/
Hadron spectroscopy Hadron spectroscopy

Hadron spectroscopy - PowerPoint Presentation

debby-jeon
debby-jeon . @debby-jeon
Follow
447 views
Uploaded On 2016-10-16

Hadron spectroscopy - PPT Presentation

Paradigm change Mikhail Bashkanov University of Edinburgh UK Nuclear Physics Summer School II Naïve quark model N puzzle Molecular states Exotics Tetraquarks Pentaquarks Hexaquarks Hybrids ID: 476838

states molecule mev excited molecule states excited mev resonance baryon roper expectation baryons form quark meson deuteron mass resonances

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Hadron spectroscopy" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Hadron spectroscopy

Paradigm change

Mikhail BashkanovUniversity of EdinburghUK Nuclear Physics Summer School

IISlide2

Naïve quark modelN* puzzle

Molecular statesExoticsTetraquarksPentaquarks

HexaquarksHybridsGlueballsOutline2Slide3

Types of particles/resonances

color

anticolor

white

Meson

Baryon

3Slide4

Quarks

fermions

3 colorsParity +1Constituent quarks: 4Slide5

The early days

Baryons are 3 quark systems

Mesons are quark-antiquark systemsMurray Gell Mann 1964“A schematic model of baryons and mesons”5Slide6

Excited states?

Shell model

6Slide7

Nucleon excited states?

 

P – parityL – angular momentum7Slide8

Excited states - expectation

 

 

 

 

u

d

u

 

8Slide9

Excited states - expectation

 

 

 

 

u

d

u

 

 

 

 

 

u

d

u

 

9Slide10

Excited states - expectation

 

 

 

 

u

d

u

 

 

 

 

 

u

d

u

 

 

 

 

 

u

d

u

 

10Slide11

Excited states - expectation

 

 

 

 

 

 

 

u

d

u

 

 

 

 

11Slide12

Excited states - expectation

 

 

 

 

 

 

 

u

d

u

 

 

 

 

12Slide13

Excited states - reality

 

 

 

 

 

 

 

u

d

u

 

 

 

13Slide14

Hyperons

 

 

 

 

 

 

u

d

s

 

 

 

 

14Slide15

Excited hyperons?

 

 

 

 

 

 

u

d

s

 

 

 

 

 

15Slide16

Excited hyperons - reality

 

 

 

 

 

 

 

 

16Slide17

Lattice QCD

17Slide18

Lattice QCD

Models

Nature

Models

Nature

18Slide19

Missing states- extra states

19Slide20

Di-quark degrees of freedom

Ideas?

udu

u

d

u

20Slide21

Di-quark degrees of freedom

is a breathing mode

 Ideas?ud

u

u

d

u

u

d

u

u

d

u

21Slide22

The Roper resonance:

 Previous pion-nucleon resonances were discovered from observations on the qualitative behavior of experimental observables. The resonance suggested in this paper, however, is not associated with conspicuous features in the observables measured so far and has been inferred from a more quantitative analysis.L. D. Roper, Phys. Rev. Lett. 12 (1964) 34022Slide23

The Roper resonance

Old days:

Mass=1440 MeV (1430-1470)Width=350 MeV (250-450)

 

Mass [MeV]

 

 

 

 

 

 

 

 

First radial excitation

23Slide24

The Roper resonance

Now:

Mass=1370 MeV Width=190 MeV

 

Mass [MeV]

 

 

 

 

 

 

 

 

molecule

 

 

24Slide25

Structure of the resonance. Transition form factor

 

 

 

 

 

25Slide26

Structure of the resonance. Transition form factor

 

 

 

 

 

 

 

 

 

 

JLab

26Slide27

The Roper resonance =

molecule

 27Slide28

Excited hyperons - reality

 

 

 

 

 

 

 

 

28Slide29

 

molecule

  

 

29Slide30

from Lattice QCD

 

30Slide31

Molecular states. Mesons

molecule

  molecule 

molecule

 

31Slide32

Molecular states. Baryons

molecule:

  molecule:

 

molecule:

 

32Slide33

 

T. Inoue,* E.

Oset, and M. J. Vicente Vacas, Phys. Rev. C 65, 035204 (2002) molecule:

 

 

33Slide34

Dynamically generated resonances

 

34Slide35

Types of particles/resonances

color

anticolor

white

Meson

Baryon

35Slide36

Possible particles

Pentaquark

Meson-Baryon moleculeHexaquarkBaryon-Baryon molecule

36

Tetraquark

Meson-Meson moleculeSlide37

Multiquark vs Molecule

37

TetraquarkMeson-Meson molecule

XY

Z

states in

charm sector

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Slide38

Exotics: Hybrids

 

- forbidden for

 

 

38Slide39

Exotics: Hybrid baryons

 

Transition form factor measurements39Slide40

Exotics: Hybrid baryons

Hadron

Spectrum Collaboration40Slide41

Dibaryons, B=2 systems

41Slide42

Deuteron

n

p

n

p

L=2

0.9

fm

4

fm

L=0

 

6q

c

onfiguration

 

42Slide43

Deuteron to Deltaron

T

hresholdpn2.2 MeV

deuteron

Δ

Δ

80 MeV

d*

I(

J

p

) =

0(1

+

)

I(

J

p

) = 0(3

+

)

u

u

u

d

d

d

u

u

u

d

d

d

43Slide44

Dibaryon hadronic

decays

44

pn

d*(2380)

 

 

 

 

 

 

PRL 112 (2014)

202301

PRC

90

,

(2014) 035204

PLB 721 (2013) 229

PRL 106 (2011) 242302

PRC 88 (2013) 055208

PLB

743 (2015)

325

WASA

data

d*

d*

d* Slide45

Dibaryon in elastic scattering

p

n

n

p

background

+ dibaryon

45Slide46

Polarization is a key

46

SAID

New SAID

solutions

Effect of the resonanceSlide47

Hexaquark

vs molecule

47

e

-

d

*

d

*(2380)

Transition form factor

Charge distribution

Internal structure

e

-Slide48

48

Dibaryon in

Skyrm modelDavid Foster, Nicholas S. Manton arXiv:1505.06843 Slide49

d*(2380) SU(3) multiplet



*

*



 

 

 

 

 

J

p

=

3

+

49Slide50

Baryon Summary Table (PDG 2014)

50Slide51

51Slide52

Precise experiments change our knowledge about well known resonances

Transition form factors -> internal structureNew exotic statesMeson MoleculesT

etraquarksHybridsMeson-Baryon MoleculesPentaquarksHybrid baryonsBaryon-baryon moleculesHexaquarks… A lot of states still to be found and identifiedConclusion52Slide53

NN SU(3)

multiplet

pn

53

Deuteron +2.2 MeV

 

J

p

=

1

+

-166

keV

 

-400

keV