/
2MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIarbitraryo-minimalstructu 2MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIarbitraryo-minimalstructu

2MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIarbitraryo-minimalstructu - PDF document

debby-jeon
debby-jeon . @debby-jeon
Follow
388 views
Uploaded On 2016-03-12

2MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIarbitraryo-minimalstructu - PPT Presentation

4MARIOJEDMUNDOMARCELLOMAMINOANDLUCAPRELLIthediagramab CXab iscommutativeDe nition22LetXbeade nablespaceandCXade nablesubsetWesaythatCisde nablycompactifeveryde nablecurvein ID: 252210

4MARIOJ.EDMUNDO MARCELLOMAMINO ANDLUCAPRELLIthediagram(a;b) // _ CX[a;b] :: iscommutative.De nition2.2.LetXbeade nablespaceandCXade nablesubset.WesaythatCisde nablycompactifeveryde nablecurvein

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAP..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIarbitraryo-minimalstructures.See[9].Pillay'sconjectureisanon-standardana-logueofHilbert's5oproblemforlocallycompacttopologicalgroups,roughlyitsaysthataftertakingthequotientbya\smallsubgroup"(asmallesttype-de nablesub-groupofboundedindex)thequotientwhenequippedwiththethesocalledlogictopologyisacompactrealLiegroupofthesamedimension.LetDefdenotethecategoryofde nablespacesandcontinuousde nablemaps.Fromthecategorytheoryde nitionofmorphismsproperinDefoneobtainsasin[19,ChapterII,Proposition5.4.2andCorollary5.4.3]thelistofthemostusefulpropertiesofsuchmorphisms(Proposition3.7)whichissimilartothecorrespondinglistofpropertiesforpropermorphismsinsemi-algebraicgeometry([6,Section9])(andalsoinalgebraicgeometry[20,ChapterII,Corollary4.8]or[19,ChapterII,Proposition5.4.2andCorollary5.4.3]).InTheorem3.12weproveade nablecurvescriterionforde nablyproperex-tendingwhatwasknowintheanecaseino-minimalexpansionsoforderedgroups([7,Chapter6,Lemma(4.5)]).Fromthiscriterionweobtainthecorrespondinglistofthemostusefulpropertiesofde nablypropermapsinCorollary3.13.HoweverweneedtorelatethenotionofproperinDefandthenotionofde nablyproper.ThisisachievedinTheorem3.15whereweshowthatifMhasde nableSkolemfunctions,thenforHausdor locallyde nablycompactde nablespacesproperinDefisthesameasde nablyproper.UndertheassumptionthatMhasde nableSkolemfunctions,weprovethatde- nablecompactnessofHausdor de nablespacescanbecharacterizedbytheexis-tenceoflimitsofde nabletypes(Theorem2.23),extendingaremarkbyHrushovskiandLoeser([22])intheanecase,and,inTheorem3.18weproveacorrespond-ingcharacterizationofde nablypropermapsbetweenHausdor locallyde nablycompactde nablespaceswhich,whentransferredtomorphismsproperinthecat-egoryofo-minimalspectralspaces,istheanalogueofthevaluativecriterionforpropernessinalgebraicgeometry([20,ChapterII,Theorem4.7]).Asitisknown,ino-minimalstructureswithde nableSkolemfunctions,de nabletypescorrespondtovaluations([24]and[26]).InTheorems4.7and4.10weshowthatde nablyproperisinvariantunderele-mentaryextensionsando-minimalexpansionsofM:InTheorem4.12weshowthatifMisano-minimalexpansionoftheorderedsetofrealnumbers,thende nablypropercorrespondstoproper.Theseinvarianceandcomparisonresultstransfertothenotionofpropermorphisminthecategoryofo-minimalspectralspaces.Behindallourmaintheoremsabovearethefollowingtwotechnicalresults:The-orem2.12whichshowthatifMhasde nableSkolemfunctions,thenHausdor de- nablycompactde nablespacesarede nablynormal;Corollary2.20whichshowsalocalalmosteverywherecurveselectionforHausdor locallyde nablycompactde nablespaces.Theorem2.12wasonlyknowninspecialcases:itwasprovedbyBerarducciandOteroforde nablemanifoldsino-minimalexpansionsofrealclosed elds([1,Lemma10.4]-theproofthereworksaswellino-minimalexpansionsoforderedgroups);itwasprovedin[15]forde nablycompactgroupsinarbitraryo-minimalstructures.Corollary2.20isanextensionofthealmosteverywherecurveselectionforclosedandboundedde nablesetsinarbitraryo-minimalstructuresprovedbyPeterzilandSteinhorn([25,Theorem2.3]). 4MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIthediagram(a;b) // _ CX[a;b] :: iscommutative.De nition2.2.LetXbeade nablespaceandCXade nablesubset.WesaythatCisde nablycompactifeveryde nablecurveinCiscompletableinC(see[25]).Thefollowingiseasy:Fact2.3.SupposethatMhasde nableSkolemfunctions.Letf:X!Yacon-tinuousde nablemapbetweende nablespaces.IfKXisade nablycompactde nablesubset,thenf(K)isade nablycompactde nablesubsetofY.Forde nablesubsetsXMnwiththeirinducedtopology(i.e.anede nablespaces)thenotionofde nablycompactisverywellbehaved.Indeed,wehave([25,Theorem2.1]):Fact2.4.Ade nablesubsetXMnisde nablycompactifandonlyifitisclosedandboundedinMnHowever,ingeneral,unlikeinthetopologicalcase,de nablycompactde nablesubsetsofade nablespacearenotHausdor andarenotevennecessarilyclosedsubsets:Example2.5(NonHausdor andnonclosedde nablycompactsubsets).Leta;b;c;d2Mbesuchthatcbad:LetXbethede nablespacewithde nablecharts(Xi;i)i=1;2givenby:X1=(fhx;yi2[c;d][c;d]:x=ygnfhb;big)[fhb;aigM2,X2=fhx;yi2[c;d][c;d]:x=ygM2andi=jXiwhere:M2!Mistheprojectionontothe rstcoordinate.Thenanyopende nableneighborhoodinXofthepointhb;aiintersectsanyopende nableneighborhoodinXofthepointhb;bi:ClearlyXisde nablycompactbutnotHausdor andX2isade nablycompactsubsetwhichisnotclosed(inX).Itisdesirabletoworkinasituationwherede nablycompactsubsetsareclosed.WewillshowthatthisisthecaseinHausdor de nablespaceswhenMhasde n-ableSkolemfunctions.Beforeweneedtointroducesomenotations.LetXbeade nablespaceandlet(Xi;i)ikbethede nablechartsofXwithi(Xi)Mni:LetN=n1++nkand xapoint2M:Foreachik;leti:MN=Mn1Mnk!Mnibethenaturalprojectionandleti:Mni!MN 6MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIIfBXisade nablesubsetand:B!M2Nisade nablemapsuchthat(x)2D(x)forallx2B,thenU(B;)=[x2BU(x;(x))isanopende nableneighborhoodofBinX:Itfollowsthat:Remark2.6.Thenotionsofopen(resp.closed)inade nablespaceXare rst-orderinthesensethatif(At)t2Tisauniformlyde nablefamilyofde nablesubsetsofX,thenthesetofallt2TsuchthatAtisanopen(resp.aclosed)subsetofXisade nableset.RecallthatatopologicalspaceXisregularifonethefollowingequivalentcon-ditionsholds:(1)foreverya2XandSXclosedsuchthata62S,thereareopendisjointsubsetsUandVofXsuchthata2UandSV;(2)foreverya2XandWXopensuchthata2W,thereisVopensubsetofXsuchthata2Vand VW.Proposition2.7.SupposethatMhasde nableSkolemfunctions.LetXbeaHausdor de nablespace,a2XandKXade nablycompactsubset.Supposethata62K:Thenthereisade nablefunction:K!M2Nwith(x)2D(x)forallx2Kandthereisd2D(a)suchthat:KU(K;):U(a;d)\U(K;)=;:Inparticular,ifXisaHausdor ,de nablycompactde nablespace,thenXisregular.Proof.Firstweshowthefollowing:Claim2.8.Thereare nitelymanyde nablycompactsubsetsKi(i=1;:::;l)ofK; nitelymanycontinuousde nablefunctionsi:Ki!M2Nwithi(x)2D(x)forallx2Kiandthereisd2D(a)suchthat:K=Sli=1Ki:KSli=1U(Ki;i):U(a;d)\(Sli=1U(Ki;i))=;:Proof.WeprovetheresultbyinductionondimensionofK.IfdimK=0,thenthisfollowsbecauseXisHausdor .Assumetheresultholdsforeveryde nablycompactsubsetLofXsuchthata62LanddimLdimK:SinceXisHausdor ,foreachx2Kthereisd02D(x)andthereisd2D(a)suchthatU(a;d)\U(x;d0)=;:Byde nableSkolemfunctionstherearede nablemapsg:K!M2Nandh:K!M2N 8MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIisade nablycompactde nableneighborhoodofK.Inparticularwehave [x2KU(x;(x))=[x2K U(x;(x)):Proof.Let :(a;b)!Sx2K U(x;(x))beade nablecurve.Wehaveshowthatthelimitlimt!b� (t)existsinSx2K U(x;(x)):Byde nableSkolemfunctionsthereisade nablemap :(a;b)!Ksuchthatforeacht2(a;b)wehave (t)2 U( (t);( (t))):Byo-minimality,aftershrinking(a;b)ifnecessary,wemayassumethat isade nablecurveinK:SinceKisde nablycompact,letw=limt!b� (t)2K:Byo-minimality,aftershrinking(a;b)ifnecessary,wemayassumethat :(a;b)!M2Niscontinuous.Let :(a;b]!Kbethecontinuousde nablemapsuchthat j(a;b)= j(a;b):Recallthatwehave (b)=(w)2D(w)andD(w)M2Nisanopende nablesubsetby(D1).Itfollowsfromthecontinuityof :(a;b]!M2Natbthatthereisa02(a;b)suchthat (t)2D(w)forallt2[a0;b].Sinceforeachj2Iw,Xjisanopende nableneighborhoodofw,bycontinuity,aftershrinking(a0;b]ifnecessary,wemayassumethat (t)2Xjforallt2[a0;b]andallj2Iw:ThuswemusthaveIwI (t)forallt2[a0;b]:Therefore,by(D3),forallt2[a0;b]wehaveU( (t);( (t)))U(w;( (t))):Inparticular,foreacht2[a0;b)wehave (t)2 U(w;( (t))):Byhypothesisthereisd2D(w)suchthat(w)=( (b))dand U(w;d)isde nablycompact.By(D2)andcontinuityof :[a0;b]!D(w)M2N,aftershrinking(a0;b]ifnecessary,wemayfurtherassumethat( (t))dforallt2[a0;b]:Therefore, (t)2 U(w;d)forallt2[a0;b):Since U(w;d)isde nablycompact,thereexiststhelimitlimt!b� (t)2 U(w;d):Letv=limt!b� (t)2 U(w;d):Wewanttoshowthatv2 U(w;(w)):SupposenotandsetL= U(w;(w)):SinceLisde nablycompactsubsetof U(w;d),byProposition2.7,thereisade nablefunctionL:L!M2NwithL(x)2D(x)forallx2LandthereisdL2D(v)suchthat:LU(L;L):U(v;dL)\U(L;L)=;:WehaveU(w;(w))LU(L;L):IfU(w;(w))=U(L;L)thenU(w;(w))=L= U(w;(w))andsoU(w;(w))isaclosedandopende nablesubsetofX.SinceXisde nablyconnectedwewouldhaveU(w;(w))=Xandsov2 U(w;(w))whichisacontradiction.SinceU(w;(w))U(L;L)andU(L;L)isanopende nableneighborhoodofw,by(D4)thereisa002[a0;b]suchthatU(w;( (t)))U(L;L)forallt2[a00;b]:Therefore,foreacht2[a00;b]wehave (t)2 U(L;L): 10MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLI(i)(x)2D(x);(ii)(x)(x);(iii) U(x;(x))isde nablycompact;(iv) U(x;(x))V:ItfollowsthatU(K;)=Sx2KU(x;(x))isanopende nableneighborhoodofKsuchthat,byLemma2.10, U(K;)= [x2KU(x;(x))=[x2K U(x;(x))isde nablycompactand U(K;)V:LetXbeade nablespace.Wesaythat:Xislocallyde nablycompactifforeveryx2Xandeveryopende nableneighborhoodVofxinXthereisanopende nableneighborhoodWofxinXsuchthat WVand Wisde nablycompact.Xisde nablylocallycompactifforeveryde nablycompactsubsetKXandeveryopende nableneighborhoodVofKinXthereisanopende- nableneighborhoodWofKinXsuchthat WVand Wisde nablycompact.Remark2.13.IfMhasde nableSkolemfunctionsandXisHausdor ,thenbyTheorem2.12:Xislocallyde nablycompactifandonlyifforeveryx2Xthereisanopende nableneighborhoodUofxinXsuchthat Uisde nablycompact.Xisde nablylocallycompactifandonlyifforeveryde nablycompactsubsetKXthereisanopende nableneighborhoodUofKinXsuchthat Uisde nablycompact.Notehoweverthat,ingeneral,locallyde nablycompactshouldnotbethesameasde nablylocallycompact.De nablenormalitygivestheshrinkinglemma(comparewith[7,Chapter6,(3.6)]):Fact2.14(Theshrinkinglemma).SupposethatMhasde nableSkolemfunc-tions.SupposethatXisade nablynormalde nablespace.IffUi:i=1;:::;ngisacoveringofXbyopende nablesubsets,thentherearede nableopensub-setsViandde nableclosedsubsetsCiofX(1in)withViCiUiandX=[fVi:i=1;:::;ng.2.2.De nabletypesandalmosteverywherecurveselection.Hereweex-tendthealmosteverywherecurveselection([25,Theorem2.3])toHausdor andlocallyde nablycompactspaceandweshowthatde nablecompactnessofHaus-dor de nablespacescanalsobecharacterizedbyexistenceoflimitsofde nabletypesextendingasimilarresultintheanecase(seetheobservationafter[22,Remark2.7.6]). 12MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLI C=( C\V)[( C\W)=( CV\V)[( CW\W):Therefore, CnC=(( CV\V)nC)[(( CW\W)nC)=(( CV\V)nCV)[(( CW\W)nCW):IfCVisnotclosedinV,bythehypothesis,thereisade nablesetFV CV\VnCVsuchthatdimFVdim( CV\VnCV)andforeveryx2 CV\Vn(CV[FV)thereisade nablecurveinCVwhichhasxasalimitpoint.Similarly,ifCWisnotclosedinW,thereisade nablesetFW CW\WnCWsuchthatdimFWdim( CW\WnCW)andforeveryx2 CW\Wn(CW[FW)thereisade nablecurveinCWwhichhasxasalimitpoint.LetEVbeFVifitexistsandletitbe;otherwise.Similarly,letEWbeFWifitexistsandletitbe;otherwise.LetE=EV[EW.Since CnC=(( CV\V)nCV)[(( CW\W)nCW)wehaveE CnC:SinceC=CV[CWwealsohavethatforeveryx2 Cn(C[E)thereisade nablecurveinCwhichhasxasalimitpoint.SincedimE=maxfdimEV;dimEWganddim CnC=maxfdim( CV\VnCV);dim( CW\WnCW)gwealsohavedimEdim( CnC)asrequired.Theorem2.19(Almosteverywherecurveselection).(1)IfZisalocallyclosedde nablesubsetofade nablemanifold,thenalmosteverywherecurveselectionholdsforZ.(2)IfZisalocallyclosedde nablesubsetofade nablynormal,de nablycompactde nablespace,thenalmosteverywherecurveselectionholdsforZ.Proof.(1)ByLemma2.17itisenoughtoshowthatifXisade nablemanifold,thenalmosteverywherecurveselectionholdsforX.Considerthede nablecharts(Ui;i)ki=1ofX.Sinceeachiisade nablehome-omorphism,andeachi(Ui)isanopende nablesubsetofMn,byFact2.15andLemma2.17,eachi(Ui)andsoeachUihasalmosteverywherecurveselection.NowweprovetheresultforXbyinductiononk.Thecasek=1isdone.Supposenowthattheresultholdsforde nablemanifoldswithlessorequalthanlde nablechartsandk=l+1.LetV=Sli=1Ui,W=Ukand=k.Thenbytheinduc-tionhypothesisthealmosteverywherecurveselectionholdsontheopende nablesubmanifoldsVandWofX.SinceX=V[W,theresultfollowsbyLemma2.18.(2)ByLemma2.17itisenoughtoshowthatifXisaHausdor ,de nablycompactde nablespace,thenalmosteverywherecurveselectionholdsforX.Considerthede nablecharts(Ui;i)ki=1ofX.Bytheshrinkinglemma,thereareopende nablesubsetsVi(1il)andclosedde nablesubsetsCi(1il)suchthatViCiUiandX=[fVi:i=1;:::;lg:SinceeachCiisde nablycompactandeachiisade nablehomeomorphism,wehavethateachi(Ci)isaclosed(andbounded)de nablesubsetofMniandsobyFact2.15andLemma2.17,eachi(Ci)andsoeachCihasalmosteverywherecurveselection.SobyLemma2.17,eachVihasalmosteverywherecurveselection.NowasaboveweconcludebyinductionofkthatXhasalmosteverywherecurveselection.ByTheorem2.19weseethatalmosteverywherecurveselectionholdsonlyinveryspecialde nablespaces.Despiteofthisweareluckysincelaterweonlyneedtousealmosteverywherecurveselectionlocally: 14MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLI(2)Everyde nabletypeonXhasalimitinX.Proof.Assume(1).ByTheorem2.12,Xisde nablynormal.Let(Xi;i)ikbethede nablechartsofXwithi(Xi)Mni:Bytheshrinkinglemmatherearede nableopensubsetsViandde nableclosedsubsetsCiofX(1in)withViCiXiandX=[fCi:i=1;:::;ng.SinceXisde nablycompact,eachCiisalsode nablycompact.Let beade nabletypeonX.ThenforsomeiwehaveCi2 :Fixsuchi:Then =ei( )(thetypeoni(Ci)determinedbythecollectionofde nablesubsetsfAi(Ci):�1i(A)2 g)is(ratherdetermines)ade nablytypeoni(Ci).Sinceij:Ci!i(Ci)Mniisade nablehomeomorphism,i(Ci)isde nablycompact.SobyFact2.22, hasalimitb2i(Ci).Letc2Cibesuchthati(c)=b:Thencisalimitof inX:Assume(2).Let :(a;b)!Xbeade nablecurve.Thenthecollectionofde nablesubsetsf ([t;b)):t2(a;b)gofXdeterminesade nabletypewhichbyhypothesis,hasalimitainX.Thisa2Xisalsothelimitlimt!b� (t):3.PropermorphismsinDef3.1.Preliminaries.HerewerecallsomepreliminarynotionsforthecategoryDefwhoseobjectsarede nablespacesandwhosemorphismarecontinuousde nablemapsbetweende nablespaces.Letf:X!YbeamorphisminDef:Wesaythat:f:X!YisclosedinDef(i.e.,de nablyclosed)ifforeveryobjectAofDefsuchthatAisaclosedsubsetofX,itsimagef(A)isaclosed(de nable)subsetofY:f:X!Yisaclosed(resp.open)immersioniff:X!f(X)isahome-omorphismandf(X)isaclosed(resp.open)subsetofY.Proposition3.1.InthecategoryDefthecartesiansquareofanytwomorphismsf:X!Zandg:Y!ZinDefexistsandisgivenbyacommutativediagramXZYpY// pX Yg Xf// ZwherethemorphismspXandpYareknownasprojections.TheCartesiansquaresatis esthefollowinguniversalproperty:foranyotherobjectQofDefandmor-phismsqX:Q!XandqY:Q!YofDefforwhichthefollowingdiagramcommutes,QqX qY%% u## XZYpX pY// Yg Xf// Z 16MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLILetf:X!YbeamorphisminDef:Wesaythat:f:X!YisuniversallyclosedinDefifforanymorphismg:Y0!YinDefthemorphismf0:X0!Y0inDefobtainedfromthecartesiansquareX0f0// g0 Y0g Xf// YinDefisclosedinDef.De nition3.3.Wesaythatamorphismf:X!YinDefisproperinDefiff:X!YisseparatedanduniversallyclosedinDef.De nition3.4.WesaythatanobjectZofDefiscompleteinDefifthemorphismZ!ptisproperinDef:BelowwewillrelatethenotionofproperinDefandcompleteinDefwiththeusualnotionsofde nablyproperandde nablycompact.3.2.SeparatedandproperinDef.Herewelistthemainpropertiesofmor-phismsseparatedorproperinDef.FromRemark3.2andthewaycartesiansquaresarede nedinDefweeasilyobtainthefollowing:Remark3.5.Letf:X!YbeamorphisminDef.Thenthefollowingareequivalent:(1)f:X!YisseparatedinDef.(2)The bersf�1(y)offareHausdor (withtheinducedtopology).Directlyfromthede nitions(asin[18,ChapterI,Propositions5.5.1and5.5.5])ormoreeasilyfromRemark3.5thefollowingisimmediate:Proposition3.6.InthecategoryDefthefollowinghold:(1)OpenandclosedimmersionsareseparatedinDef.(2)AcompositionoftwomorphismsseparatedinDefisseparatedinDef.(3)Iff:X!YisamorphismoverZseparatedinDefandZ0!Zisabaseextension,thenthecorrespondingbaseextensionmorphismf0:XZZ0!YZZ0isseparatedinDef.(4)Iff:X!Yandf0:X0!Y0aremorphismsoverZseparatedinDef,thentheproductmorphismff0:XZX0!YZY0isseparatedinDef.(5)Iff:X!Yandg:Y!ZaremorphismssuchthatgfisseparatedinDef,thenfisseparatedinDef. 18MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLILetZ0!ZbeamorphisminDef.ThenXZZ0fidZ0// p&& YZZ0p0 Z0isacommutativediagram,withfidZ0surjectiveandpclosedinDefbyhypothesis.Itfollowsthatp0isclosedinDefasrequired.(6)Supposethatf:X!YisamorphisminDefandletfVigikbea nitecoverofYbyopende nablesubsets.Ifg:Y0!YisamorphisminDef,thenff�1(Vi)gik(resp.fg�1(Vi)gik)isa nitecoverofX(resp.Y0)byopende nablesubsetsandff�1(Vi)Yg�1(Vi)gikisa nitecoverofXYY0byopende nablesubsets.Onetheotherhand,f�1(Vi)Yg�1(Vi)=f�1(Vi)Vig�1(Vi)andf�1(Vi)Vig�1(Vi)i// p0i XYY0p0 g�1(Vi)j// Y0isacommutativediagramwithiandjtheinclusions,p0theprojectionandp0itherestrictionofp0.Sincep0isclosedinDefifandonlyifeachp0iisclosedinDeftheresultfollows.Corollary3.8.Letf:X!YbeamorphisminDefandZXanobjectinDefwhichiscompleteinDef.Thenthefollowinghold:(1)Zisaclosed(de nable)subsetofX:(2)fjZ:Z!YisproperinDef:(3)f(Z)Yis(de nable)completeinDef:(4)Iff:X!YisproperinDefandCYisanobjectinDefwhichiscompleteinDef;thenf�1(C)Xis(de nable)completeinDef:FromProposition3.7wealsoobtaininastandardwaythefollowing:Corollary3.9.LetBbeafullasubcategoryofthecategoryofde nablespacesDefwhosesetofobjectsis:closedundertakinglocallyclosedde nablesubspacesofobjectsofB,closedundertakingcartesianproductsofobjectsofB:Thenthefollowingareequivalent:(1)EveryobjectXofBiscompletableinBi.e.,thereexistsanobjectX0ofBwhichiscompleteinDeftogetherwithanopenimmersioni:X,!X0inBwithi(X)denseinX0.Suchi:X,!X0iscalledacompletionofXinB. 20MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIofmorphismsinBsuchthat=i:X!Pisade nableopenimmersionwith(X)denseinPand hisproperinDef(sinceh0:X0!Y0isproperinDefbyCorollary3.8(2))asrequiredin(3).Assume(3).LetXanobjectofB.Takeh:X!fptgtobethemorphisminBtoapoint.Applying(3)tothismorphismweobtain(1).3.3.De nablypropermaps.Herewerecallthede nitionofde nablypropermapbetweende nablespacesandproveitsmainproperties.Aspecialcaseofthistheoryappearsin[7,Chapter6,Section4]inthecontextofanede nablespacesino-minimalexpansionsoforderedgroups.De nition3.10.Acontinuosde nablemapf:X!Ybetweende nablespacesXandYiscalledde nablyproperifforeveryde nablycompactde nablesubsetKofYitsinverseimagef�1(K)isade nablycompactde nablesubsetofX.Fromthede nitionsweseethat:Remark3.11.Ade nablespaceXisde nablycompactifandonlyifthemapX!fptgtoapointisde nablyproper.Typicalexamplesofde nablypropercontinuousde nablemapsare:(i)f:X!YwhereXisade nablycompactde nablespaceandYisanyde nablespace;(ii)theprojectionXY!YwhereXisade nablycompactde nablespaceandYisanyde nablespace;(iii)closedde nableimmersions.Withourassumptions,thefollowingisprovedjustlikeintheanecaseino-minimalexpansionsoforderedgroupstreatedin[7,Chapter6,Lemma(4.5)]:Theorem3.12.Letf:X!Ybeacontinuousde nablemap.Supposethateveryde nablycompactsubsetofYisaclosedsubset(e.g.Mhasde nableSkolemfunctionsandYisHausdor ).Thenthefollowingareequivalent:(1)fisde nablyproper.(2)Foreveryde nablecurve :(a;b)!Xandeverycontinuousde nablemap[a;b]!Ywhichmakesacommutativediagram(a;b) // _ Xf [a;b]// == Ythereisatleastonecontinuousde nablemap[a;b]!Xmakingthewholediagramcommutative.Proof.Assume(1).Let :(a;b)!Xbeade nablecurveinXsuchthatf iscompletableinY,saylimt!b�f (t)=y2Y.Takec2(a;b)andsetK=ff( (t)):t2[c;b)g[fygY:ThenKisade nablycompactde nablesubsetofYandso,f�1(K)isade nablycompactde nablesubsetofXcontaining ((c;b)).Thus mustbecompletableinf�1(K),henceinX.Assume(2).Supposethatfisnotde nablyproper.Thenthereisade nablycompactde nablesubsetKofYsuchthatf�1(K)isnotade nablycompact 22MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLI(2)Considerthecommutativediagram:(a;b) // Xf Yg [a;b] 0FF == // Zwhereweassumewehave suchthat exists.Wemustshowthat 0exists.Sinceg:Y!Zisde nablyproperandwehavef suchthat exists,byTheorem3.12 exists.Sincef:X!Yisde nablyproperandwehave suchthat exists,byTheorem3.12 0exists.(3)Sincethebaseextensionmorphismisaspecialcaseoftheproductmorphism,theresultfollowsfrom(4)below.(4)Considerthecommutativediagram:(a;b) pX   // [a;b] xx 0   X  f;; XZX0pXoo pX0 ff0// YZY0qY qY0$$ X0 f0DD Y  Y0 xx Zwhereweassumewehave suchthat exists.Wemustshowthat 0:[a;b]!XZX0exists.Sincef:X!Yisde nablyproperandwehavepX suchthatqY exists,byTheorem3.12,[a;b]!Xexists.Sincef0:X0!Y0isde nablyproperandwehavepX0 suchthatqY0 exists,byTheorem3.12[a;b]!X0exists.Sowelet 0bethemorphismgivenbytheuniversalpropertyofCartesiansquares.(5) 24MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIi:X,!X0inBwithi(X)denseinX0.Suchi:X,!X0iscalledade nablecompletionofXinB.(2)Everymorphismf:X!YinBisde nablycompletableinBi.e.,thereexistsacommutativediagramXf i// X0f0 Yj// Y0ofmorphismsinBsuchthat:(i)i:X!X0isade nablecompletionofXinB;(ii)jisade nablecompletionofYinB.(3)Everymorphismf:X!YinBhasade nableproperextensioninBi.e.,thereexistsacommutativediagramX f // P f YofmorphismsinBsuchthatisade nableopenimmersionwith(X)denseinPand fisde nablyproper.IfB=Defwedon'tmentionBandwetalkofde nablycompletable,de nablecompletionandde nableproperextension.3.4.De nablyproperandproperinDef.Herewewillshowthatade nablypropermapbetweenHausdor locallyde nablycompactde nablespacesisthesameamorphismproperinDef.Wealsoprovethede nableanalogueofthetopo-logicalcharacterizationofthenotionofpropercontinuousmaps(asclosedmapswithcompactandHausdor bers)andade nabletypescriterionforde nablyproper.Theorem3.15.SupposethatMhasde nableSkolemfunctions.LetXandYbeHausdor ,locallyde nablycompactde nablespaces.Letf:X!Ybeacontinuousde nablemap.Thenthefollowingareequivalent:(1)fisproperinDef.(2)fisde nablyproper.Proof.Firstnotethatf:X!YisseparatedinDef(Remark3.5).SinceproperinDefmeansseparatedanduniversallyclosedinDef,itisenoughtoshowtheresultwith\properinDef"replacedby\universallyclosedinDef".Assume(1).Let :(a;b)!Xbeade nablecurveinXandsupposethatf :(a;b)!Yiscompletable.ByTheorem3.12,weneedtoshowthat :(a;b)!XiscompletableinX.Byassumptionf extendstoacontinuosde nablemap 26MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLI bers).Asimilarresultappearsinthesemi-algebraiccase([6,Theorem12.5]):Theorem3.17.SupposethatMhasde nableSkolemfunctions.LetXandYbeHausdor ,locallyde nablycompactde nablespaces.Letf:X!Ybeacontinuousde nablemap.Thenthefollowingareequivalent:(1)fisde nablyproper.(2)fisde nablyclosedandhasde nablycompact bers.Proof.Assume(1).Thenf:X!Yhasde nablycompact bersand,byTheorem3.15,fisde nablyclosed.Assume(2).LetKbeade nablycompactde nablesubsetofY.Let :(a;b)!f�1(K)ade nablecurveinf�1(K).Supposethatlimt!b� (t)doesnotexistinf�1(K).ThenthislimitdoesnotexistinXaswellsincef�1(K)isaclosedde nablesubsetofX(byCorollary2.9,Kisclosed).Therefore,ifd2(a;b),thenforeverye2[d;b), ([e;b))isaclosedde nablesubsetofXcontainedinf�1(K).Byassumption,foreverye2[d;b);f ([e;b))isthenaclosedde nablesubsetofYcontainedinK.SinceKisde nablycompact,thelimitlimt!b�f (t)existsinK,callitc.Hence,c2f ([e;b))foreverye2[d;b):Sincethede nablesubsetft2[d;b):f (t)=cgisa niteunionofpointsandintervals,itfollowsthatthereisd02[d;b)suchthatf (t)=cforallt2[d0;b).Thus ([d0;b))f�1(c)f�1(K).Sincef�1(c)isde nablycompact,thelimt!b� (t)existsinf�1(K),whichisabsurd.Wealsohavethefollowingde nabletypescriterionforde nablyproper:Theorem3.18.SupposethatMhasde nableSkolemfunctions.LetXandYbeHausdor ,locallyde nablycompactde nablespaces.Letf:X!Ybeacontinuousde nablemap.Thenthefollowingareequivalent:(1)fisde nablyproper.(2)Foreveryde nabletype onX,ifef( )hasalimitinY,then hasalimitinX:Proof.Assume(1).Let beade nabletypeonXsuchthatef( )hasalimitinY,saylimef( )=y2Y.SinceYislocallyde nablecompact,thereisade nableopenneighborhoodVofyinYsuchthat Visde nablycompact(Remark2.13).So,f�1( V)isade nablycompactde nablesubsetofXand isade nabletypeonf�1( V).ButthenbyTheorem2.23 hasalimitinf�1( V),henceinX.Assume(2).Supposethatfisnotde nablyproper.Thenthereisade nablycompactde nablesubsetKofYsuchthatf�1(K)isnotade nablycompactde- nablesubsetofX.ThusbyTheorem2.23thereisade nabletype onf�1(K)whichdoesnothavealimitinf�1(K).Sincef�1(K)isclosed(byCorollary2.9,Kisclosed), doesnothavealimitinX.Butef( )isade nabletypeonKYandhasalimitbyTheorem2.23,whichcontradicts(2).4.Invarianceandcomparisonresults 28MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIProposition4.3.Letf:X!YamorphisminDef:Thenthefollowingareequivalent:(1)fisseparated(resp.proper)inDef:(2)fSisseparated(resp.proper)inDef(S):Theorem4.4.SupposethatMhasde nableSkolemfunctions.LetXandYbeHausdor de nablespaces.Letf:X!Ybeacontinuousde nablemap.Thenthefollowingareequivalent:(1)fisde nablyproper.(2)fSisS-de nablyproper.Proof.FirstnotethatShasde nableSkolemfunctionsandX(S)andY(S)areHausdor S-de nablespaces(sinceHausdor isa rst-orderproperty).UsingCorollary2.9andTheorem3.12inMandCorollary2.9andTheorem3.12inS;theresultfollowsfromtheclaim:Claim4.5.Thefollowingareequivalent:(1)Foreveryde nablecurve :(a;b)!Xandeverycontinuousde nablemap[a;b]!Ywhichmakesacommutativediagram(a;b) // _ Xf [a;b]// == Ythereisatleastonecontinuousde nablemap[a;b]!Xmakingthewholediagramcommutative.(2)ForeveryS-de nablecurve :(c;d)!X(S)andeverycontinuousS-de nablemap[c;d]!Y(S)whichmakesacommutativediagram(c;d) // _ X(S)fS [c;d]// ;; Y(S)thereisatleastonecontinuousde nablemap[c;d]!X(S)makingthewholediagramcommutative.Assume(1)andsupposethatthereare :(c;d)!X(S)anS-de nablecurveand :[c;d]!Y(S)acontinuousS-de nablemapwhichmakeacommutativediagram(c;d) // _ X(S)fS [c;d] // @;; Y(S)andthereisnocontinuousS-de nablemap[c;d]!X(S)makingthewholediagramcommutative.Thenthereareuniformlyde nable(inM)familiesofcontinuousde nablemapsf tgt2Tandf tgt2Tsuchthatforsomes2T(S)wehave s= 30MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIY(S)arelocallyS-de nablycompactS-de nablespaces.Thenthefollowingareequivalent:(1)fisproperinDef.(2)fisde nablyproper.(3)fSisS-de nablyproper.(4)fSisproperinDef(S):4.2.De nablyproperino-minimalexpansions.HereSisano-minimalex-pansionofMandweconsiderthefunctorDef!Def(S)fromthecategoryofde nablespacesandcontinuousde nablemapstothecate-goryofS-de nablespacesandcontinuousS-de nablemaps.Thisfunctorsendsade nablespaceXtotheS-de nablespaceXandsendsacontinuousde nablemapf:X!YtothecontinuousS-de nablemapf:X!Y.WeshowthatifMhasde nableSkolemfunctions,thenforHausdor locallyde nablycompactde nablespacesde nablyproperisthesameasS-de nablyproperandproperinDefisthesameasproperinDef(S).Fact4.8.IfMhasde nableSkolemfunctions,thenShasde nableSkolemfunc-tions.Proof.Bythe(observationsbeforethe)proofof[7,Chapter6,(1,2)](seealsoComment(1.3)there),Shasde nableSkolemfunctionsifandonlyifforev-eryS-de nablesubsetXMde nedwithparametersina1;:::;alonecanpickanS-de nableelemente(X)2Xde nedwithparametersina1;:::;al:But,bythede nitionofo-minimality,theS-de nablesubsetsXMarethesameasthede nablesubsetsXMwhicharethesameasthe(M;)-de nablesubsetsXM:Theshrinkinglemmagivesthefollowing:Proposition4.9.SupposethatMhasde nableSkolemfunctions.LetXbeaHausdor de nablespace.Thenthefollowingareequivalent:(1)Xisde nablycompact.(2)XisS-de nablycompact.Proof.Assume(1).ByTheorem2.12,Xisde nablynormal.Let(Xi;i)ilbethede nablechartsofX:Bytheshrinkinglemma,thereareopende nablesubsetsVi(1il)andclosedde nablesubsetsCi(1il)suchthatViCiXiandX=[fCi:i=1;:::;lg:Fixi:ThenCiisade nablycompactde nablesubsetofXbecauseXisde n-ablycompactandCiisclosedinX.Soi(Ci)isalsoade nablycompactde nablesubsetofMni;andtherefore,by[25,Theorem2.1],i(Ci)isaclosedandboundedde nablesubsetofMni:Inparticular,since\closed"and\bounded"arepreservedundergoingtoS;i(Ci)isaclosedandboundedS-de nablesubsetofMniandtherefore,by[25,Theorem2.1]inS,i(Ci)isanS-de nablycompactS-de nablesubsetofMni:Hence,CiisanS-de nablycompactS-de nablesubsetofX:It 32MARIOJ.EDMUNDO,MARCELLOMAMINO,ANDLUCAPRELLIisproperifandonlyiffinproperinTop(see[3,Chapter1,x10,Theorem1]).ByTheorem3.15inManditstopologicalanalogueitisenoughtoshowthatfisde nablyproperifandonlyiffisproper.UsingthefactthatXandYarelocallyde nablycompactandProposition4.11onecanshowthelaterclaimasin[7,Chapter6,(4.8)Exercise3](seepage170forthesolution).References[1]A.BerarducciandM.OteroIntersectiontheoryforo-minimalmanifoldsAnn.PureAppl.Logic107(1-3)(2001)87{119.[2]J.Bochnak,M.CosteandM-F.RoyRealAlgebraicGeometryErgebnissederMath.(3)36,Springer-Verlag,Berlin(1998).[3]N.BourbakiElementsofMathematics,GeneralTopology,Part1Hermann,Paris(1966).[4]M.CosteAnintroductiontoo-minimalgeometryDip.Mat.Univ.Pisa,DottoratodiRicercainMatematica,IstitutiEditorialiePoligra ciInternazionali,Pisa(2000).[5]H.DelfsHomologyoflocallysemialgebraicspacesLectureNotesinMath.1484,Springer-Verlag,Berlin(1991).[6]H.DelfsandM.KnebushSemi-algebraictopologyoverarealclosed eldII:Basictheoryofsemi-algebraicspacesMath.Z.178(1981)175{213.[7]L.vandenDriesTametopologyando-minimalstructuresLondonMath.Soc.Lec-tureNoteSeries248,CambridgeUniversityPress,Cambridge(1998).[8]M.Edmundo,G.JonesandN.Peat eldSheafcohomologyino-minimalstructuresJ.Math.Logic6(2)(2006)163{179.[9]M.Edmundo,M.Mamino,L.Prelli,J.RamakrishnanandG.TerzoOntheo-minimalHilbert's fthproblemPreprint,April2014(http://www.ciul.ul.pt/~edmundo/oh5p_20_07_14.pdf)[10]M.EdmundoandM.OteroDe nablycompactabeliangroups.J.Math.Logic4(2)(2004)163{180.[11]M.EdmundoandL.PrelliPoincare-Verdierdualityino-minimalstructuresAnn.Inst.FourierGrenoble60(4)(2010)1259{1288.[12]M.EdmundoandL.PrelliInvarianceofo-minimalcohomologywithde nablycom-pactsupportsarXiv:1205.6124.[13]M.EdmundoandL.PrelliThesixGrothendieckoperationsono-minimalsheavesC.R.Acad.Sci.Paris.352(6)(2014)455{458.[14]M.EdmundoandL.PrelliThesixGrothendieckoperationsono-minimalsheavesarXiv:1401.0846[15]M.EdmundoandG.TerzoAnoteongenericsubsetsofde nablegroupsFund.Math.215(1)(2011)53{65.[16]P.Eleftheriou,Y.PeterzilandJ.RamakrishnanInterpretablegroupsarede nablearXiv:1110.6581v1.[17]A.FornasieroO-minimalspectrumUnpublished,33pp,2006.[18]A.GrothendieckandJ.DieudonneElementsdegeometriealgebriqueIInst.HautesEtudesSci.Publ.Math.4(1960)5{228.[19]A.GrothendieckandJ.DieudonneElementsdegeometriealgebriqueIIInst.HautesEtudesSci.Publ.Math.8(1961)5{222.[20]R.HartshorneAlgebraicgeometryGraduateTextsinMathematics52,SpringerVerlag,NewYork(1977).[21]E.HrushovskiValued elds,metastablegroups,draft,2004.http://www.ma.huji.ac.il/~ehud/mst.pdf[22]E.HrushovskiandF.LoeserNon-archimedeantametopologyandstablydominatedtypesAnnalsMath.Studies(toappear).[23]E.Hrushovski,Y.PeterzilandA.PillayGroups,measuresandtheNIPJ.Amer.Math.Soc.21(2)(2008)563{596.[24]D.MarkerandC.SteinhornDe nabletypesino-minimaltheoriesJ.Symb.Logic59(1)(1994)185{198.

Related Contents


Next Show more