofStandundercorrectmodelspeci cation,thescaledscorefunctionsthasaunitvariance;seealsoSection4.3.2Timevaryingtransitionprobabilities:thecaseof2statesWe rstconsiderthetwo-stateMarkovregimeswitchingmodel,K=2.Weletthetransitionprobabilities00;tand11;tvaryovertimewhilethetworemainingprobabilitiesaresetto01;t=1�00;tand10;t=1�11;tasin(5).Wespecifythetransitionprobabilitiesasii;t=ii+(1�2ii)exp(�fii;t)=(1+exp(�fii;t));i=0;1;wheref00;tandf11;taretheonlytwoelementsinthetimevaryingparametervectorft,andwherethetwoparameters0ii0:5,fori=0;1,canbesetbytheeconometriciantolimittherangeoverwhichii;tcanvary.IntheapplicationinSection6,wesetwesetii=0,fori=0;1,suchthatii;tcantakeanyvalueintheinterval(0;1).Weprefertoworkwithaparsimoniousmodelspeci cationandthereforewetypicallyhavediagonalmatricesforAandBin(12).Theupdatingequationsforthetimevarying7 parameterftisgivenbyequation(12)wherethescalingissettoSt=I�0:5t�1whereIt�1isthe22Fisherinformationmatrixcorrespondingtothe21scorevectorrtde nedin(12).Thescorevectorfortheconditionaldensityin(7)takestheformrt=p(ytj0; )�p(ytj1; ) p(ytj ;It�1)g�ft; ;It�1;(13)g�ft; ;It�1= P[zt�1=0j ;It�1](1�200)00;t(1�00;t)�P[zt�1=1j ;It�1](1�211)11;t(1�11;t)!:(14)Thisexpressionhasahighlyintuitiveform.The rstfactorin(13)isthedi erenceinthelikelihoodofytgivenzt=0versuszt=1.Thedi erenceisscaledbythetotallikelihoodoftheobservationgivenallthestaticparameters.Ifthelikelihoodofytgivenzt=0isrelativelylargecomparedtothatforzt=1,weexpectf00;ttoriseandf11;ttodecrease.Thisispreciselywhathappensinequations(13)and(14).Themagnitudesofthestepsaredeterminedbytheconditionalprobabilitiesofbeinginregimezt�1=0orzt�1=1,respectively,attimet�1.Theremainingfactors(1�2ii)ii;t(1�ii;t),fori=0;1,areduetothelogitparameterization.Inparticular,ifwearealmostcertainofbeinginregimezt�1=0attimet�1,thatisP[zt�1=0j ;It�1]1,thenwetakealargestepwithf00;tbutwedonotmovef11;tbymuch.Obviously,ifwearealmostcertainofbeinginregimezt�1=0,ytcanonlylearnussomethingabout00;t.Wedonotlearnmuchabout11;tinthiscase.Theconverseholdsifwearealmostcertainofbeinginregimezt�1=1attimet�1,inwhichcasewecanonlylearnaboutf11;t=logit(11;t).Theweightsforthe lteredprobabilitiesinthevectorg(ft; ;It�1)in(13)takesaccountofthis.TheconditionalFisherinformationmatrixbasedon(13)issingularbydesign.Thevectorg(ft; ;It�1)ontheright-handsideof(13)isIt�1-measurableandhencetheexpectationofitsouterproductremainsofrank1.Therefore,wescalethescorebyasquarerootMoore-Penrosepseudo-inverse1oftheconditionalFisherinformationmatrix.Wehavest=Gt[p(ytj0; )�p(ytj1; )]=p(ytj ;It�1) q R1�1[p(ytj0; )�p(ytj1; )]2=p(ytj ;It�1)dyt;(15)withGt=g�ft; ;It�1= g�ft; ;It�1 ,andwheretheintegralhasnoclosedformingeneralandiscomputednumerically,forexampleusingGauss-Hermitequadraturemethods.AnalternativetotheanalyticMoore-Penrosepseudo-inverseisanumericalpseudoinverse;forexample,wecouldusetheTikhonovregularizedmatrixinverseasgivenbyI1=2t�1=�I+(1�)It�1�1=2,withunitmatrixIand xedscalar01.For!0theTikhonovinversecollapsestotheMoore-Penrosepseudo-inverse. 1Ifx2Rnisavector,thentheMoore-Penrosepseudo-inverseofxx0isgivenbykxk�4xx0,anditssquarerootbykxk�3xx0,askxk�3xx0kxk�3xx0=kxk�4xx0.Asg(ft; ;It�1)isIt�1-measurable,scalingthescorebythesquarerootMoore-Penrosepseudo-inverseoftheconditionalFisherinformationmatrixyeldsanexpressionproportionaltokg(ft; ;It�1)k�3g(ft; ;It�1)g(ft; ;It�1)0g(ft; ;It�1)=kg(ft; ;It�1)k�1g(ft; ;It�1).8 3.3Timevaryingtransitionprobabilities:thecaseofKstatesWecaneasilygeneralizethetwo-regimemodeltoKregimes.Toenforcethatalltransitionprobabilitiesarenon-negativeandsumtoone(row-wise),weusethemultinomiallogitspeci cation.Givenasetofvaluesfor0ij0:5,wesetij;t=ij+(1�2ij)exp(fij;t)"1+K�1Xj=1exp(fij;t)#�1;i;K�1;t=1�K�1Xj=1ij;t(ij);(16)fori=0;:::;K�1andj=0;:::;K�2.Thetimevaryingparametersfij;t,correspondingtothetimevaryingtransitionprobabilitiesij;t,arecollectedintheK(K�1)1vectorft.Thevectorftissubjecttotheupdatingequation(12).Theingredientsforthescaledscorevectorintheupdatingequation(12)aregivenbyrt=J0trt;It�1=E[J0rtrt0Jt];rt=@logp(ytj ;It�1) @vec()0=t t�1 p(ytj ;It�1);where istheKroneckerproductandtheelementsofJt=@vec(t)=@f0taregivenby@ij;t @fi0j0;t=8�&#x]TJ ;� -2;.51; Td;&#x [00;:(1�2ij)ij;t(1�ij;t);fori=i0^j=j0;�(1�2ij)ij;tij0;t;fori=i0^j6=j0;0;otherwise:;fori;i0=0;:::;K�1andj;j0=0;:::;K�2.4StatisticalpropertiesInthissectionwestudythestochasticpropertiesoftheestimateddynamictransitionprob-abilitiesinourscoredrivenMarkovswitchingmodel.Inparticular,weanalyzethebehavioroftheestimatedtimevaryingparameterasafunctionofpastobservationsy1;:::;yt�1,pa-rametervector ,andinitialpointf1.Wewritetheprocessasf~ftgwith~ft:=~ft( ;f1),fort=1;:::;T.WefollowBlasquesetal.(2012),whousethestationarityandergodicity(SE)conditionsformulatedbyBougerol(1993)andStraumannandMikosch(2006)forgeneralstochasticrecurrenceequations.De ne~Xt=(~f0t;~0t)0asthestackedvectorof lteredtimevaryingparameters~ftand lteredprobabilities~tasde nedin(9).Wede ne~t=~t( ;1)forsomeinitialpoint1.Ourstochasticrecurrenceequationforthe lteredprocessf~Xtgnowtakestheform~Xt+1=H(~Xt;yt; ),where~Xt+1="~t+1~ft+1#=H(~Xt;yt; ):=" (~t;~ft;yt; )!+As(~t;~ft;yt; )+B~ft#;wheres(~t;~ft;yt; )isthescaledscorede nedin(15)and (~t;~ft;yt; )isthefractionde nedin(9)fortherecursion~t+1= (~ft;~t;yt; ):=�0~t�1 t=~0t�1t.The9 followingpropositionstatessucientconditionsforthe lteredprocessf~Xt( ;X1)gwithinitializationatX1:=(01;f01)0toconvergealmostsurelyandexponentiallyfast(e.a.s)toauniquelimitSEprocessf~Xt( )g.2Proposition1.LetfytgbeSE,withijin(16)satisfyingij�0forallpairs(i;j),andassumethatforevery 2 (i)Elog+ H�1;f1;y1;  1;(ii)Elnsup(f;) _H�f;;y1;  0;where_H(X;y1; )=@H(X;y1; )=@XdenotestheJacobianfunctionofHw.r.t.X.Thenf~Xt( ;X1)gconvergese.a.s.toauniqueSEprocessf~Xt( )g,forevery 2 ,thatisk~Xt( ;X1)�~X( )ke:a:s:!0ast!18 2 .Proof.TheassumptionthatfytgisSEimpliesthatftgin(9)isSE.TogetherwiththecontinuityofH(andtheresultingmeasurabilityw.r.t.theBorel-algebra),itfollowsthatfH(;;yt; )gisSEforevery byKrengel(1985,Proposition4.3).ConditionC1inBougerol(1993,Theorem3.1)isimmediatelyimpliedbyassumption(i)forevery 2 .ConditionC2inBougerol(1993,Theorem3.1)isimplied,forevery 2 ,bycondition(ii).Asaresult,forevery 2 ,f~Xt( ;f1)gconvergesalmostsurelytoanSEprocessf~X( )g.Uniquenessande.a.s.convergenceisobtainedbyStraumannandMikosch(2006,Theorem2.8). Proposition1e ectivelyde nesthosecombinationsof,AandBforwhichwecanensurethatthe lteredsequencef~Xt( ;f1)gconvergese.a.s.toanSElimitforagivenSEdatasequencefytg.Weemphasizethata nite!isrequiredforcondition(i)toholdsince!enterstheHfunction.However,!playsnoroleinthecontractioncondition(ii)asitdoesnotin uencetheJacobian_H.Numericalexperiments(notreportedhere)suggestthatstabilityisachievedbyawiderangeofcombinationsoftheparameters,AandB,whereisavectorcontainingallij.Inparticular,thesetofstablecombinations(A,B)becomeslargerforhighervaluesof.Thismechanismisintuitivebecausetheentriesofthevectorboundtheelementsofthevectorandawayfromzeroandone.Asaresult,�0ensuresthatthedenominatorin(9)isboundedawayfromzeroandhencethesequenceftgbecomesmorestable.Proposition1isessentialincharacterizingthestochasticpropertiesofthe lteredtimevaryingparameters.Itdoesnotonlyallowustohavefurtherinsightsintothenatureofthe lteredestimatesftintheMonteCarlostudyofSection5,butitalsoenablesustointerprettheparameterestimatesoftheGASmodel.TheSEnatureofthe lteredsequenceisalsoanimportantingredientinobtainingproofsofconsistencyandasymptoticnormalityofthemaximumlikelihoodestimatorthatrelyonanapplicationoflawsoflargenumbersandcentrallimittheorems;seeBlasquesetal.(2014)formoredetails. 2Wesaythatarandomsequencef~Xtgconvergese.a.s.toanotherrandomsequencef~Xtgifthereisaconstantc�1suchthatctk~Xt�~Xtka:s:!0;seeStraumannandMikosch(2006)forfurtherdetails.10 Table1:Simulationpatternsfor00;tand11;t Model00;t11;t 1.Constant0:950:852.SlowSine0:5+0:45cos(4t=T)0:5�0:45cos(4t=T)3.Sine0:5+0:45cos(8t=T)0:5�0:45cos(8t=T)4.FastSine0:5+0:45cos(20t=T)0:5�0:45cos(20t=T)5.Break0:21fT=2g+0:81ftT=2g0:81fT=2g+0:21ftT=2g 5MonteCarlostudy5.1DesignofthesimulationstudyToinvestigatetheperformanceofourestimationprocedurefortheMarkovregimeswitchingmodelwithtimevaryingtransitionprobabilities,weconsideraMonteCarlostudyforthetworegimemodel(4).Thetworegimesconsistoftwonormaldistributionswithcommonvariance2=0:5andmeans0=�1and1=1.Weset00=11=0andconsider5di erentformsoftimevariationforthetransitionprobabilities00;tand11;t.ThepatternsaresummarizedinTable1andrangefromaconstantsetoftransitionprobabilities,viaslowandfastcontinuouslychangingtransitionprobabilitiestoanincidentalstructuralbreakinthemiddleofthesample.Weinvestigatetherobustnessofourestimationprocedureinthesedi erentsettings.Forallofthedatagenerationprocessesconsidered,ourregimeswitchingmodelwithtimevaryingparametersisclearlymisspeci ed.InourMonteCarlostudyweconsiderthreedi erentsamplesizes:T=250;500;1000.ThenumberofMonteCarloreplicationsissetto100.WeadoptthemodelwithK=2statesasdescribedindetailinSections3.1and3.2.Foreachdatageneratingprocessandsamplesize,weestimatethestaticparameters usingthemethodofmaximumlikelihood.Giventheestimatedvaluesforthestaticparameters,wecomputethe lteredparameters^00;tand^11;tusingtheupdatingequationsin(12).WecomparetheresultstothosefortheMarkovswitchingmodelwithtimeinvarianttransitionprobabilities.5.2ThesimulationresultsInTable2,wepresentMonteCarloaveragesofthemaximizedlog-likelihoodvalue,agoodness-of- tstatisticandaforecastprecisionmeasure.Ourstatisticformodel tisthecorrectedAkaikeInformationCriterion(AICc).TheAICcistheoriginalAICofAkaike(1973)butwithastronger nitesamplepenalty;seeHurvichandTsai(1991).Ourmeasureofforecastprecisionisthemeansquaredone-stepaheadforecasterror(MSFE).TheMSFEusesthepastobservationsy1;:::;yt�1tomakeaforecastofyt,usingthestaticparameter11 Table2:SimulationresultsIWehavesimulated100timeseriesfromeachdatagenerationprocess(DGP)listedinTable1andforsamplesizesT=250;500;1000.Thestaticparametersareestimatedbythemethodofmaximumlikelihood,bothfortheMarkovregimeswitchingmodelwithstatic(Static )andwithtimevaryingtransitionprobabilities(TV ;ft).Inthelattercase,theunderlyingtimevaryingparametersareupdatedusingequation(12).Wereportthesampleaveragesforthe100simulatedseriesofthemaximizedlog-likelihoodvalue(LogLik),thecorrectedAkaikeInformationCriterion(AICc)andthemeansquarederroroftheone-stepaheadforecastofyt(MSFE).Theone-stepaheadforecasterrorsarecomputedwithinthesamplethatisusedforparameterestimation. LogLikAICcMSFEDGPTStaticTV ;ftStatic TV ;ftStatic TV ;ft Constant250-300.299-293.037610.859604.8711.6951.583500-617.392-611.9471244.9101242.2711.6701.6271000-1255.957-1252.0462521.9752522.2761.6831.668 SlowSine250-355.189-344.200720.639707.1962.3732.240500-730.993-704.0581472.1101426.4932.2122.1001000-1483.296-1412.0452976.6522842.2742.2192.148 Sine250-354.946-346.154720.153711.1052.3892.237500-732.544-711.5641475.2131441.5072.2432.1741000-1485.593-1426.2652981.2482870.7142.2372.152 FastSine250-356.440-347.479723.141713.7542.6022.323500-733.108-720.6501476.3411459.6782.3582.2771000-1487.584-1449.2172985.2292916.6192.2162.212 Break250-356.643-343.721723.547706.2392.4382.197500-735.293-706.5441480.7111431.4672.3842.1371000-1493.767-1429.8122997.5962877.8092.3722.104 estimatesobtainedfromtheentiresampley1;:::;yT.Thecriterionthereforemeasurestheforecastprecisionofthemodelforthemaximumlikelihoodestimateof inthestaticmodelandforthemaximumlikelihoodestimateof inthetimevaryingparametermodel.WelearnfromTable2thattheaveragemaximizedlog-likelihoodvaluesareuniformlyhigherforthemodelwithtimevaryingtransitionprobabilitiescomparedtothemodelwithconstanttransitionprobabilities.Thisresultisnotverysurprisingsincethetimevaryingmodelisadynamicgeneralizationofthestaticmodelandhasmoreparameters.AmoreconvincingresultisthatthetimevaryingmodelproducesoverallsubstantiallysmallerAICcvaluesthantheconstantmodel.Asexpected,theonlyexceptionisthedatageneratingprocesswithconstanttransitionprobabilities.Fortimeseriessimulatedwithtimevaryingtransitionprobabilitieschangegraduallyorareofastructuralbreaktype,themodelwithtimevaryingtransitionprobabilitiesperformssubstantiallybetterthanthestaticmodel.Finally,whenwefocusontheforecastprecisionmeasureMSFE,wealsoconcludethatthe12 Table3:SimulationresultsIIWehavesimulated100timeseriesfromeachdatagenerationprocess(DGP)listedinTable1andforsamplesizesT=250;500;1000.Thestaticparametersareestimatedbythemethodofmaximumlikelihood,bothfortheMarkovregimeswitchingmodelwithstatic(Static)andwithtimevaryingtransitionprobabilities(TV).Inthelattercase,theunderlyingtimevaryingparametersareupdatedusingequation(12).Wereportthesampleaveragesforthe100simulatedseriesofthemeansquarederror(MSE)andthemeanabsoluteerror(MAE)oftheone-stepaheadforecastoftwotransitionprobabilities00and11.Theone-stepaheadforecasterrorsarecomputedwithinthesamplethatisusedforparameterestimation. MSEMAEMSEMAE0011 DGPTStaticTVStaticTVStaticTVStaticTV Constant2500.0000.0100.0150.0460.0060.0370.0490.1365000.0000.0050.0120.0320.0020.0150.0320.08910000.0000.0020.0070.0190.0010.0060.0210.057 SlowSine2500.1890.0870.3560.2230.1970.0970.3620.2385000.2040.0730.3690.1940.2080.0850.3720.21210000.2020.0550.3670.1600.2050.0550.3690.161 Sine2500.1840.1080.3500.2550.1900.1220.3550.2755000.2000.0840.3650.2190.2040.0940.3670.23410000.1990.0650.3640.1820.2010.0680.3650.190 FastSine2500.1590.1640.3290.3260.1550.1670.3260.3285000.1820.1140.3480.2650.1860.1190.3500.27410000.1990.0790.3630.2160.2010.0860.3650.229 Break2500.1770.1010.3410.2200.1700.0940.3420.2215000.1750.0820.3390.1810.1720.0790.3400.18810000.1740.0760.3370.1620.1720.0770.3380.171 Markovswitchingmodelwithtimevaryingtransitionprobabilitiesconvincinglyoutperformsitsstaticcounterpart.Nextweverifytheprecisionofthe lteredtransitionprobabilityestimatesforthestaticmodelwith00and11,andforthetimevaryingmodelwith00;tand11;t.InaMonteCarlostudy,thetransitionprobabilitiesaresimulatedaspartofthedatagenerationprocess.Henceweareabletocomparetruetransitionprobabilitieswiththeir lteredestimatesandcomputethemeansquarederror(MSE)andthemeanabsoluteerror(MAE)statistics.InTable3wepresenttheMonteCarloaveragesofthesetwostatistics,forthedi erentdatagenerationprocesses,thedi erentsamplessizesandthetwomodels:thestaticmodel(static)andthetimevaryingmodel(TV).TheresultsinTable3providestrongevidencethattheMarkovregimeswitchingmodelwithtimevaryingtransitionprobabilitiesissuccessfulinproducingaccurate lteredesti-13 matesoftheprobabilitiesforalldi erenttimevaryingpatterns.ItisonlyfortheseriesthataresimulatedfromamodelwithconstanttransitionprobabilitiesthattheMSEandMAEstatisticsforthestaticmodelaresmallerthanthoseforthetimevaryingmodel.Forthiscase,however,theabsolutevalueofallstatisticsareofanorderofmagnitudesmallerthanforalltheotherdatageneratingprocesses.Forconstanttransitionprobabilities,thedi erencesbetweenthestaticandtimevaryingmodelcanthusbequali edassmall.WealsoobservethatforincreasingsamplesizesT,theMSEandMAEstatisticsmostlydecreaseforthetimevaryingmodel,whilethisdoesnotoccurforthestaticmodel.Toputtheseobservationsinsomeperspective,wenoticethatthesinusoidpatternshavethesamenumberofswingsovertheentiresamplefordi erentsamplesizes.Therefore,thechangeinthetransitionproba-bilitiesgetssmallerperunitoftimeasTincreases.Itfollowsthattheupdatingequation(12)forthetimevaryingmodelcantrackthetruetransitionprobabilitymoreaccuratelyasTincreases.Thismechanismdoesnota ecttheinaccuracyoftheestimatesobtainedfromthestaticmodel.6AnempiricalstudyofU.S.IndustrialProductionMarkovregimeswitchingmodelsarepopularinempiricalstudiesofmacroeconomictimeseries.Wethereforeillustrateournewmethodologyfortimevaryingtransitionprobabilitiesinanempiricalstudyconcerningakeyvariableformacroeconomicpolicy,U.S.IndustrialProduction(IP).ThetimeseriesforIPisobtainedfromtheFederalReserveBankofSt.Louiseconomicdatabase(FRED);wehavemonthlyseasonallyadjustedobservationsfromJanuary1919toOctober2013,T=1137.WeanalyzethepercentagegrowthofIP(log-di erences100)andconsidertheresultingseriesasourytvariable.Figure1presentsboththeIPindexandtheIPpercentagelogdi erencesyt.6.1Threemodelspeci cationsThetimeseriesofIPgrowthisrelativelylong.Inspectingthetimeseriesplotofyt,weanticipatethattheremaybepossiblechangesinboththemeanandvarianceoftheseriesovertime.Toremainwithinaparsimoniousmodellingframework,weadoptthemodelofDoornik(2013).Doornikanalyzesaquarterlytimeseriesofpost-warU.S.grossdomesticproductgrowthbymeansofaMarkovswitchingmean-variancecomponentmodel.Inourspeci csetting,weconsideramodelwiththreeregimesforthemean(m=0;1;2)andtworegimesforthevariance(v=0;1).Thethreeregimesforthemeanmayrepresentrecession,stableandgrowthperiodsinU.S.production.Eachregimeforthemeanconsistsofaconstantandpmlaggeddependentvariablesforyt,withm=0;1;2.Theconstantandthepmautoregressivecoecientsarecollectivelysubjecttotheregimetowhichtheybelong.14 Figure1:U.S.IndustrialProduction(monthly,seasonallyadjusted)andIPpercentagegrowth(log-di erences100)Hence,incaseofthreeregimesforthemean,wehave3+P3m=1pmcoecients.Thetworegimesforthevariancemaysimplydistinguishperiodsoflowandhighvolatility.Hencethenumberofcoecientsforthevariancepartequals2.ModelI:staticspeci cationLetfztgandfztgdenotethehiddenprocessesthatdeterminethemeanandthevarianceforthedensityofyt,respectively.Wehaveytj(zt=m;zt=v;It�1)N�m;t;2v;m=0;1;2;v=0;1;(17)withthethreemeanequationsm;t=0;m+1;myt�1+:::+pm;myt�pm;m=0;1;2;(18)where0;misanintercept,1;m;:::;pm;mareautoregressivecoecients,forpm2N+,and21and22arethetwovariances.Thetransitionprobabilitiesforthemeanandvariancearecollectedinthematricesand,respectively,whicharegivenby=0B@00011�00�0110111�10�1120211�20�211CA;= 001�001�1111!:(19)15 WefollowDoornik(2013)inspecifyingthetransitionprobabilitymatrixforthe32=6regimesas= ;wherethe36probabilitiesinareafunctionof6meanand2varianceprobabilities.TheconditionaldensityofytgivenIt�1canbeexpressedintermsofthe lteredprobabilitiesasin(8).Wehavep(ytj ;It�1)=266664P[zt�1=0;zt�1=0j ;It�1]P[zt�1=1;zt�1=0j ;It�1]...P[zt�1=2;zt�1=1j ;It�1]3777750( )266664p(yt;0;t;20;It�1)p(yt;1;t;20;It�1)...p(yt;2;t;21;It�1)377775=0t�1( )t:(20)Nextweconsidertwotimevaryingextensionsofthevarianceregimesinthestaticmodel.Afterexperimentationwithtimevaryingparametersforthemeanregimes,wehaveconcludedthatinourempiricalsettingonlytheintroductionoftimevaryingtransitionprobabilitiesforthevarianceregimescanimprovethe tofthestaticmodel.Wenoticethatoncetheprobabilitiesinaretimevarying,allprobabilitiesin= aretimevarying.ModelII:timevaryingvarianceprobabilitiesasafunctionofjyt�1jInmodelII,weconstructabenchmarkinthespiritofDieboldetal.(1994)andFilardo(1994).Wespecifythetimevaryingtransitionprobabilitiesforthevarianceregimesintasalogistictransformationofthelaggeddependentvariable,thatisvv;t=exp(gvv;t) 1+exp(gvv;t);gvv;t=c0;v+c1;vjyt�1j;v=0;1;(21)wherec0;visaninterceptandc1;visa xedcoecient,forv=0;1.Thefourccoecientsareestimatedbythemethodofmaximumlikelihood,jointlywiththeothercoecients.ModelIII:timevaryingvarianceprobabilitiesasafunctionofthescoreInthisspeci cationoftimevaryingtransitionprobabilitiesforthevarianceregimes,weadopttheframeworkofSection3.2.Empirically,itturnsoutthereisnoneedtoshrinktherangeofii;texante.Wethereforesetii=0andspecifythetimevaryingmatrixtasvv;t=exp(fvv;t) 1+exp(fvv;t);v=0;1;ft=(f00;t;f11;t)0;whereftisupdatedovertimeasin(12).Theresultingconditionaldensityforytisgivenbyp(ytj ;It�1)=0t�1(t )t.TheregimeprobabilitystructureofDoornik(2013)is16 morerestrictedthantheoneforthegeneralK-regimeMarkovswitchingmodelinSection3.3.Wethereforehavedi erentexpressionsforthescorevectorandscalingmatrix.Thescorevectorisgivenbyrt=(r00;t;r11;t)0wherervv;t=vv;t(1�vv;t) p(ytj ;It�1)0t�1@t @vv;t t;v=0;1;witht�1andtde nedimplicitlyin(20).TocomputetheconditionalFisherInformationE[rtr0t],whereEiswithrespecttop(ytj ;It�1),weevaluate4numericalintegrals,foreverytimetandforeachvaluefortheparametervector ,byaGauss-Hermitemethod.6.2Parameterestimates,model tandresidualdiagnosticsTable4presentstheparameterestimatesforthethreemodelspeci cations.Forallmodelswehavetakenpm=3in(18),withm=0;1;2.Wehaveexperimentedwithothervaluesofpmbutthischoiceprovidesanadequate t.Theparameterestimatesareobtainedbynumericallymaximizingthelog-likelihoodfunctionwithrespecttothestaticparametervector or .TheassociatedstandarderrorsareobtainedbynumericallyinvertingtheHessianmatrixatthemaximizedlog-likelihoodvalue.Thesetsofestimatedcoecientsforthethreemeanregimesareverysimilaracrossthethreemodelspeci cations.Theintroductionoftimevaryingvariancetransitionprobabilitiesdoesnotappeartoa ectthemeanspeci cationmuch.Thecoecient0;mdeterminestheinterpretationofaregime.Wecanlearnfromourestimationresultsthatregimem=0correspondstolowIPgrowth,m=1representsrecessionandm=2identi eshighgrowthinIP.Theautoregressivecoecients1;m;:::;3;mshowthatin"normalyears"IPgrowthispersistent,whileduringrecessionsIPgrowthissubjecttopersistentcyclicaldynamics.PeriodsofhighIPgrowthareveryshortlivedgiventhestrongnegativelyestimatedautoregressivecoecientsform=2.Theestimatedtransitionprobabilitiesrevealthetypicalsituationinregimeswitchingmodelsthatonceweareinarecessionorlowgrowthregime,itismostlikelythatweremaininthisstate.Itisonlyforthehighgrowthregimethatitismorelikelytomovetoalowgrowthregimewhiletheprobabilitytostay,22=1�20�21,isestimatedaround0:35.Forthevarianceregimes,themodelsclearlydistinguishbetweenalow(approximately0:3)andahigh(approximately5:5to6:0)varianceregime.Themagnitudesofthesevariancesareagaincomparableacrossthedi erentmodels.ForModelI,bothvarianceregimesarehighlypersistentwithprobabilities00and11bothestimatedcloseto1.WealsolearnfromTable4thatthemodel thasimprovedafterintroducingtimevaryingvariancetransitionprobabilities,bothforModelIIandModelIII.Themaximizedlog-likelihoodvalueshaveincreasedby8and17basispointsatthecostofanadditional2and4parametersfortherespectiveModelsIIandIII.ThecorrectedAkaikeinformationcriterionclearlypointstoModelIIIasthebestcomprimisetomodel tandaparsimoniousmodelspeci cation.17 Thetimevaryingtransitionprobabilitiesforthelowvolatility(v=0)andhighvolatility(v=1)regimesinModelIIIarehighlypersistentprocessesovertime:theestimatesforthediagonalelementsofBareveryclosetounity.FromModelIIwemayconcludethatonlythetransitionprobabilityofalowvolatilityregimeistimevarying:theestimateofc1;1isnotsigni cant.ForModelIIIwe ndsomewhatstrongerevidencethatbothtransitionprobabilitiesaretimevarying:theestimatesofbothdiagonalelementsofAaresigni cantattheusuallevelof5%.Finally,Table4presentsdiagnosticteststatisticsforthegeneralizedandRosenblattresidualswhichwehavediscussedinSection2.Thep-valuesforthewell-knownJarque-Bera2normalitytestandtheLjung-Box2serialcorrelationtest,fortheresidualsandthesquaredresiduals,indicatethatallmodelsarecapableofdescribingthesalientfeaturesinIPgrowth.Therearesomedi erencesbetweenthestatisticsforthegeneralizedandRosenblattresiduals,buttheyaresmallandhavenobearingsonthemainconclusions.TheJarque-BeratestmayindicatethattheIPgrowthtimeseriesissubjecttoafewoutlyingobservations.6.3Signalextraction:regimeandtransitionprobabilitiesInFigure2wepresentthesmoothedestimatesofprobabilitiesformeanandvarianceregimesandthe lteredestimatesof(timevarying)transitionprobabilitiesforModelsI,IIandIII.ModelIIappearsunabletocapturethedynamicsinthetransitionprobabilities.WehavelearnedfromTable4thattheestimateofcoecientc1;1isnotsigni cant;itisalsore ectedinFigure2withthetimeseriesplotofthe lteredprobabilityestimatesforthehighvarianceregimethatisalmostconstantovertime.Ontheotherhand,the lteredprobabilityestimatesforthelowvolatilityregimearehighlyerratic.The lteredprobabilitiesforModelIIIshowanentirelydi erentpattern.Boththelowandhighvolatilitytransitionprobabilitiesevolvegraduallyovertime.Inparticular,thepersistenceofthelowvolatilityregimeappearstohavegoneupovertime,withvaluesaround0.7intheearlypartofthesample,andvaluescloseto1inthesecondhalfofthesample.Theconverseholdsforthehighvolatilityregime.Thepersistenceprobability11iscloseto1uptothe1940s.Afterthat,theprobabilitydecreasessubstantiallytovaluesaround0.5,andslowlyrisestowardstheendofthesampleagain.Thepatternforthe lteredprobabilitiesisconsistentwiththeempiricalpatterninthedatainFigure1.Intheearlierpartofthesample,highvolatilitylevelsarepredominant.Towardsthemiddleofthesample,largevolatilitiesareincidentalandshort-lived,whereastowardstheendofthesampleduringtheyearsofthe nancialcrisis,U.S.debtceilingcrisis,andtheEuropeansovereigndebtcrisis,highervolatilitylevelsappeartoclusteragainmore.TheempiricalpatternsarealsocorroboratedbytheparameterestimatesinTable4.Inparticular,theparameterestimatesforthediagonalelementsofBarebothcloseto1;itsuggeststhatthedynamictransitionprobabilitiesevolvegraduallyovertime.Theestimates18 Table4:Parameterestimates,model tandresidualdiagnosticsInthe rsttwopanelswereportthemaximumlikelihoodestimateswithstandarderrorsinparanthesesbelow,forModelsI,IIandIII.Inthe rstpaneltheparameterestimatesforthemeanm;tin(17)arereportedforeachregimem=0;1;2:theintercept0;m,theautoregressivecoecients1;m;:::;3;m,andthetransitionprobabilitiesmj,forj=0;1,inof(19).Inthesecondpanelthetworegimevarianceestimatesfor2varereported.ThevariancetransitionprobabilityforModelIvvisestimateddirectlywhilewehavevv=logit�1(xv)forModelII(xv=c0;v)andforModelIII(xv=!v=(1�Bvv)),forv=0;1,where!vandBvvarethe(v+1)thelementsofvector!anddiagonalmatrixBin(12),respectively.ThetimevaryingvarianceprobabilitiesaredeterminedinModelIIbyc1;v,andinModelIIIbyAvvandBvvwhicharethe(v+1)thdiagonalelementsofAandBin(12),respectively,forv=0;1.Inthethirdpanelwereportmodel tstatistics:Fit(1)isnumberofstaticparameters;Fit(2)ismaximizedlog-likelihoodvalue;Fit(3)isAICc,seeSection5.2.Wefurtherreportthep-valuesoftheresidualdiagnostic(RD)teststatisticsforthegeneralized(et)andRosenblatt'sresiduals(~et):RD(1)isJarque-Beranormality2(2)test;RD(2)isLjung-Boxserialcorrelation2(6)test;RD(3)isasRD(2)forsquaredresiduals. ModelIModelIIModelIII m=0m=1m=2m=0m=1m=2m=0m=1m=20;m0.076-0.2120.8460.068-0.2770.8370.043-0.1280.737(0.038)(0.182)(0.168)(0.037)(0.140)(0.172)(0.033)(0.095)(0.128)1;m0.3161.121-0.6090.3271.126-0.6210.3511.087-0.479(0.050)(0.096)(0.135)(0.050)(0.088)(0.130)(0.040)(0.079)(0.107)2;m0.212-0.569-0.3950.220-0.526-0.4840.234-0.537-0.221(0.050)(0.146)(0.123)(0.040)(0.139)(0.086)(0.037)(0.108)(0.086)3;m0.1050.0760.0390.1130.0110.1330.1120.0360.103(0.037)(0.107)(0.124)(0.035)(0.115)(0.101)(0.030)(0.065)(0.092)m00.9090.1110.5770.9090.1130.5920.8640.1450.576(0.041)(0.103)(0.140)(0.032)(0.072)(0.142)(0.036)(0.070)(0.175)m10.0160.8580.0550.0140.8580.0730.0210.8420.048(0.019)(0.092)(0.052)(0.012)(0.064)(0.062)(0.015)(0.059)(0.055) v=0v=1v=0v=1v=0v=12v0.3365.5790.3515.8660.3175.920(0.025)(0.629)(0.026)(0.691)(0.023)(0.541)vv0.9800.9470.9960.8830.8860.702(0.007)(0.018)(0.003)(0.053)(0.080)(0.200)c1;v-1.8990.108(0.419)(0.209)Avv0.1320.148(0.058)(0.074)Bvv0.9980.989(0.003)(0.011) i=1i=2i=3i=1i=2i=3i=1i=2i=3Fit(i)22-1642333024-1634331726-16253302RD(i)et0.0650.7720.5560.0320.9680.6590.0190.7920.924RD(i)~et0.0110.4090.6480.0120.8300.7380.0070.6320.676 19 Figure2:Smoothedprobabilityestimatesfortherecessionregimeinthemeanandforthehighvarianceregime.Filteredtransitionprobabilityestimatesforthelowandhighvarianceregimes.Inthe rstgraph,theverticalgrayareasindicaterecessionsaccordingtotheNBERbusinesscycleclassi cations.20 ofbothdiagonalelementsofAhavethecorrectsignandleadtoparameterchangesthatincreasethelocal tofthemodelintermsoflog-likelihood.Finally,wepresentthesmoothedestimatesofztinthetoppanelsofFigure2,togetherwiththeNBERbusinesscycleclassi cations.WemayconcludethatallmodelsresultinhighersmoothedrecessionprobabilitiesintheNBERclassi edperiods.Themodel tforamodelwithtimevaryingtransitionprobabilitiesforthevarianceregimes(ModelIIorIII)istypicallyhigherthanthestaticModelI.Fromthesmoothedprobabilitiesforthehighvarianceregime,mostofthehighvarianceregimeislocatedinthe rsthalfofthesample.Thesecondepisodeofhighvarianceisduringthe nancialcrisis,withtheintermediateperiodhavingpredominantlyalowlevelofvolatility.Wenoticethatsome,butnotall,NBERrecessionscorrespondtoperiodsofhighvolatility.Thissupportstheuseofourcurrentframeworkwithseparateregimesforthe(conditional)meansandforthevariances.7ConclusionWehaveintroducedanewmethodologyfortimevaryingtransitionprobabilitiesinMarkovswitchingmodels.Wehaveshownthattheuseofthescoreofthepredictivelikelihoodandthegeneralizedautoregressivescore(GAS)modellingframeworkofCrealetal.(2013)candrivethedynamicsofthetransitionprobabilitiese ectivelyovertime.Thecorrespondingdynamicscaneasilybeinterpretedwhiletheinformationembeddedintheconditionalob-servationdensitiesarefullyincorporated.Wehaveformulatedconditionsfortheestimatedtimevaryingprobabilitiesfromourscoredrivenmodeltoconvergetostationaryandergodicstochasticprocesses.BymeansofanextensiveMonteCarlostudy,wehaveshownthattheourproposedobservationdrivenmodelisabletoadequatelytrackthedynamicpatternsintransitionprobabilities,eveniftheunderlyingdynamicsthemselvesarepossiblymisspeci ed.Bothfordeterministicstructuralbreaksanddeterministicsinusoidpatterns,ourmodelyieldsalargeimprovementinmodel tcomparedtoamodelwithconstanttransitionprobabilitiesonly.InourempiricalstudyforIndustrialProductiongrowth,wehaveshownthatwecane ectivelyusethemodeldynamicfeaturesinthemeanandvariancesimultaneously.WehavefoundthatourproposedmodeloutperformsboththeMarkovswitchingmodelwithconstantprobabilitiesandwithtransitionprobabilitiesdependingonalaggeddependentvariable.Inparticular,thepatterns lteredbyourmodelcanbeeasilyinterpreted,withhigher(lower)persistenceforhigh(low)volatilityregimesinthebeginningofthesamplecomparedtothelaterpartofthesample.Highervolatilitiesappeartore-occuragainattheveryendofthesample,duringthe nancialandsovereigndebtcrises.Weconcludethatthemodelcanprovideausefulbenchmarkinsettingswheretransitionprobabilitiesinaregimeswitchingmodelmayvaryovertime.21 ReferencesAkaike,H.(1973).Maximumlikelihoodidenti cationofGaussianautoregressivemovingaveragemodels.Biometrika60(2),255{265.Blasques,F.,S.J.Koopman,andA.Lucas(2012).Stationarityandergodicityofunivariategeneralizedautoregressivescoreprocesses.DiscussionPaperTinbergenInstituteTI12-059/4.Blasques,F.,S.J.Koopman,andA.Lucas(2014).Maximumlikelihoodestimationforgeneralizedautoregressivescoremodels.DiscussionPaperTinbergenInstituteTI14-029/III.Bollerslev,T.(1986).Generalizedautoregressiveconditionalheteroskedasticity.Journalofeconometrics31(3),307{327.Bougerol,P.(1993).Kalman lteringwithrandomcoecientsandcontractions.SIAMJournalonControlandOptimization31(4),942{959.Cox,D.R.(1981).Statisticalanalysisoftimeseries:somerecentdevelopments.Scandina-vianJournalofStatistics8,93{115.Creal,D.,S.J.Koopman,andA.Lucas(2008).Ageneralframeworkforobservationdriventime-varyingparametermodels.DiscussionPaperTinbergenInstituteTI08-108/4.Creal,D.,S.J.Koopman,andA.Lucas(2011).ADynamicMultivariateHeavy-TailedModelforTime-VaryingVolatilitiesandCorrelations.JournalofBusiness&EconomicStatistics29(4),552{563.Creal,D.,S.J.Koopman,andA.Lucas(2013).Generalizedautoregressivescoremodelswithapplications.JournalofAppliedEconometrics28(5),777{795.Creal,D.,B.Schwaab,S.J.Koopman,andA.Lucas(2014).Observationdrivenmixed-measurementdynamicfactormodels.ReviewofEconomicsandStatistics,forthcoming.DeLiraSalvatierra,I.andA.J.Patton(2013).Dynamiccopulamodelsandhighfrequencydata.DukeUniversityDiscussionPaper.DelleMonache,D.andI.Petrella(2014).Ascoredrivenapproachforgaussianstate-spacemodelswithtime-varyingparameter.WorkingPaper,ImperialCollegeLondon.Diebold,F.,J.Lee,andG.Weinbach(1994).RegimeSwitchingwithTime-VaryingTran-sitionProbabilities.InC.Hargreaves(Ed.),NonstationaryTimeSeriesAnalysisandCointegration,pp.283{302.OxfordUniversityPress.22 Doornik,J.(2013).AMarkov-switchingmodelwithcomponentstructureforUSGNP.EconomicsLetters118(2),265{268.Engle,R.F.(1982).AutoregressiveconditionalheteroscedasticitywithestimatesofthevarianceofUnitedKingdomin ation.Econometrica50(4),987{1007.Engle,R.F.andJ.R.Russell(1998).AutoregressiveConditionalDuration:ANewModelforirregularlySpacedTransactionData.Econometrica66(5),1127{1162.Filardo,A.J.(1994).Business-cyclephasesandtheirtransitionaldynamics.JournalofBusiness&EconomicStatistics12(3),299{308.Francq,C.andM.Roussignol(1998).ErgodicityofautoregressiveprocesseswithMarkov-switchingandconsistencyofthemaximum-likelihoodestimator.Statistics:AJournalofTheoreticalandAppliedStatistics32(2),151{173.Francq,C.andJ.-M.Zakoan(2001).Stationarityofmultivariatemarkov{switchingARMAmodels.JournalofEconometrics102(2),339{364.Fruhwirth-Schnatter,S.(2006).FiniteMixtureandMarkovSwitchingModels.Springer.Gourieroux,C.,A.Monfort,E.Renault,andA.Trognon(1987).Generalisedresiduals.JournalofEconometrics34(1),5{32.Gray,S.F.(1996).Modelingtheconditionaldistributionofinterestratesasaregime-switchingprocess.JournalofFinancialEconomics42(1),27{62.Hamilton,J.(1989).ANewApproachtotheEconomicAnalysisofNonstationaryTimeSeriesandtheBusinessCycle.Econometrica57(2),357{384.Hamilton,J.D.andB.Raj(2002).Newdirectionsinbusinesscycleresearchand nancialanalysis.EmpiricalEconomics27(2),149{162.Harvey,A.C.(2013).DynamicModelsforVolatilityandHeavyTails:WithApplicationstoFinancialandEconomicTimeSeries.EconometricSeriesMonographs.CambridgeUniversityPress.Harvey,A.C.andA.Luati(2014).Filteringwithheavytails.JournaloftheAmericanStatisticalAssociation,forthcoming.Hurvich,C.M.andC.-L.Tsai(1991).BiasofthecorrectedAICcriterionforunder ttedregressionandtimeseriesmodels.Biometrika78(3),499{509.Kim,C.(1994).DynamiclinearmodelswithMarkov-switching.JournalofEconomet-rics60(1),1{22.23 Kim,C.-J.,J.C.Morley,andC.R.Nelson(2004).Isthereapositiverelationshipbe-tweenstockmarketvolatilityandtheequitypremium?JournalofMoney,CreditandBanking36,339{360.Koopman,S.J.,A.Lucas,andM.Scharth(2012).Predictingtime-varyingparameterswithparameter-drivenandobservation-drivenmodels.TinbergenInstituteDiscussionPapers12-020/4.Krengel,U.(1985).Ergodictheorems.Berlin:DeGruyterstudiesinMathematics.Lucas,A.,B.Schwaab,andX.Zhang(2014).Measuringcreditriskinalargebankingsystem:econometricmodelingandempirics.JournalofBusinessandEconomicStatistics,forthcoming.Maheu,J.M.andT.H.McCurdy(2000).Identifyingbullandbearmarketsinstockreturns.JournalofBusiness&EconomicStatistics18(1),100{112.Nelson,D.B.(1991).ConditionalHeteroskedasticityinAssetReturns:ANewApproach.Econometrica59(2),347{370.Oh,D.H.andA.J.Patton(2013).Time-varyingsystemicrisk:EvidencefromadynamiccopulamodelofCDSspreads.DukeUniversityDiscussionPaper.Rosenblatt,M.(1952).Remarksonamultivariatetransformation.TheAnnalsofMathe-maticalStatistics23(3),470{472.Smith,D.R.(2008).EvaluatingSpeci cationTestsforMarkov-SwitchingTime-SeriesMod-els.JournalofTimeSeriesAnalysis29(4),629{652.Straumann,D.andT.Mikosch(2006).Quasi-maximum-likelihoodestimationincondition-allyheteroscedastictimeseries:astochasticrecurrenceequationsapproach.TheAnnalsofStatistics34(5),2449{2495.Turner,C.M.,R.Startz,andC.R.Nelson(1989).AMarkovmodelofheteroskedasticity,risk,andlearninginthestockmarket.JournalofFinancialEconomics25(1),3{22.24 TI 2014-072/III Tinbergen Institute Discussion Paper z University of Padova, Italy; Faculty of Economics and Business Administration, VU University Amsterdam, the Netherlands.