/
MaxwellEquations MaxwellEquations

MaxwellEquations - PDF document

debby-jeon
debby-jeon . @debby-jeon
Follow
362 views
Uploaded On 2016-03-19

MaxwellEquations - PPT Presentation

rE 0rB0rEB trB0J0E t1 Contents 1 Introduction 1 11 ChargeandCurrent 2 111 TheConservationLaw 4 12 ForcesandFields 4 121 TheMaxwellEquations 6 2 Electrostatics 8 21 Gauss ID: 262542

rE= 0rB=0rE=@B @trB=0J+0@E @t{1{ Contents 1 .Introduction 1 1.1 ChargeandCurrent 2 1.1.1 TheConservationLaw 4 1.2 ForcesandFields 4 1.2.1 TheMaxwellEquations 6 2 .Electrostatics 8 2.1 Gauss

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "MaxwellEquations" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

LentTerm,2015ElectromagnetismUniversityofCambridgePartIBMathematicalTripos DavidTongDepartmentofAppliedMathematicsandTheoreticalPhysics,CentreforMathematicalSciences,WilberforceRoad,Cambridge,CB3OBA,UKhttp://www.damtp.cam.ac.uk/user/tong/em.html d.tong@damtp.cam.ac.uk MaxwellEquations rE= 0rB=0rE=�@B @trB=0J+0@E @t{1{ RecommendedBooksandResourcesThereismoreorlessawellestablishedroutetoteachingelectromagnetism.Anumberofgoodbooksfollowthis.DavidJ.Griths,\IntroductiontoElectrodynamics"Asuperbbook.Theexplanationsareclearandsimple.Itdoesn'tcoverquiteasmuchaswe'llneedfortheselectures,butifyou'relookingforabooktocoverthebasicsthenthisisthe rstonetolookat.EdwardM.PurcellandDavidJ.Morin\ElectricityandMagnetism"Anotherexcellentbooktostartwith.IthassomewhatmoredetailinplacesthanGriths,butthebeginningofthebookexplainsbothelectromagnetismandvectorcalculusinanintertwinedfashion.Ifyouneedsomehelpwithvectorcalculusbasics,thiswouldbeagoodplacetoturn.Ifnot,you'llneedtospendsometimedisentanglingthetwotopics.J.DavidJackson,\ClassicalElectrodynamics"Themostcanonicalofphysicstextbooks.Thisisprobablytheonebookyoucan ndoneveryprofessionalphysicist'sshelf,whetherstringtheoristorbiophysicist.Itwillseeyouthroughthiscourseandnextyear'scourse.Theproblemsarefamouslyhard.Butitdoeshavediv,gradandcurlinpolarcoordinatesontheinsidecover.A.Zangwill,\ModernElectrodynamics"Agreatbook.ItisessentiallyamoremodernandmorefriendlyversionofJackson.Feynman,LeightonandSands,\TheFeynmanLecturesonPhysics,VolumeII"Feynman'sfamouslecturesonphysicsaresomethingofamixedbag.Someexplanationsarewonderfullyoriginal,butotherscanbealittletooslicktobehelpful.Andmuchofthematerialcomesacrossasold-fashioned.Volumetwocoverselectromagnetismand,inmyopinion,isthebestofthethree.Anumberofexcellentlecturenotes,includingtheFeynmanlectures,areavailableontheweb.Linkscanbefoundonthecoursewebpage: http://www.damtp.cam.ac.uk/user/tong/em.html {2{ Contents 1 .Introduction 1 1.1 ChargeandCurrent 2 1.1.1 TheConservationLaw 4 1.2 ForcesandFields 4 1.2.1 TheMaxwellEquations 6 2 .Electrostatics 8 2.1 Gauss'Law 8 2.1.1 TheCoulombForce 9 2.1.2 AUniformSphere 11 2.1.3 LineCharges 12 2.1.4 SurfaceChargesandDiscontinuities 13 2.2 TheElectrostaticPotential 16 2.2.1 ThePointCharge 17 2.2.2 TheDipole 19 2.2.3 GeneralChargeDistributions 20 2.2.4 FieldLines 23 2.2.5 ElectrostaticEquilibrium 24 2.3 ElectrostaticEnergy 25 2.3.1 TheEnergyofaPointParticle 27 2.3.2 TheForceBetweenElectricDipoles 29 2.4 Conductors 30 2.4.1 Capacitors 32 2.4.2 BoundaryValueProblems 33 2.4.3 MethodofImages 35 2.4.4 Manymanymoreproblems 37 2.4.5 AHistoryofElectrostatics 39 3 .Magnetostatics 41 3.1 Ampere'sLaw 42 3.1.1 ALongStraightWire 42 3.1.2 SurfaceCurrentsandDiscontinuities 43 3.2 TheVectorPotential 46 3.2.1 MagneticMonopoles 47 {3{ 3.2.2 GaugeTransformations 48 3.2.3 Biot-SavartLaw 49 3.2.4 AMathematicalDiversion:TheLinkingNumber 52 3.3 MagneticDipoles 54 3.3.1 ACurrentLoop 54 3.3.2 GeneralCurrentDistributions 56 3.4 MagneticForces 57 3.4.1 ForceBetweenCurrents 57 3.4.2 ForceandEnergyforaDipole 59 3.4.3 SoWhatisaMagnet? 62 3.5 UnitsofElectromagnetism 64 3.5.1 AHistoryofMagnetostatics 65 4 .Electrodynamics 67 4.1 Faraday'sLawofInduction 67 4.1.1 Faraday'sLawforMovingWires 69 4.1.2 InductanceandMagnetostaticEnergy 71 4.1.3 Resistance 74 4.1.4 MichaelFaraday(1791-1867) 77 4.2 OneLastThing:TheDisplacementCurrent 79 4.2.1 WhyAmpere'sLawisNotEnough 80 4.3 AndThereWasLight 82 4.3.1 SolvingtheWaveEquation 84 4.3.2 Polarisation 87 4.3.3 AnApplication:Re ectiono aConductor 89 4.3.4 JamesClerkMaxwell(1831-1879) 91 4.4 TransportofEnergy:ThePoyntingVector 92 4.4.1 TheContinuityEquationRevisited 94 5 .ElectromagnetismandRelativity 95 5.1 AReviewofSpecialRelativity 95 5.1.1 Four-Vectors 96 5.1.2 ProperTime 97 5.1.3 IndicesUp,IndicesDown 98 5.1.4 Vectors,CovectorsandTensors 99 5.2 ConservedCurrents 102 5.2.1 MagnetismandRelativity 103 5.3 GaugePotentialsandtheElectromagneticTensor 105 {4{ 5.3.1 GaugeInvarianceandRelativity 105 5.3.2 TheElectromagneticTensor 106 5.3.3 AnExample:ABoostedLineCharge 109 5.3.4 AnotherExample:ABoostedPointCharge 110 5.3.5 LorentzScalars 111 5.4 MaxwellEquations 113 5.4.1 TheLorentzForceLaw 115 5.4.2 MotioninConstantFields 117 5.5 Epilogue 118 {5{ AcknowledgementsTheselecturenotescontainmaterialcoveringtwocoursesonElectromagnetism.InCambridge,thesecoursesarecalledPartIBElectromagnetismandPartIIElectro-dynamics.Thenotesoweadebttothepreviouslecturersofthesecourses,includingNatashaBerlo ,JohnPapaloizouandespeciallyAnthonyChallinor.ThenotesassumeafamiliaritywithNewtonianmechanicsandspecialrelativity,ascoveredintheDynamicsandRelativitynotes.Theyalsoassumeaknowledgeofvectorcalculus.Thenotesdonotcovertheclassical eldtheory(LagrangianandHamiltonian)sectionofthePartIIcourse.{6{ 1.IntroductionThereare,tothebestofourknowledge,fourforcesatplayintheUniverse.Attheverylargestscales|thoseofplanetsorstarsorgalaxies|theforceofgravitydominates.Attheverysmallestdistances,thetwonuclearforcesholdsway.Foreverythinginbetween,itisforceofelectromagnetismthatrules.Attheatomicscale,electromagnetism(admittedlyinconjunctionwithsomebasicquantume ects)governstheinteractionsbetweenatomsandmolecules.Itistheforcethatunderliestheperiodictableofelements,givingrisetoallofchemistryand,throughthis,muchofbiology.Itistheforcewhichbindsatomstogetherintosolidsandliquids.Anditistheforcewhichisresponsiblefortheincrediblerangeofpropertiesthatdi erentmaterialsexhibit.Atthemacroscopicscale,electromagnetismmanifestsitselfinthefamiliarphenom-enathatgivetheforceitsname.Inthecaseofelectricity,thismeanseverythingfromrubbingaballoononyourheadandstickingitonthewall,throughtothefactthatyoucanpluganyapplianceintothewallandbeprettycon dentthatitwillwork.Formag-netism,thismeanseverythingfromtheshoppingliststucktoyourfridgedoor,throughtotrainsinJapanwhichlevitateabovetherail.Harnessingthesepowersthroughtheinventionoftheelectricdynamoandmotorhastransformedtheplanetandourlivesonit.Asifthiswasn'tenough,thereismuchmoretotheforceofelectromagnetismforitis,quiteliterally,responsibleforeverythingyou'veeverseen.Itistheforcethatgivesrisetolightitself.Ratherremarkably,afulldescriptionoftheforceofelectromagnetismiscontainedinfoursimpleandelegantequations.TheseareknownastheMaxwellequations.Therearefewplacesinphysics,orindeedinanyothersubject,wheresucharichlydiversesetofphenomena owsfromsolittle.ThepurposeofthiscourseistointroducetheMaxwellequationsandtoextractsomeofthemanystoriestheycontain.However,thereisalsoasecondthemethatrunsthroughthiscourse.Theforceofelectromagnetismturnsouttobeablueprintforalltheotherforces.TherearevariousmathematicalsymmetriesandstructureslurkingwithintheMaxwellequations,struc-tureswhichNaturethenrepeatsinothercontexts.Understandingthemathematicalbeautyoftheequationswillallowustoseesomeoftheprinciplesthatunderlythelawsofphysics,layingthegroundworkforfuturestudyoftheotherforces.{1{ 1.1ChargeandCurrentEachparticleintheUniversecarrieswithitanumberofproperties.Thesedeterminehowtheparticleinteractswitheachofthefourforces.Fortheforceofgravity,thispropertyismass.Fortheforceofelectromagnetism,thepropertyiscalledelectriccharge.Forthepurposesofthiscourse,wecanthinkofelectricchargeasarealnumber,q2R.Importantly,chargecanbepositiveornegative.Itcanalsobezero,inwhichcasetheparticleisuna ectedbytheforceofelectromagnetism.TheSIunitofchargeistheCoulomb,denotedbyC.Itis,likeallSIunits,aparochialmeasure,convenientforhumanactivityratherthaninformedbytheunderlyinglawsofthephysics.(We'lllearnmoreabouthowtheCoulombisde nedinSection 3.5 ).Atafundamentallevel,Natureprovidesuswithabetterunitofcharge.Thisfollowsfromthefactthatchargeisquantised:thechargeofanyparticleisanintegermultipleofthechargecarriedbytheelectronwhichwedenotedas�e,withe=1:6021765710�19CAmuchmorenaturalunitwouldbetosimplycountchargeasq=newithn2Z.Thenelectronshavecharge�1whileprotonshavecharge+1andneutronshavecharge0.Nonetheless,inthiscourse,wewillbowtoconventionandstickwithSIunits.(Anaside:thechargeofquarksisactuallyq=�e=3andq=2e=3.Thisdoesn'tchangethespiritoftheabovediscussionsincewecouldjustchangethebasicunit.But,apartfrominextremecircumstances,quarksarecon nedinsideprotonsandneutronssowerarelyhavetoworryaboutthis).Oneofthekeygoalsofthiscourseistomovebeyondthedynamicsofpointparticlesandontothedynamicsofcontinuousobjectsknownas elds.Toaidinthis,it'susefultoconsiderthechargedensity,(x;t)de nedaschargeperunitvolume.ThetotalchargeQinagivenregionVissimplyQ=RVd3x(x;t).Inmostsituations,wewillconsidersmoothchargedensities,whichcanbethoughtofasarisingfromaveragingovermanypoint-likeparticles.But,onoccasion,wewillreturntotheideaofasingleparticleofchargeq,movingonsometrajectoryr(t),bywriting=q(x�r(t))wherethedelta-functionensuresthatallthechargesitsatapoint.{2{ Moregenerally,wewillneedtodescribethemovementofchargefromoneplacetoanother.ThisiscapturedbyaquantityknownasthecurrentdensityJ(x;t),de nedasfollows:foreverysurfaceS,theintegralI=ZSJdScountsthechargeperunittimepassingthroughS.(HeredSistheunitnormaltoS).ThequantityIiscalledthecurrent.Inthissense,thecurrentdensityisthecurrent-per-unit-area.Theaboveisaratherindirectde nitionofthecur- Figure1:Current uxrentdensity.Togetamoreintuitivepicture,consideracontinuouschargedistributioninwhichthevelocityofasmallvolume,atpointx,isgivenbyv(x;t).Then,ne-glectingrelativistice ects,thecurrentdensityisJ=vInparticular,ifasingleparticleismovingwithvelocityv=_r(t),thecurrentdensitywillbeJ=qv3(x�r(t)).Thisisillustratedinthe gure,wheretheunderlyingchargedparticlesareshownasredballs,movingthroughthebluesurfaceS.Asasimpleexample,considerelectronsmov- Figure2:Thewireingalongawire.Wemodelthewireasalongcylinderofcross-sectionalareaAasshownbe-low.Theelectronsmovewithvelocityv,paral-leltotheaxisofthewire.(Inreality,theelec-tronswillhavesomedistributionofspeeds;wetakevtobetheiraveragevelocity).Iftherearenelectronsperunitvolume,eachwithchargeq,thenthechargedensityis=nqandthecurrentdensityisJ=nqv.ThecurrentitselfisI=jJjA.Throughoutthiscourse,thecurrentdensityJplaysamuchmoreprominentrolethanthecurrentI.Forthisreason,wewilloftenrefertoJsimplyasthe\current"althoughwe'llbemorecarefulwiththeterminologywhenthereisanypossibilityforconfusion.{3{ 1.1.1TheConservationLawThemostimportantpropertyofelectricchargeisthatit'sconserved.This,ofcourse,meansthatthetotalchargeinasystemcan'tchange.Butitmeansmuchmorethanthatbecauseelectricchargeisconservedlocally.Anelectricchargecan'tjustvanishfromonepartoftheUniverseandturnupsomewhereelse.Itcanonlyleaveonepointinspacebymovingtoaneighbouringpoint.Thepropertyoflocalconservationmeansthatcanchangeintimeonlyifthereisacompensatingcurrent owingintooroutofthatregion.Weexpressthisinthecontinuityequation,@ @t+rJ=0(1.1)Thisisanimportantequation.Itarisesinanysituationwherethereissomequantitythatislocallyconserved.Toseewhythecontinuityequationcapturestherightphysics,it'sbesttoconsiderthechangeinthetotalchargeQcontainedinsomeregionV.dQ dt=ZVd3x@ @t=�ZVd3xrJ=�ZSJdSFromourpreviousdiscussion,RSJdSisthetotalcurrent owingoutthroughtheboundarySoftheregionV.(Itisthetotalcharge owingout,ratherthanin,becausedSistheoutwardnormaltotheregionV).Theminussignistheretoensurethatifthenet owofcurrentisoutwards,thenthetotalchargedecreases.Ifthereisnocurrent owingoutoftheregion,thendQ=dt=0.Thisisthestatementof(global)conservationofcharge.InmanyapplicationswewilltakeVtobeallofspace,R3,withbothchargesandcurrentslocalisedinsomecompactregion.Thisensuresthatthetotalchargeremainsconstant.1.2ForcesandFieldsAnyparticlethatcarrieselectricchargeexperiencestheforceofelectromagnetism.Buttheforcedoesnotactdirectlybetweenparticles.Instead,Naturechosetointroduceintermediaries.Theseare elds.Inphysics,a\ eld"isadynamicalquantitywhichtakesavalueateverypointinspaceandtime.Todescribetheforceofelectromagnetism,weneedtointroducetwo{4{ elds,eachofwhichisathree-dimensionalvector.Theyarecalledtheelectric eldEandthemagnetic eldB,E(x;t)andB(x;t)Whenwetalkabouta\force"inmodernphysics,wereallymeananintricateinterplaybetweenparticlesand elds.Therearetwoaspectstothis.First,thechargedparticlescreatebothelectricandmagnetic elds.Second,theelectricandmagnetic eldsguidethechargedparticles,tellingthemhowtomove.Thismotion,inturn,changesthe eldsthattheparticlescreate.We'releftwithabeautifuldancewiththeparticlesand eldsastwopartners,eachdictatingthemovesoftheother.Thisdancebetweenparticlesand eldsprovidesaparadigmwhichallotherforcesinNaturefollow.ItfeelslikethereshouldbeadeepreasonthatNaturechosetointroduce eldsassociatedtoalltheforces.And,indeed,thisapproachdoesprovideoneover-ridingadvantage:allinteractionsarelocal.Anyobject|whetherparticleor eld|a ectsthingsonlyinitsimmediateneighbourhood.Thisin uencecanthenpropagatethroughthe eldtoreachanotherpointinspace,butitdoesnotdosoinstantaneously.Ittakestimeforaparticleinonepartofspacetoin uenceaparticleelsewhere.Thislackofinstantaneousinteractionallowsustointroduceforceswhicharecompatiblewiththetheoryofspecialrelativity,somethingthatwewillexploreinmoredetailinSection 5 Thepurposeofthiscourseistoprovideamathematicaldescriptionoftheinterplaybetweenparticlesandelectromagnetic elds.Infact,you'vealreadymetonesideofthisdance:thepositionr(t)ofaparticleofchargeqisdictatedbytheelectricandmagnetic eldsthroughtheLorentzforcelaw,F=q(E+_rB)(1.2)ThemotionoftheparticlecanthenbedeterminedthroughNewton'sequationF=mr.WeexploredvarioussolutionstothisintheDynamicsandRelativitycourse.Roughlyspeaking,anelectric eldacceleratesaparticleinthedirectionE,whileamagnetic eldcausesaparticletomoveincirclesintheplaneperpendiculartoB.WecanalsowritetheLorentzforcelawintermsofthechargedistribution(x;t)andthecurrentdensityJ(x;t).Nowwetalkintermsoftheforcedensityf(x;t),whichistheforceactingonasmallvolumeatpointx.NowtheLorentzforcelawreadsf=E+JB(1.3){5{ 1.2.1TheMaxwellEquationsInthiscourse,mostofourattentionwillfocusontheothersideofthedance:thewayinwhichelectricandmagnetic eldsarecreatedbychargedparticles.Thisisdescribedbyasetoffourequations,knowncollectivelyastheMaxwellequations.Theyare:rE= 0(1.4)rB=0(1.5)rE+@B @t=0(1.6)rB�00@E @t=0J(1.7)Theequationsinvolvetwoconstants.The rstistheelectricconstant(knownalso,inslightlyold-fashionedterminology,asthepermittivityoffreespace),08:8510�12m�3Kg�1s2C2Itcanbethoughtofascharacterisingthestrengthoftheelectricinteractions.Theotheristhemagneticconstant(orpermeabilityoffreespace),0=410�7mKgC�21:2510�6mKgC�2Thepresenceof4inthisformulaisn'ttellingusanythingdeepaboutNature.It'smoreare ectionofthede nitionoftheCoulombastheunitofcharge.(WewillexplainthisinmoredetailinSection 3.5 ).Nonetheless,thiscanbethoughtofascharacterisingthestrengthofmagneticinteractions(inunitsofCoulombs).TheMaxwellequations( 1.4 ),( 1.5 ),( 1.6 )and( 1.7 )willoccupyusfortherestofthecourse.Ratherthantryingtounderstandalltheequationsatonce,we'llproceedbitbybit,lookingatsituationswhereonlysomeoftheequationsareimportant.Bytheendofthelectures,wewillunderstandthephysicscapturedbyeachoftheseequationsandhowthey ttogether.{6{ However,equallyimportantly,wewillalsoexplorethemathematicalstructureoftheMaxwellequations.At rstglance,theylookjustlikefourrandomequationsfromvectorcalculus.Yetthiscouldn'tbefurtherfromthetruth.TheMaxwellequationsarespecialand,whenviewedintherightway,aretheessentiallyuniqueequationsthatcandescribetheforceofelectromagnetism.Thefullstoryofwhythesearetheuniqueequationsinvolvesbothquantummechanicsandrelativityandwillonlybetoldinlatercourses.Butwewillstartthatjourneyhere.ThegoalisthatbytheendoftheselecturesyouwillbeconvincedoftheimportanceoftheMaxwellequationsonbothexperimentalandaestheticgrounds.{7{ 2.ElectrostaticsInthissection,wewillbeinterestedinelectricchargesatrest.Thismeansthatthereexistsaframeofreferenceinwhichtherearenocurrents;onlystationarycharges.Ofcourse,therewillbeforcesbetweenthesechargesbutwewillassumethatthechargesarepinnedinplaceandcannotmove.Thequestionthatwewanttoansweris:whatistheelectric eldgeneratedbythesecharges?Sincenothingmoves,wearelookingfortimeindependentsolutionstoMaxwell'sequationswithJ=0.ThismeansthatwecanconsistentlysetB=0andwe'releftwithtwoofMaxwell'sequationstosolve.TheyarerE= 0(2.1)andrE=0(2.2)Ifyou xthechargedistribution,equations( 2.1 )and( 2.2 )haveauniquesolution.Ourgoalinthissectionisto ndit.2.1Gauss'LawBeforeweproceed,let's rstpresentequation( 2.1 )inaslightlydi erentformthatwillshedsomelightonitsmeaning.ConsidersomeclosedregionVR3ofspace.We'lldenotetheboundaryofVbyS=@V.Wenowintegratebothsidesof( 2.1 )overV.Sincetheleft-handsideisatotalderivative,wecanusethedivergencetheoremtoconvertthistoanintegraloverthesurfaceS.WehaveZVd3xrE=ZSEdS=1 0ZVd3xTheintegralofthechargedensityoverVissimplythetotalchargecontainedintheregion.We'llcallitQ=Rd3x.Meanwhile,theintegraloftheelectric eldoverSiscalledthe uxthroughS.WelearnthatthetwoarerelatedbyZSEdS=Q 0(2.3)ThisisGauss'slaw.However,becausethetwoareentirelyequivalent,wealsorefertotheoriginal( 2.1 )asGauss'slaw.{8{ Figure3:The uxthroughSandS0isthesame.Figure4:The uxthroughSvanishes.Noticethatitdoesn'tmatterwhatshapethesurfaceStakes.AslongasitsurroundsatotalchargeQ,the uxthroughthesurfacewillalwaysbeQ=0.Thisisshown,forexample,intheleft-hand gureabove.ThechoiceofSiscalledtheGaussiansurface;oftenthere'sasmartchoicethatmakesaparticularproblemsimple.OnlychargesthatlieinsideVcontributetothe ux.Anychargesthatlieoutsidewillproduceanelectric eldthatpenetratesthroughSatsomepoint,givingnegative ux,butleavesthroughtheothersideofS,depositingpositive ux.ThetotalcontributionfromthesechargesthatlieoutsideofViszero,asillustratedintheright-hand gureabove.Forageneralchargedistribution,we'llneedtousebothGauss'law( 2.1 )andtheextraequation( 2.2 ).However,forratherspecialchargedistributions{typicallythosewithlotsofsymmetry{itturnsouttobesucienttosolvetheintegralformofGauss'law( 2.3 )alone,withthesymmetryensuringthat( 2.2 )isautomaticallysatis ed.Westartbydescribingtheserathersimplesolutions.We'llthenreturntothegeneralcaseinSection 2.2 .2.1.1TheCoulombForceWe'llstartbyshowingthatGauss'law( 2.3 )reproducesthemorefamiliarCoulombforcelawthatweallknowandlove.Todothis,takeasphericallysymmetricchargedistribution,centeredattheorigin,containedwithinsomeradiusR.Thiswillbeourmodelforaparticle.Wewon'tneedtomakeanyassumptionaboutthenatureofthedistributionotherthanitssymmetryandthefactthatthetotalchargeisQ.{9{ Wewanttoknowtheelectric eldatsomeradiusr� Figure5:R.WetakeourGaussiansurfaceStobeasphereofradiusrasshowninthe gure.Gauss'lawstatesZSEdS=Q 0Atthispointwemakeuseofthesphericalsymmetryoftheproblem.Thistellsusthattheelectric eldmustpointra-diallyoutwards:E(x)=E(r)^r.And,sincetheintegralisonlyovertheangularcoordinatesofthesphere,wecanpullthefunctionE(r)outside.WehaveZSEdS=E(r)ZS^rdS=E(r)4r2=Q 0wherethefactorof4r2hasarisensimplybecauseit'stheareaoftheGaussiansphere.Welearnthattheelectric eldoutsideasphericallysymmetricdistributionofchargeQisE(x)=Q 40r2^r(2.4)That'snice.Thisisthefamiliarresultthatwe'veseenbefore.(See,forexample,thenoteson DynamicsandRelativity ).TheLorentzforcelaw( 1.2 )thentellsusthatatestchargeqmovingintheregionr�RexperiencesaforceF=Qq 40r2^rThis,ofcourse,istheCoulombforcebetweentwostaticchargedparticles.Noticethat,aspromised,1=0characterisesthestrengthoftheforce.Ifthetwochargeshavethesamesign,sothatQq�0,theforceisrepulsive,pushingthetestchargeawayfromtheorigin.Ifthechargeshaveoppositesigns,Qq0,theforceisattractive,pointingtowardstheorigin.WeseethatGauss'slaw( 2.1 )reproducesthissimpleresultthatweknowaboutcharges.Finally,notethattheassumptionofsymmetrywascrucialinouraboveanalysis.Withoutit,theelectric eldE(x)wouldhavedependedontheangularcoordinatesofthesphereSandsobeenstuckinsidetheintegral.Insituationswithoutsymmetry,Gauss'lawaloneisnotenoughtodeterminetheelectric eldandweneedtoalsouserE=0.We'llseehowtodothisinSection 2.2 .Ifyou'reworried,however,it'ssimpletocheckthatour nalexpressionfortheelectric eld( 2.4 )doesindeedsolverE=0.{10{ CoulombvsNewtonTheinverse-squareformoftheforceiscommontobothelectrostaticsandgravity.It'sworthcomparingtherelativestrengthsofthetwoforces.Forexample,wecanlookattherelativestrengthsofNewtonianattractionandCoulombrepulsionbetweentwoelectrons.Thesearepointparticleswithmassmeandcharge�egivenbye1:610�19Coulombsandme9:110�31KgRegardlessoftheseparation,wehaveFCoulomb FNewton=e2 401 Gm2eThestrengthofgravityisdeterminedbyNewton'sconstantG6:710�11m3Kg�1s2.Plugginginthenumbersrevealssomethingextraordinary:FCoulomb FNewton1042Gravityispuny.Electromagnetismrules.Infactyouknewthisalready.ThemereactofliftingupyouarmispitchingafewelectricalimpulsesupagainstthegravitationalmightoftheentireEarth.Yettheelectricalimpulseswin.However,gravityhasatrickupitssleeve.Whileelectricchargescomewithbothpositiveandnegativesigns,massisonlypositive.Itmeansthatbythetimewegettomacroscopicallylargeobjects|stars,planets,cats|themassaccumulateswhilethechargescanceltogoodapproximation.Thiscompensatesthefactorof10�42suppressionuntil,atlargedistancescales,gravitywinsafterall.Thefactthattheforceofgravityissoridiculouslytinyattheleveloffundamentalparticleshasconsequence.Itmeansthatwecanneglectgravitywheneverwetalkabouttheverysmall.(Andindeed,weshallneglectgravityfortherestofthiscourse).However,italsomeansthatifwewouldliketounderstandgravitybetterontheseverytinydistances{forexample,todevelopaquantumtheoryofgravity|thenit'sgoingtobetrickytogetmuchguidancefromexperiment.2.1.2AUniformSphereTheelectric eldoutsideasphericallysymmetricchargedistributionisalwaysgivenby( 2.4 ).Whataboutinside?Thisdependsonthedistributioninquestion.ThesimplestisasphereofradiusRwithuniformchargedistribution.ThetotalchargeisQ=4 3R3{11{ Let'spickourGaussiansurfacetobeasphere,centeredat Figure6:theorigin,ofradiusrR.Thechargecontainedwithinthissphereis4r3=3=Qr3=R3,soGauss'lawgivesZSEdS=Qr3 0R3Again,usingthesymmetryargumentwecanwriteE(r)=E(r)^randcomputeZSEdS=E(r)ZS^rdS=E(r)4r2=Qr3 0R3Thistellsusthattheelectric eldgrowslinearlyinsidethesphereE(x)=Qr 40R3^rrR(2.5)Outsidethespherewereverttotheinverse-square Figure7:form( 2.4 ).Atthesurfaceofthesphere,r=R,theelectric eldiscontinuousbutthederivative,dE=dr,isnot.Thisisshowninthegraph.2.1.3LineChargesConsider,next,achargesmearedoutalongalinewhich Figure8:we'lltaketobethez-axis.We'lltakeuniformchargeden-sityperunitlength.(Ifyoulikeyoucouldconsiderasolidcylinderwithuniformchargedensityandthensendtheradiustozero).Wewanttoknowtheelectric eldduetothislineofcharge.Ourset-upnowhascylindricalsymmetry.WetaketheGaussiansurfacetobeacylinderoflengthLandradiusr.WehaveZSEdS=L 0Again,bysymmetry,theelectric eldpointsintheradialdirection,awayfromtheline.We'lldenotethisvectorincylindricalpolarcoordinatesas^rsothatE=E(r)^r.ThesymmetrymeansthatthetwoendcapsoftheGaussian{12{ surfacedon'tcontributetotheintegralbecausetheirnormalpointsinthe^zdirectionand^z^r=0.We'releftonlywithacontributionfromthecurvedsideofthecylinder,ZSEdS=E(r)2rL=L 0Sothattheelectric eldisE(r)= 20r^r(2.6)Notethat,whiletheelectric eldforapointchargedropso as1=r2(withrtheradialdistance),theelectric eldforalinechargedropso moreslowlyas1=r.(Ofcourse,theradialdistancermeansslightlydi erentthingsinthetwocases:itisr=p x2+y2+z2forthepointparticle,butisr=p x2+y2fortheline).2.1.4SurfaceChargesandDiscontinuitiesNowconsideranin niteplane,whichwe Figure9:taketobez=0,carryinguniformchargeperunitarea,.WeagaintakeourGaus-siansurfacetobeacylinder,thistimewithitsaxisperpendiculartotheplaneasshowninthe gure.Inthiscontext,thecylin-derissometimesreferredtoasaGaussian\pillbox"(onaccountofGauss'wellknownfondnessforaspirin).Onsymmetrygrounds,wehaveE=E(z)^zMoreover,theelectric eldintheupperplane,z�0,mustpointintheoppositedirectionfromthelowerplane,z0,sothatE(z)=�E(�z).Thesurfaceintegralnowvanishesoverthecurvedsideofthecylinderandweonlygetcontributionsfromtheendcaps,whichwetaketohaveareaA.ThisgivesZSEdS=E(z)A�E(�z)A=2E(z)A=A 0Theelectric eldaboveanin niteplaneofchargeisthereforeE(z)= 20(2.7)Notethattheelectric eldisindependentofthedistancefromtheplane!Thisisbecausetheplaneisin niteinextent:thefurtheryoumovefromit,themorecomesintoview.{13{ Figure10:Thenormalcomponentoftheelectric eldisdiscontinuousFigure11:Thetangentialcomponentoftheelectric eldiscontinuous.Thereisanotherimportantpointtotakeawayfromthisanalysis.Theelectric eldisnotcontinuousoneithersideofasurfaceofconstantchargedensity.WehaveE(z!0+)�E(z!0�)= 0(2.8)Forthistohold,itisnotimportantthattheplanestretchestoin nity.It'ssimpletoredotheaboveanalysisforanyarbitrarysurfacewithchargedensity.Thereisnoneedfortobeuniformand,correspondingly,thereisnoneedforEatagivenpointtobeparalleltothenormaltothesurface^n.Atanypointofthesurface,wecantakeaGaussiancylinder,asshownintheleft-hand gureabove,whoseaxisisnormaltothesurfaceatthatpoint.Itscross-sectionalareaAcanbearbitrarilysmall(since,aswesaw,itdropsoutofthe nalanswer).IfEdenotestheelectric eldoneithersideofthesurface,then^nEj+�^nEj�= 0(2.9)Incontrast,theelectric eldtangenttothesurfaceiscontinuous.Toseethis,weneedtodoaslightlydi erentcalculation.Consider,again,anarbitrarysurfacewithsurfacecharge.NowweconsideraloopCwithalengthLwhichliesparalleltothesurfaceandalengthawhichisperpendiculartothesurface.We'vedrawnthisloopintheright-hand gureabove,wherethesurfaceisnowshownside-on.WeintegrateEaroundtheloop.UsingStoke'stheorem,wehaveICEdr=ZrEdSwhereSisthesurfaceboundedbyC.Inthelimita!0,thesurfaceSshrinkstozerosizesothisintegralgiveszero.Thismeansthatthecontributiontolineintegralmustalsovanish,leavinguswith^nE+�^nE�=0Thisisthestatementthattheelectric eldtangentialtothesurfaceiscontinuous.{14{ APairofPlanes Figure12:Asasimplegeneralisation,considerapairofin -niteplanesatz=0andz=a,carryinguniformsurfacechargedensityrespectivelyasshowninthe gure.Tocomputetheelectric eldweneedonlyaddthe eldsforarisingfromtwoplanes,eachofwhichtakestheform( 2.7 ).We ndthattheelectric eldbetweenthetwoplanesisE= 0^z0za(2.10)whileE=0outsidetheplanesAPlaneSlabWecanrederivethediscontinuity( 2.9 )intheelectric eldbyconsideringanin niteslabofthickness2dandchargedensityperunitvolume.WhenourGaussianpillboxliesinsidetheslab,withzd,wehave2AE(z)=2zA 0)E(z)=z 0Meanwhile,forz�dwegetourearlierresult( 2.7 ).Theelectric eldisnowcontinuousasshowninthe gure.Takingthelimitd!0and!1suchthatthesurfacecharge=dremainsconstantreproducesthediscontinuity( 2.8 ). Figure13:TheGaussiansurfaceforaplaneslabFigure14:Theresultingelectric eld{15{ ASphericalShellLet'sgiveonelastexamplethatinvolvessurfacechargeand Figure15:theassociateddiscontinuityoftheelectric eld.We'llcon-siderasphericalshellofradiusR,centeredattheorigin,withuniformsurfacechargedensity.ThetotalchargeisQ=4R2Wealreadyknowthatoutsidetheshell,r�R,theelectric eldtakesthestandardinverse-squareform( 2.4 ).Whataboutinside?Well,sinceanysurfacewithrRdoesn'tsurroundacharge,Gauss'lawtellsusthatwenecessarilyhaveE=0inside.Thatmeansthatthereisadiscontinuityatthesurfacer=R,E^rj+�E^rj�=Q 4R20= 0inaccordwiththeexpectation( 2.9 ).2.2TheElectrostaticPotentialForalltheexamplesinthelastsection,symmetryconsiderationsmeantthatweonlyneededtoconsiderGauss'law.However,forgeneralchargedistributionsGauss'lawisnotsucient.Wealsoneedtoinvokethesecondequation,rE=0.Infact,thissecondequationiseasilydispatchedsincerE=0impliesthattheelectric eldcanbewrittenasthegradientofsomefunction,E=�r(2.11)Thescalariscalledtheelectrostaticpotentialorscalarpotential(or,sometimes,justthepotential).Toproceed,wereverttotheoriginaldi erentialformofGauss'law( 2.1 ).ThisnowtakestheformofthePoissonequationrE= 0)r2=� 0(2.12)Inregionsofspacewherethechargedensityvanishes,we'releftsolvingtheLaplaceequationr2=0(2.13)SolutionstotheLaplaceequationaresaidtobeharmonicfunctions.{16{ Afewcomments:Thepotentialisonlyde neduptotheadditionofsomeconstant.Thisseem-inglytrivialpointisactuallythebeginningofalonganddeepstoryintheoreticalphysicsknownasgaugeinvariance.We'llcomebacktoitinSection 5.3.1 .Fornow,we'lleliminatethisredundancybyrequiringthat(r)!0asr!1.WeknowfromourstudyofNewtonianmechanicsthattheelectrostaticpotentialisproportionaltothepotentialenergyexperiencedbyatestparticle.(SeeSection2.2ofthe DynamicsandRelativity lecturenotes).Speci cally,atestparticleofmassm,positionr(t)andchargeqmovinginabackgroundelectric eldhasconservedenergyE=1 2m_r_r+q(r)ThePoissonequationislinearinbothand.Thismeansthatifweknowthepotential1forsomechargedistribution1andthepotential2foranotherchargedistribution2,thenthepotentialfor1+2issimply1+2.Whatthisreallymeansisthattheelectric eldforabunchofchargesisjustthesumofthe eldsgeneratedbyeachcharge.Thisiscalledtheprincipleofsuperpositionforcharges.ThislinearityoftheequationsiswhatmakeselectromagnetismeasycomparedtootherforcesofNature.WestatedabovethatrE=0isequivalenttowritingE=�r.ThisistruewhenspaceisR3or,infact,ifwetakespacetobeanyopenballinR3.ButifourbackgroundspacehasasuitablycomplicatedtopologythentherearesolutionstorE=0whichcannotbewrittenintheformE=�r.ThisistiedultimatelytothebeautifulmathematicaltheoryofdeRhamcohomology.Needlesstosay,inthisstartercoursewe'renotgoingtoworryabouttheseissues.We'llalwaystakespacetimetohavetopologyR4and,correspondingly,anyspatialhypersurfacetobeR3.2.2.1ThePointChargeLet'sstartbyderivingtheCoulombforcelawyetagain.We'lltakeaparticleofchargeQandplaceitattheorigin.Thistime,however,we'llassumethattheparticlereallyisapointcharge.Thismeansthatthechargedensitytakestheformofadelta-function,(x)=Q3(x).Weneedtosolvetheequationr2=�Q 03(x)(2.14){17{ You'vesolvedproblemsofthiskindinyourMethodscourse.ThesolutionisessentiallytheGreen'sfunctionfortheLaplacianr2,aninterpretationthatwe'llreturntoinSection 2.2.3 .Let'srecallhowwe ndthissolution.We rstlookawayfromtheorigin,r6=0,wherethere'snofunnybusinessgoingonwithdelta-function.Here,we'relookingforthesphericallysymmetricsolutiontotheLaplaceequation.Thisis= rforsomeconstant .ToseewhythissolvestheLaplaceequation,weneedtousetheresultrr=^r(2.15)where^ristheunitradialvectorinsphericalpolarcoordinates,sox=r^r.Usingthechainrule,thismeansthatr(1=r)=�^r=r2=�x=r3.Thisgivesusr=� r3x)r2=� rx r3�3xx r5Butrx=3andwe ndthatr2=0asrequired.Itremainsto gureoutwhattodoattheoriginwherethedelta-functionlives.Thisiswhatdeterminestheoverallnormalization ofthesolution.Atthispoint,it'ssimplesttousetheintegralformofGauss'lawtotransfertheproblemfromtheorigintothefar ungreachesofspace.Todothis,weintegrate( 2.14 )oversomeregionVwhichincludestheorigin.Integratingthechargedensitygives(x)=Q3(x))ZVd3x=QSo,usingGauss'law( 2.3 ),werequireZSrdS=�Q 0Butthisisexactlythekindofsurfaceintegralthatweweredoinginthelastsection.Substituting= =rintotheaboveequation,andchoosingStobeasphereofradiusr,tellsusthatwemusthave =Q=40,or=Q 40r(2.16)Takingthegradientofthisusing( 2.15 )givesusCoulomb'slawE(x)=�r=Q 40r2^r{18{ ThederivationofCoulomb'slawusingthepotentialwassomewhatmoreinvolvedthanthetechniqueusingGauss'lawalonethatwesawinthelastsection.However,aswe'llnowsee,introducingthepotentialallowsustowritedownthesolutiontoessentiallyanyproblem.ANoteonNotationThroughouttheselectures,wewillusexandrinterchangeablytodenotepositioninspace.Forexample,sometimeswe'llwriteintegrationoveravolumeasRd3xandsometimesasRd3r.Theadvantageofthernotationisthatitlooksmorenaturalwhenworkinginsphericalpolarcoordinates.Forexample,wehavejrj=rwhichisnice.Thedisadvantageisthatitcanleadtoconfusionwhenworkinginothercoordinatesystems,inparticularcylindricalpolar.Forthisreason,we'llalternatebetweenthetwonotations,adoptingtheattitudethatclarityismoreimportantthanconsistency.2.2.2TheDipoleAdipoleconsistsoftwopointcharges,Qand�Q,adistancedapart.Weplacethe rstchargeattheoriginandthesecondatr=�d.Thepotentialissimplythesumofthepotentialforeachcharge,=1 40Q r�Q jr+djSimilarly,theelectric eldisjustthesumoftheelectric eldsmadebythetwopointcharges.Thisfollowsfromthelinearityoftheequationsandisasimpleapplicationoftheprincipleofsuperpositionthatwementionedearlier.Itwillprovefruitfultoaskwhatthedipolelookslikefarfromthetwopointcharges,atadistancerjdj.WeneedtoTaylorexpandthesecondtermabove.ThevectorversionoftheTaylorexpansionforageneralfunctionf(r)isgivenbyf(r+d)f(r)+drf(r)+1 2(dr)2f(r)+:::(2.17)Applyingthistothefunction1=jr+djgives1 jr+dj1 r+dr1 r+1 2(dr)21 r+:::=1 r�dr r3�1 2dd r3�3(dr)2 r5+:::{19{ (Toderivethelastterm,itmightbeeasiesttouseindexnotationfordr=di@i).Forourdipole,we'llonlyneedthe rsttwotermsinthisexpansion.TheygivethepotentialQ 401 r�1 r�dr1 r+:::=Q 40dr r3+:::(2.18)Weseethatthepotentialforadipolefallso as1=r2.Correspondingly,theelectric elddropso as1=r3;bothareonepowerhigherthanthe eldsforapointcharge.Theelectric eldisnotsphericallysymmetric.Theleadingordercontributionisgovernedbythecombinationp=QdThisiscalledtheelectricdipolemoment.Byconvention,itpointsfromthenegativechargetothepositive.Thedipoleelectric eldisE=�r=1 403(p^r)^r�p r3+:::(2.19)Noticethatthesignoftheelectric elddependsonwhereyousitinspace.Insomeparts,theforcewillbeattractive;inotherpartsrepulsive.It'ssometimesusefultoconsiderthelimitd!0andQ!1suchthatp=Qdremains xed.Inthislimit,allthe:::termsin( 2.18 )and( 2.19 )disappearsincetheycontainhigherpowersofd.Oftenwhenpeopletalkaboutthe\dipole",theyimplicitlymeantakingthislimit.2.2.3GeneralChargeDistributionsOurderivationofthepotentialduetoapointcharge( 2.16 ),togetherwiththeprincipleofsuperposition,isactuallyenoughtosolve{atleastformally{thepotentialduetoanychargedistribution.ThisisbecausethesolutionforapointchargeisnothingotherthantheGreen'sfunctionfortheLaplacian.TheGreen'sfunctionisde nedtobethesolutiontotheequationr2G(r;r0)=3(r�r0)which,fromourdiscussionofthepointcharge,wenowknowtobeG(r;r0)=�1 41 jr�r0j(2.20){20{ WecannowapplyourusualGreen'sfunctionmethodstothegeneralPoissonequation( 2.12 ).Inwhatfollows,we'lltake(r)6=0onlyinsomecompactregion,V,ofspace.ThesolutiontothePoissonequationisgivenby(r)=�1 0ZVd3r0G(r;r0)(r0)=1 40ZVd3r0(r0) jr�r0j(2.21)(Tocheckthis,youjusthavetokeepyourheadandrememberwhethertheoperatorsarehittingrorr0.TheLaplacianactsonrso,ifwecomputer2,itpassesthroughtheintegralintheaboveexpressionandhitsG(r;r0),leavingbehindadelta-functionwhichsubsequentlykillstheintegral).Similarly,theelectric eldarisingfromageneralchargedistributionisE(r)=�r(r)=�1 40ZVd3r0(r0)r1 jr�r0j=1 40ZVd3r0(r0)r�r0 jr�r0j3Givenaverycomplicatedchargedistribution(r),thisequationwillgivebackanequallycomplicatedelectric eldE(r).Butifwesitalongwayfromthechargedistribution,there'sarathernicesimpli cationthathappens...LongDistanceBehaviourSupposenowthatyouwanttoknowwhattheelectric eld Figure16:lookslikefarfromtheregionV.Thismeansthatwe'reinter-estedintheelectric eldatrwithjrjjr0jforallr02V.WecanapplythesameTaylorexpansion( 2.17 ),nowreplacingdwith�r0foreachr0inthechargedregion.Thismeanswecanwrite1 jr�r0j=1 r�r0r1 r+1 2(r0r)21 r+:::=1 r+rr0 r3+1 23(rr0)2 r5�r0r0 r3+:::(2.22)andourpotentialbecomes(r)=1 40ZVd3r0(r0)1 r+rr0 r3+:::Theleadingtermisjust(r)=Q 40r+:::{21{ whereQ=RVd3r0(r0)isthetotalchargecontainedwithinV.So,toleadingorder,ifyou'refarenoughawaythenyoucan'tdistinguishageneralchargedistributionfromapointchargelocalisedattheorigin.Butifyou'recarefulwithexperiments,youcantellthedi erence.The rstcorrectiontakestheformofadipole,(r)=1 40Q r+p^r r2+:::wherep=ZVd3r0r0(r0)isthedipolemomentofthedistribution.OneparticularlyimportantsituationiswhenwehaveaneutralobjectwithQ=0.Inthiscase,thedipoleisthedominantcontri-butiontothepotential.Weseethatanarbitrarilycomplicated,localisedchargedistributioncanbechar-acterisedbyafewsimplequantities,ofdecreasingimportance.FirstcomesthetotalchargeQ.Nextthedipolemomentpwhichcontainssomebasicinformationabouthowthechargesaredistributed.Butwecankeepgoing.Thenextcorrectioniscalledthequadrupoleandisgivenby=1 21 40rirjQij r5whereQijisasymmetrictracelesstensorknownasthequadrupolemoment,givenbyQij=ZVd3r0(r0)�3r0ir0j�ijr02Itcontainssomemorere nedinformationabouthowthechargesaredistributed.Afterthiscomestheoctopoleandsoon.Thegeneralnamegiventothisapproachisthemul-tipoleexpansion.Itinvolvesexpandingthefunctionintermsofsphericalharmonics.Asystematictreatmentcanbefound,forexample,inthebookbyJackson.ACommentonIn niteChargeDistributionsIntheabove,weassumedforsimplicitythatthechargedistributionwasrestrictedtosomecompactregionofspace,V.TheGreen'sfunctionapproachstillworksifthechargedistributionstretchestoin nity.However,forsuchdistributionsit'snotalwayspossibletopick(r)!0asr!1.Infact,wesawanexampleofthisearlier.Foranin nitelinecharge,wecomputedtheelectric eldin( 2.6 ).ItgoesasE(r)= 2r^r{22{ wherenowr2=x2+y2isthecylindricalradialcoordinateperpendiculartotheline.Thepotentialwhichgivesrisetothisis(r)=� 20logr r0Becauseofthelogfunction,wenecessarilyhave(r)!1asr!1.Instead,weneedtopickanarbitrary,but nitedistance,r0atwhichthepotentialvanishes.2.2.4FieldLinesTheusualwayofdepictingavectoristodrawanarrowwhoselengthisproportionaltothemagnitude.Fortheelectric eld,there'saslightlydi erent,moreusefulwaytoshowwhat'sgoingon.Wedrawcontinuouslines,tangenttotheelectric eldE,withthedensityoflinesproportionaltothemagnitudeofE.Thisinnovation,duetoFaraday,iscalledthe eldline.(Theyarewhatwehavebeensecretlydrawingthroughoutthesenotes).Fieldlinesarecontinuous.Theybeginandendonlyatcharges.Theycannevercross.The eldlinesforpositiveandnegativepointchargesare: Byconvention,thepositivechargesactassourcesforthelines,withthearrowsemerg-ing.Thenegativechargesactassinks,withthearrowsapproaching.It'salsoeasytodrawtheequipotentials|surfacesofconstant|onthissame gure.Thesearethesurfacesalongwhichyoucanmoveachargewithoutdoinganywork.TherelationshipE=�rensuresthattheequipotentialscutthe eldlinesatrightangles.Weusuallydrawthemasdottedlines: {23{ Meanwhile,wecan(very)roughlysketchthe eldlinesandequipotentialsforthedipole(ontheleft)andforapairofchargesofthesamesign(ontheright): 2.2.5ElectrostaticEquilibriumHere'sasimplequestion:canyoutrapanelectricchargeusingonlyothercharges?Inotherwords,canyou ndsomearrangementsofchargessuchthatatestchargesitsinstableequilibrium,trappedbythe eldsoftheothers.There'satrivialwaytodothis:justallowanegativechargetositdirectlyontopofapositivecharge.Butlet'sthrowoutthispossibility.We'llaskthattheequilibriumpointliesawayfromalltheothercharges.Therearesomesimpleset-upsthatspringtomindthatmightachievethis.Maybeyoucouldplacefourpositivechargesattheverticesofapyramid;orperhaps8positivechargesatthecornersofacube.Isitpossiblethatatestpositivechargetrappedinthemiddlewillbestable?It'scertainlyrepelledfromallthecorners,soitmightseemplausible.Theanswer,however,isno.Thereisnoelectrostaticequilibrium.Youcannottrapanelectricchargeusingonlyotherstationaryelectriccharges,atleastnotinastablemanner.Sincethepotentialenergyoftheparticleisproportionalto,mathematically,thisisthestatementthataharmonicfunction,obeyingr2=0,canhavenominimumormaximum.Toprovethattherecanbenoelectrostaticequilibrium,let'ssupposetheopposite:thatthereissomepointinemptyspacer?thatisstableforaparticleofchargeq�0.By\emptyspace",wemeanthat(r)=0inaneighbourhoodofr?.Becausethepointisstable,iftheparticlemovesawayfromthispointthenitmustalwaysbepushedback.This,inturn,meansthattheelectric eldmustalwayspointinwardstowardsthepointr?;neveraway.Wecouldthensurroundr?byasmallsurfaceSandcomputeZSEdS0{24{ But,byGauss'law,theright-handsidemustbethechargecontainedwithinSwhich,byassumption,iszero.Thisisourcontradiction:electrostaticequilibriumdoesnotexist.Ofcourse,ifyou'rewillingtousesomethingotherthanelectrostaticforcesthenyoucanconstructequilibriumsituations.Forexample,ifyourestrictthetestparticletolieonaplanethenit'ssimpletocheckthatequalchargesplacedatthecornersofapolygonwillresultinastableequilibriumpointinthemiddle.Buttodothisyouneedtouseotherforcestokeeptheparticleintheplaneinthe rstplace.2.3ElectrostaticEnergyThereisenergystoredintheelectric eld.Inthissection,wecalculatehowmuch.Let'sstartbyrecallingafactfromour rstcourseonclassicalmechanics1.Supposewehavesometestchargeqmovinginabackgroundelectrostaticpotential.We'lldenotethepotentialenergyoftheparticleasU(r).(WeusedthenotationV(r)inthe DynamicsandRelativity coursebutwe'llneedtoreserveVforthevoltagelater).ThepotentialU(r)oftheparticlecanbethoughtofastheworkdonebringingtheparticleinfromin nity;U(r)=�Zr1Fdr=+qZr1rdr=q(r)wherewe'veassumedourstandardnormalizationof(r)!0asr!1.Consideradistributionofchargeswhich,fornow,we'lltaketobemadeofpointchargesqiatpositionsri.Theelectrostaticpotentialenergystoredinthiscon gurationisthesameastheworkrequiredtoassemblethecon gurationinthe rstplace.(Thisisbecauseifyouletthechargesgo,thisishowmuchkineticenergytheywillpickup).Sohowmuchworkdoesittaketoassembleacollectionofcharges?Well,the rstchargeisfree.Intheabsenceofanyelectric eld,youcanjustputitwhereyoulike|say,r1.TheworkrequiredisW1=0.Toplacethesecondchargeatr2takesworkW2=q1q2 401 jr1�r2jNotethatifthetwochargeshavethesamesign,soq1q2�0,thenW2�0whichistellingusthatweneedtoputworkintomakethemapproach.Ifq1q20thenW20wherethenegativeworkmeansthattheparticleswantedtobedrawncloserbytheirmutualattraction. 1SeeSection2.2ofthelecturenoteson DynamicsandRelativity .{25{ Thethirdchargehastobattleagainsttheelectric eldduetobothq1andq2.TheworkrequiredisW3=q3 40q2 jr2�r3j+q1 jr1�r3jandsoon.Thetotalworkneededtoassembleallthechargesisthepotentialenergystoredinthecon guration,U=NXi=1Wi=1 40Xiqiqj jri�rjj(2.23)wherePimeansthatwesumovereachpairofparticlesonce.Infact,youprobablycouldhavejustwrittendown( 2.23 )asthepotentialenergystoredinthecon guration.Thewholepurposeoftheaboveargumentwasreallyjusttonaildownafactorof1=2:dowesumoverallpairsofparticlesPiorallparticlesPi6=j?Theanswer,aswehaveseen,isallpairs.Wecanmakethatfactorof1=2evenmoreexplicitbywritingU=1 21 40XiXj6=iqiqj jri�rjj(2.24)wherenowwesumovereachpairtwice.Thereisaslickerwayofwriting( 2.24 ).Thepotentialatriduetoalltheotherchargesqj,j6=iis(ri)=1 40Xj6=iqj jri�rjjwhichmeansthatwecanwritethepotentialenergyasU=1 2NXi=1qi(ri)(2.25)Thisisthepotentialenergyforasetofpointcharges.Butthereisanobviousgeneral-izationtochargedistributions(r).We'llagainassumethat(r)hascompactsupportsothatthechargeislocalisedinsomeregionofspace.ThepotentialenergyassociatedtosuchachargedistributionshouldbeU=1 2Zd3r(r)(r)(2.26)wherewecanquitehappilytaketheintegraloverallofR3,safeintheknowledgethatanywherethatdoesn'tcontainchargehas(r)=0andsowon'tcontribute.{26{ Nowthisisinaformthatwecanstarttoplaywith.WeuseGauss'lawtorewriteitasU=0 2Zd3r(rE)=0 2Zd3r[r(E)�Er]Butthe rsttermisatotalderivative.Andsincewe'retakingtheintegraloverallofspaceand(r)!0asr!1,thistermjustvanishes.Inthesecondtermwecanreplacer=�E.We ndthatthepotentialenergystoredinachargedistributionhasanelegantexpressionsolelyintermsoftheelectric eldthatitcreates,U=0 2Zd3rEE(2.27)Isn'tthatnice!2.3.1TheEnergyofaPointParticleThereisasubtletyintheabovederivation.Infact,Itotallytriedtopullthewooloveryoureyes.Hereit'stimetoownup.First,letmesaythatthe nalresult( 2.27 )isright:thisistheenergystoredintheelectric eld.Butthederivationabovewasdodgy.Onereasontobedissatis edisthatwecomputedtheenergyintheelectric eldbyequatingittothepotentialenergystoredinachargedistributionthatcreatesthiselectric eld.Buttheendresultdoesn'tdependonthechargedistribution.Thissuggeststhatthereshouldbeamoredirectwaytoarriveat( 2.27 )thatonlytalksabout eldsanddoesn'tneedcharges.Andthereis.Wewillseeitlater.Butthereisalsoanother,moreworryingproblemwiththederivationabove.Toillustratethis,let'sjustlookatthesimplestsituationofapointparticle.Thishaselectric eldE=q 40r2^r(2.28)So,by( 2.27 ),theassociatedelectric eldshouldcarryenergy.Butwestartedourderivationabovebyassumingthatasingleparticledidn'tcarryanyenergysinceitdidn'ttakeanyworktoputtheparticlethereinthe rstplace.What'sgoingon?Well,therewassomethingofasleightofhandinthederivationabove.Thisoccurswhenwewentfromtheexpressionqin( 2.25 )toin( 2.26 ).Theformeromitsthe\self-energy"terms;thereisnocontributionarisingfromqi(ri).However,thelatterincludesthem.Thetwoexpressionsarenotquitethesame.Thisisalsothereasonthatour nalexpressionfortheenergy( 2.27 )ismanifestlypositive,whileqcanbepositiveornegative.{27{ Sowhichisright?Well,whichformoftheenergyyouuseratherdependsonthecontext.Itistruethat( 2.27 )isthecorrectexpressionfortheenergystoredintheelectric eld.Butitisalsotruethatyoudon'thavetodoanyworktoputthe rstchargeinplacesincewe'reobviouslynot ghtingagainstanything.Instead,the\self-energy"contributioncomingfromEEin( 2.28 )shouldsimplybethoughtof|usingE=mc2|asacontributiontothemassoftheparticle.Wecaneasilycomputethiscontributionfor,say,anelectronwithchargeq=�e.Let'scalltheradiusoftheelectrona.Thentheenergystoredinitselectric eldisEnergy=0 2Zd3rEE=e2 320Z1adr4r2 r4=e2 801 aWeseethat,atleastasfarastheenergyisconcerned,we'dbetternottreattheelectronasapointparticlewitha!0oritwillenduphavingin nitemass.Andthatwillmakeitreallyhardtomove.Sowhatistheradiusofanelectron?Fortheabovecalculationtobeconsistent,theenergyintheelectric eldcan'tbegreaterthantheobservedmassoftheelectronme.Inotherwords,we'dbetterhavemec2�e2 801 a)a�e2 801 mec2(2.29)That,atleast,putsaboundontheradiusoftheelectron,whichisthebestwecandousingclassicalphysicsalone.Togiveamoreprecisestatementoftheradiusoftheelectron,weneedtoturntoquantummechanics.AQuickForayintoQuantumElectrodynamicsToassignameaningof\radius"toseeminglypoint-likeparticles,wereallyneedthemachineryofquantum eldtheory.Inthatcontext,thesizeoftheelectroniscalleditsComptonwavelength.Thisisthedistancescaleatwhichtheelectrongetssurroundedbyaswarmofelectron-positronpairswhich,roughlyspeaking,smearsoutthechargedistribution.Thisdistancescaleisa=~ mecWeseethattheinequality( 2.29 )translatesintoaninequalityonabunchoffundamentalconstants.Forthewholestorytohangtogether,werequiree2 80~c1{28{ Thisisanalmostfamouscombinationofconstants.It'smoreusualtode nethecombination =e2 40~cThisisknownasthe nestructureconstant.Itisdimensionlessandtakesthevalue 1 137Ourdiscussionaboverequires 2.WeseethatNaturehappilymeetsthisrequire-ment.2.3.2TheForceBetweenElectricDipolesAsanapplicationofourformulaforelectrostaticenergy,wecancomputetheforcebetweentwo,farseparateddipoles.Weplacethe rstdipole,p1,attheorigin.Itgivesrisetoapotential(r)=1 40p1r r3Now,atsomedistanceaway,weplaceaseconddipole.We'lltakethistoconsistofachargeQatpositionrandacharge�Qatpositionr�d,withdr.Theresultingdipolemomentisp2=Qd.We'renotinterestedintheenergystoredineachindividualdipole;onlyinthepotentialenergyneededtobringthetwodipolestogether.Thisisgivenby( 2.23 ),U=Q(r)�(r�d)=Q 40p1r r3�p1(r�d) jr�dj3=Q 40p1r r3�p1(r�d)1 r3+3dr r5+:::=Q 40p1d r3�3(p1r)(dr) r5where,togettothesecondline,we'veTaylorexpandedthedenominatorofthesecondterm.This nalexpressioncanbewrittenintermsoftheseconddipolemoment.We ndthenice,symmetricexpressionforthepotentialenergyoftwodipolesseparatedbydistancer,U=1 40p1p2 r3�3(p1r)(p2r) r5{29{ But,weknowfromour rstcourseondynamicsthattheforcebetweentwoobjectsisjustgivenbyF=�rU.WelearnthattheforcebetweentwodipolesisgivenbyF=1 40r3(p1r)(p2r) r5�p1p2 r3(2.30)Thestrengthoftheforce,andevenitssign,dependsontheorientationofthetwodipoles.Ifp1andp2lieparalleltoeachotherandtorthentheresultingforceisattractive.Ifp1andp2pointinoppositedirections,andlieparalleltor,thentheforceisrepulsive.Theexpressionaboveallowsustocomputethegeneralforce.2.4ConductorsLet'snowthrowsomethingnewintothemix.Aconductorisaregionofspacewhichcontainschargesthatarefreetomove.Physically,think\metal".Wewanttoaskwhathappenstothestoryofelectrostaticsinthepresenceofaconductor.Thereareanumberofthingsthatwecansaystraightaway:InsideaconductorwemusthaveE=0.Ifthisisn'tthecase,thechargeswouldmove.Butwe'reinterestedinelectrostaticsituationswherenothingmoves.SinceE=0insideaconductor,theelectrostaticpotentialmustbeconstantthroughouttheconductor.SinceE=0andrE==0,wemustalsohave=0.Thismeansthattheinterioroftheconductorcan'tcarryanycharge.Conductorscanbeneutral,carryingbothpositiveandnegativechargeswhichbalanceout.Alternatively,conductorscanhavenetcharge.Inthiscase,anynetchargemustresideatthesurfaceoftheconductor.Sinceisconstant,thesurfaceoftheconductormustbeanequipotential.ThismeansthatanyE=�risperpendiculartothesurface.Thisalso tsnicelywiththediscussionabovesinceanycomponentoftheelectric eldthatliestan-gentialtothesurfacewouldmakethesurfacechargesmove.Ifthereissurfacechargeanywhereintheconductorthen,byourpreviousdiscontinuityresult( 2.9 ),togetherwiththefactthatE=0inside,theelectric eldjustoutsidetheconductormustbeE= 0^n(2.31){30{ Problemsinvolvingconductorsareofaslightlydi erentnaturethanthosewe'vediscusseduptonow.Thereasonisthatwedon'tknowfromthestartwherethechargesare,sowedon'tknowwhatchargedistributionthatweshouldbesolvingfor.Instead,theelectric eldsfromothersourceswillcausethechargesinsidetheconductortoshiftarounduntiltheyreachequilibriuminsuchawaythatE=0insidetheconductor.Ingeneral,thiswillmeanthatevenneutralconductorsendupwithsomesurfacecharge,negativeinsomeareas,positiveinothers,justenoughtogenerateanelectric eldinsidetheconductorthatpreciselycancelsthatduetoexternalsources.AnExample:AConductingSphereToillustratethekindofproblemthatwehavetodealwith,it'sprobablybestjusttogiveanexample.Consideraconstantbackgroundelectric eld.(Itcould,forexample,begeneratedbytwochargedplatesofthekindwelookedatinSection 2.1.4 ).Nowplaceaneutral,sphericalconductorinsidethis eld.Whathappens?Weknowthattheconductorcan'tsu eranelectric eldinsideit.Instead,themobilechargesintheconductorwillmove:thenegativeonestooneside;thepositiveonestotheother.Thespherenowbecomespolarised.Thesechargescounteractthebackgroundelectric eldsuchthatE=0insidetheconductor,whiletheelectric eldoutsideimpingesonthesphereatright-angles.Theendresultmustlookqualitativelylikethis: We'dliketounderstandhowtocomputetheelectric eldinthis,andrelated,situations.We'llgivetheanswerinSection 2.4.4 .AnApplication:FaradayCageConsidersomeregionofspacethatdoesn'tcontainanycharges,surroundedbyacon-ductor.Theconductorsitsatconstant=0while,sincetherearenochargesinside,wemusthaver2=0.Butthismeansthat=0everywhere.Thisisbecause,ifitdidn'tthentherewouldbeamaximumorminimumofsomewhereinside.AndweknowfromthediscussioninSection 2.2.5 thatthiscan'thappen.Therefore,insidearegionsurroundedbyaconductor,wemusthaveE=0.{31{ Thisisaveryusefulresultifyouwanttoshieldaregionfromelectric elds.Inthiscontext,thesurroundingconductoriscalledaFaradaycage.Asanapplication,ifyou'reworriedthatthey'retryingtoreadyourmindwithelectromagneticwaves,thenyouneedonlywrapyourheadintinfoilandallconcernsshouldbealleviated.2.4.1CapacitorsLet'snowsolvefortheelectric eldinsomeconductorproblems. Figure17:Thesimplestexamplesarecapacitors.Theseareapairofcon-ductors,onecarryingchargeQ,theothercharge�Q.ParallelPlateCapacitorTostart,we'lltaketheconductorstohave at,parallelsurfacesasshowninthe gure.Weusuallyassumethatthedistancedbetweenthesurfacesismuchsmallerthanp A,whereAistheareaofthesurface.Thismeansthatwecanneglectthee ectsthatarisearoundtheedgeofplatesandwe'rejusti edinassumingthattheelectric eldbetweenthetwoplatesisthesameasitwouldbeiftheplateswerein niteinextent.TheproblemreducestothesameonethatweconsideredinSection 2.1.4 .Theelectric eldnecessarilyvanishesinsidetheconductorwhile,betweentheplateswehavetheresult( 2.10 ),E= 0^zwhere=Q=Aandwehaveassumedtheplatesareseparatedinthez-direction.Wede nethecapacitanceCtobeC=Q VwhereVisthevoltageorpotentialdi erencewhichis,asthenamesuggests,thedif-ferenceinthepotentialonthetwoconductors.SinceE=�d=dzisconstant,wemusthave=�Ez+c)V=(0)�(d)=Ed=Qd A0andthecapacitanceforparallelplatesofareaA,separatedbydistanced,isC=A0 dBecauseVwasproportionaltoQ,thechargehasdroppedoutofourexpressionforthecapacitance.Instead,Cdependsonlyonthegeometryoftheset-up.Thisisageneralproperty;wewillseeanotherexamplebelow.{32{ Capacitorsareusuallyemployedasamethodtostoreelectricalenergy.Wecanseehowmuch.Usingourresult( 2.27 ),wehaveU=0 2Zd3xEE=A0 2Zd0dz 02=Q2 2CThisistheenergystoredinaparallelplatecapacitor.ConcentricSphereCapacitorConsiderasphericalconductorofradiusR1.Aroundthiswe Figure18:placeanotherconductorintheshapeofasphericalshellwithinnersurfacelyingatradiusR2.Weaddcharge+Qtothesphereand�Qtotheshell.Fromourearlierdiscussionofchargedspheresandshells,weknowthattheelectric eldbe-tweenthetwoconductorsmustbeE=Q 40r2^rR1rR2Correspondingly,thepotentialis=Q 40rR1rR2andthecapacitanceisgivenbyC=40R1R2=(R2�R1).2.4.2BoundaryValueProblemsUntilnow,we'vethoughtofconductorsascarryingsome xedchargeQ.Thesecon-ductorsthensitatsomeconstantpotential.Ifthereareotherconductorsinthevicinitythatcarryadi erentchargethen,aswe'veseenabove,therewillbesome xedpotentialdi erence,V=betweenthem.However,wecanalsothinkofasubtlydi erentscenario.Supposethatweinstead xthepotentialinaconductor.Thismeansthat,whateverelsehappens,whateverotherchargesaredoingallaround,theconductorremainsata xed.Itneverdeviatesfromthisvalue.Now,thissoundsabitstrange.We'veseenabovethattheelectricpotentialofaconductordependsonthedistancetootherconductorsandalsoonthechargeitcarries.Ifremainsconstant,regardlessofwhatobjectsarearoundit,thenitmustmeanthatthechargeontheconductorisnot xed.Andthat'sindeedwhathappens.{33{ Havingconductorsat xedmeansthatchargecan owinandoutoftheconductor.Weimplicitlyassumethatthereissomebackgroundreservoirofchargewhichtheconductorcandipinto,takingandgivingchargesothatremainsconstant.Wecanthinkofthisreservoirofchargeasfollows:supposethat,somewhereinthebackground,thereisahugeconductorwithsomechargeQwhichsitsatsomepotential.To xthepotentialofanyotherconductor,wesimplyattachittooneofthisbigreservoir-conductor.Ingeneral,someamountofchargewill owbetweenthem.Thebigconductordoesn'tmissit,whilethesmallconductormakesuseofittokeepitselfatconstant.ThesimplestexampleofthesituationabovearisesifyouconnectyourconductortotheplanetEarth.Byconvention,thisistakentohave=0anditensuresthatyourconductoralsositsat=0.Suchconductorsaresaidtobegrounded.Inpractice,onemaygroundaconductorinsideachipinyourcellphonebyattachingitthemetalcasing.Mathematically,wecanconsiderthefollowingproblem.Takesomenumberofob-jects,Si.Someoftheobjectswillbeconductorsata xedvalueofi.Otherswillcarrysome xedchargeQi.ThiswillrearrangeitselfintoasurfacechargeisuchthatE=0insidewhile,outsidetheconductor,E=4^n.Ourgoalistounderstandtheelectric eldthatthreadsthespacebetweenalloftheseobjects.Sincethereisnochargesittinginthisspace,weneedtosolvetheLaplaceequationr2=0subjecttooneoftwoboundaryconditionsDirichletBoundaryConditions:Thevalueofis xedonagivensurfaceSiNeumannBoundaryConditions:Thevalueofr^nis xedperpendiculartoagivensurfaceSiNoticethat,foreachSi,weneedtodecidewhichofthetwoboundaryconditionswewant.Wedon'tgettochosebothofthem.Wethenhavethefollowingtheorem.Theorem:WitheitherDirichletorNeumannboundaryconditionschosenoneachsurfaceSi,theLaplaceequationhasauniquesolution.{34{ Proof:Supposethattherearetwosolutions,1and2withthesamespeci edbound-aryconditions.Let'sde nef=1�2.WecanlookatthefollowingexpressionZVd3rr(frf)=ZVd3rrfrf(2.32)wherether2ftermvanishesbytheLaplaceequation.But,bythedivergencetheorem,weknowthatZVd3rr(frf)=XiZSifrfdSHowever,ifwe'vepickedDirichletboundaryconditionsthenf=0ontheboundary,whileNeumannboundaryconditionsensurethatrf=0ontheboundary.Thismeansthattheintegralvanishesand,from( 2.32 ),wemusthaverf=0throughoutspace.ButifwehaveimposedDirichletboundaryconditionssomewhere,thenf=0onthatboundaryandsof=0everywhere.Alternatively,ifwehaveNeumannboundaryconditionsonallsurfacesthanrf=0everywhereandthetwosolutions1and2candi eronlybyaconstant.But,asdiscussedinSection 2.2 ,thisconstanthasnophysicalmeaning.2.4.3MethodofImagesForparticularlysimplesituations,thereisarathercutemethodthatwecanusetosolveproblemsinvolvingconductors.Althoughthistechniqueissomewhatlimited,itdoesgiveussomegoodintuitionforwhat'sgoingon.It'scalledthemethodofimages.AchargedparticlenearaconductingplaneConsideraconductorwhich llsallofspacex0.We'llgroundthisconductorsothat=0forx0.Then,atsomepointx=d&#x]TJ/;༕ ;.9;Ւ ;&#xTf 2;.39; 0 ;&#xTd [;0,weplaceachargeq.Whathappens?We'relookingforasolutiontothePoissonequationwithadelta-functionsourceatx=d=(d;0;0),togetherwiththerequirementthat=0ontheplanex=0.Fromourdiscussionintheprevioussection,there'sauniquesolutiontothiskindofproblem.Wejusthaveto ndit.Here'stheclevertrick.Forgetthatthere'saconductoratx0.Instead,supposethatthere'sacharge�qplacedoppositetherealchargeatx=�d.Thisiscalledtheimagecharge.Thepotentialforthispairofchargesisjustthepotential=1 40 q p (x�d)2+y2+z2�q p (x+d)2+y2+z2!(2.33){35{ Figure19:Aparticlenearaconductingplane...Figure20:...lookslikeadipoleByconstruction,thishasthepropertythat=0forx=0andithasthecorrectsourceatx=(d;0;0).Therefore,thismustbetherightsolutionwhenx0.Acartoonofthisisshowninthe gures.Ofcourse,it'sthewrongsolutioninsidetheconductorwheretheelectric eldvanishes.Butthat'strivialto x:wejustreplaceitwith=0forx0.Withthesolution( 2.33 )inhand,wecannowdispensewiththeimagechargeandexplorewhat'sreallygoingon.Wecaneasilycomputetheelectric eldfrom( 2.33 ).Ifwefocusontheelectric eldinthexdirection,itisEx=�@ @x=q 40x�d jr�dj3�x+d jr+dj3x0Meanwhile,Ex=0forx0.ThediscontinuityofExatthesurfaceoftheconductordeterminestheinducedsurfacecharge( 2.31 ).Itis=Ex0jx=0=�q 2d (d2+y2+z2)3=2Weseethatthesurfacechargeismostlyconcentratedontheplaneatthepointclosesttotherealcharge.Asyoumoveaway,itfallso as1=(y2+z2)3=2.Wecancomputethetotalinducedsurfacechargebydoingasimpleintegral,qinduced=Zdydz=�qThechargeinducedontheconductorisactuallyequaltotheimagecharge.Thisisalwaystruewhenweusetheimagechargetechnique.Finally,asfarastherealcharge+qisconcerned,aslongasitsitsatx�0,itfeelsanelectric eldwhichisidenticalinallrespectstothe eldduetoanimagecharge�qembeddedintheconductor.Thismeans,inparticular,thatitwillexperienceaforceF=�q2 160d2^xThisforceisattractive,pullingthechargetowardstheconductor.{36{ AchargedparticlenearaconductingsphereWecanplayasimilargameforaparticlenearagrounded,conductingsphere.Thedetailsareonlyslightlymorecomplicated.We'lltakethespheretositattheoriginandhaveradiusR.Theparticlehaschargeqandsitsatx=d=(d;0;0),withd�R.Ourgoalistoplaceanimagechargeq0somewhereinsidethespheresothat=0onthesurface.Thereisawaytoderivetheanswerusingconformaltransformations.However,herewe'lljuststateit.Youshouldchooseaparticleofchargeq0=�qR=d,placedatx=R2=dand,bysymmetry,y=z=0.Acartoonofthisisshowninthe gure. Figure21:Aparticlenearaconductingsphere...Figure22:...lookslikeaslightlydi erentdipoleTheresultingpotentialis=q 40 1 p (x�d)2+y2+z2�R d1 p (x�R2=d)2+y2+z2!Withalittlealgebra,youcancheckthat=0wheneverx2+y2+z2=R2.Withalittlemorealgebra,youcaneasilydeterminetheinducedsurfacechargeandcheckthat,whenintegratedoverthesphere,weindeedhaveqinduced=q0.Onceagain,ourchargeexperiencesaforcetowardstheconductor.Abovewe'veseenhowtotreatagroundedsphere.Butwhatifweinsteadhaveanisolatedconductorwithsome xedcharge,Q?It'seasytoadapttheproblemabove.WesimplyaddthenecessaryexcesschargeQ�q0asanimagethatsitsattheoriginofthesphere.Thiswillinduceanelectric eldwhichemergesradiallyfromthesphere.Becauseoftheprincipleofsuperposition,wejustaddthistothepreviouselectric eldandseethatitdoesn'tmessupthefactthattheelectric eldisperpendiculartothesurface.Thisisnowoursolution.2.4.4ManymanymoreproblemsTherearemanymoreproblemsthatyoucancookupinvolvingconductors,chargesandelectrostatics.Veryfewofthemcanbesolvedbytheimagechargemethod.Instead,you{37{ needtodevelopanumberofbasictoolsofmathematicalphysics.Afairlycomprehensivetreatmentofthiscanbefoundinthe rst100orsopagesofJackson.Fornow,Iwouldjustliketoleaveyouwiththesolutiontotheexamplethatkickedo thissection:whathappensifyoutakeaconductingsphereandplaceitinaconstantelectric eld?Thisproblemisn'tquitesolvedbytheimagechargemethod.Butit'ssolvedbysomethingsimilar:animagedipole.We'llworkinsphericalpolarcoordinatesandchosetheoriginal,constantelectric eldtopointinthe^zdirection,E0=E0^z)0=�E0z=�E0rcosTaketheconductingspheretohaveradiusRandbecenteredonthetheorigin.Let'saddtothisanimagedipolewithpotential( 2.18 ).We'llplacethedipoleattheorigin,andorientitalongthezaxislikeso: Figure23:Aconductingspherebetweenchargedplates...Figure24:...lookslikeadipolebetweentheplatesTheresultingpotentialis=�E0r�R3 r2cosSincewe'veaddedadipoleterm,wecanbesurethatthisstillsolvestheLaplaceequationoutsidetheconductor.Moreover,byconstruction,=0whenr=R.Thisisallwewantedfromoursolution.Theinducedsurfacechargecanagainbecomputedbyevaluatingtheelectric eldjustoutsidetheconductor.Itis=�0@ @r=0E01+2R3 r3 r=Rcos=30E0cosWeseethatthesurfacechargeispositiveinonehemisphereandnegativeintheother.Thetotalinducedchargeaveragestozero.{38{ 2.4.5AHistoryofElectrostaticsPerhapsthesimplestdemonstrationoftheattractivepropertiesofelectricchargecomesfromrubbingaballoononyourheadandstickingittothewall.Thisphenomenonwasknown,atleastinspirit,totheancientGreeksandiscreditedtoThalesofMiletusaround600BC.Although,intheabsenceofanyancientballoons,hehadtomakedowithpolishingpiecesofamberandwatchingitattractsmallobjects.Asystematic,scienti capproachtoelectrostaticsstartswithWilliamGilbert,physi-cist,physicianandone-timebursarofStJohnsCollege,Cambridge.(Rumourhasitthathe'dratherhavebeenatOxford.)Hismostimportantwork,DeMagnete,pub-lishedin1600showed,amongotherthings,thatmanymaterials,notjustamber,couldbeelectri ed.Withduedeference,hereferredtotheseas\electrics",derivedfromtheGreek\o"(electron)meaning\amber".Thesearematerialsthatwenowcall\insulators".Therewasslowprogressoverthenext150years,muchofitdevotedtobuildingma-chineswhichcouldstoreelectricity.Anotablebreakthroughcamefromtheexperimentsofthelittle-knownEnglishscientistStephenGrey,whowasthe rsttoappreciatethatthedicultyinelectrifyingcertainobjectsisbecausetheyareconductors,withanychargequickly owingthroughthemandaway.Greyspentmostofhislifeasanam-ateurastronomer,althoughhisamateurstatusappearstobeinlargepartbecausehefellfoulofIsaacNewtonwhobarredhisentryintomoreprofessionalscienti ccircles.Heperformedhisexperimentsonconductorsinthe1720s,lateinlifewhenthelackofanyincomelefthimdestituteandpensionedtoChaterhouse(whichwas,perhaps,theworld'sfanciestpoorhouse).UponNewton'sdeath,thescienti ccommunityclamouredtomakeamends.GreywasawardedtheRoyalSociety's rstCopleymedal.Then,pre-sumablybecausetheyfeltguilty,hewasalsoawardedthesecond.Grey'sexperimentswerelaterreproducedbytheFrenchchemistCharlesFrancoisdeCisternayDuFay,whocametothewonderfulconclusionthatallobjectscanbeelectri edbyrubbingapartfrom\metals,liquidsandanimals".Hedoesnot,tomyknowledge,statehowmuchrubbingofanimalshetriedbeforegivingup.Hewasalsothe rsttonoticethatstaticelectricitycangiverisetobothattractiveandrepulsiveforces.Bythe1750s,thereweremanyexperimentsonelectricity,butlittletheorytoexplainthem.Mostideasrestedona uiddescriptionofelectricity,butargumentsragedoverwhetherasingle uidortwo uidswereresponsible.Theideathattherewerebothpositiveandnegativecharges,thenthoughtofasasurplusandde citof uid,wasintroducedindependentlybythebotanistWilliamWatsonandtheUSfoundingfather{39{ BenjaminFranklin.Franklinisarguablythe rsttosuggestthatchargeisconservedalthoughhisstatementwasn'tquiteasconciseasthecontinuityequation:Itisnowdiscoveredanddemonstrated,bothhereandinEurope,thattheElectricalFireisarealElement,orSpeciesofMatter,notcreatedbytheFriction,butcollectedonly.BenjaminFranklin,1747Still,it'snicetoknowthatchargeisconservedbothintheUSandinEurope.Aquantitativeunderstandingofthetheoryofelectrostaticscameonlyinthe1760s.Anumberofpeoplesuggestedthattheelectrostaticforcefollowsaninverse-squarelaw,prominentamongthemJosephPriestlywhoisbetterknownforthediscoveryofOxygenand,ofatleastequalimportance,theinventionofsodawater.In1769,theScottishphysicistJohnRobisonannouncedthathehadmeasuredtheforcetofallo as1=r2:06.Thiswasbeforetheinventionoferrorbarsandheseemstoreceivelittlecredit.Aroundthesametime,theEnglishscientistHenryCavendish,discoverofHydrogenandweigheroftheEarth,performedanumberofexperimentstodemonstratetheinverse-squarelawbut,aswithhismanyofhisotherelectromagneticdiscoveries,hechosenottopublish.ItwaslefttoFrenchphysicistCharlesAugustindeCoulombtocleanup,publishingtheresultsofhisde nitiveexperimentsin1785ontheforcethatnowcarrieshisname.Inits nalform,Coulomb'slawbecomestransmutedintoGauss'law.Foronce,thiswasdonebythepersonafterwhomit'snamed.Gaussderivedthisresultin1835,althoughitwasn'tpublisheduntil1867.{40{ 3.MagnetostaticsChargesgiverisetoelectric elds.Currentgiverisetomagnetic elds.Inthissection,wewillstudythemagnetic eldsinducedbysteadycurrents.ThismeansthatweareagainlookingfortimeindependentsolutionstotheMaxwellequations.Wewillalsorestricttosituationsinwhichthechargedensityvanishes,so=0.WecanthensetE=0andfocusourattentiononlyonthemagnetic eld.We'releftwithtwoMaxwellequationstosolve:rB=0J(3.1)andrB=0(3.2)Ifyou xthecurrentdensityJ,theseequationshaveauniquesolution.Ourgoalinthissectionisto ndit.SteadyCurrentsBeforewesolve( 3.1 )and( 3.2 ),let'spausetothinkaboutthekindofcurrentsthatwe'reconsideringinthissection.Because=0,therecan'tbeanynetcharge.But,ofcourse,westillwantchargetobemoving!Thismeansthatwenecessarilyhavebothpositiveandnegativechargeswhichbalanceoutatallpointsinspace.Nonetheless,thesechargescanmovesothereisacurrenteventhoughthereisnonetchargetransport.Thismaysoundarti cial,butinfactit'sexactlywhathappensinatypicalwire.Inthatcase,thereisbackgroundofpositivechargeduetothelatticeofionsinthemetal.Meanwhile,theelectronsarefreetomove.Buttheyallmovetogethersothatateachpointwestillhave=0.Thecontinuityequation,whichcapturestheconservationofelectriccharge,is@ @t+rJ=0Sincethechargedensityisunchanging(and,indeed,vanishing),wehaverJ=0Mathematically,thisisjustsayingthatifacurrent owsintosomeregionofspace,anequalcurrentmust owouttoavoidthebuildupofcharge.Notethatthisisconsistentwith( 3.1 )since,foranyvector eld,r(rB)=0.{41{ 3.1Ampere'sLawThe rstequationofmagnetostatics,rB=0J(3.3)isknownasAmpere'slaw.Aswithmanyofthesevectordif- Figure25:ferentialequations,thereisanequivalentformintermsofinte-grals.Inthiscase,wechoosesomeopensurfaceSwithboundaryC=@S.Integrating( 3.3 )overthesurface,wecanuseStokes'theoremtoturntheintegralofrBintoalineintegralovertheboundaryC,ZSrBdS=ICBdr=0ZSJdSRecallthatthere'sanimplicitorientationintheseequations.ThesurfaceScomeswithanormalvector^nwhichpointsawayfromSinonedirection.Thelineintegralaroundtheboundaryisthendoneintheright-handedsense,meaningthatifyoustickthethumbofyourrighthandinthedirection^nthenyour ngerscurlinthedirectionofthelineintegral.TheintegralofthecurrentdensityoverthesurfaceSisthesamethingasthetotalcurrentIthatpassesthroughS.Ampere'slawinintegralformthenreadsICBdr=0I(3.4)Formostexamples,thisisn'tsucienttodeterminetheformofthemagnetic eld;we'llusuallyneedtoinvoke( 3.2 )aswell.However,thereisonesimpleexamplewheresymmetryconsiderationsmeanthat( 3.4 )isallweneed...3.1.1ALongStraightWireConsideranin nite,straightwirecarryingcurrentI.We'lltakeittopointinthe^zdirection.Thesymmetryoftheproblemisjumpingupanddowntellingusthatweneedtousecylindricalpolarcoordinates,(r;';z),wherer=p x2+y2istheradialdistanceawayfromthewire.WetaketheopensurfaceStolieinthex�yplane,centeredonthewire.Forthelineintegralin( 3.4 )togivesomethingthatdoesn'tvanish,it'sclearthatthemagnetic eldhastohavesomecomponentthatliesalongthecircumferenceofthedisc.{42{ But,bythesymmetryoftheproblem,that'sactuallythe Figure26:onlycomponentthatBcanhave:itmustbeoftheformB=B(r)^'.(Ifthiswasabittooquick,we'llderivethismorecarefullybelow).Anymagnetic eldofthisformautomaticallysatis esthesecondMaxwellequationrB=0.WeneedonlyworryaboutAmpere'slawwhichtellsusICBdr=B(r)Z20rd'=2rB(r)=0IWeseethatthestrengthofthemagnetic eldisB=0I 2r^'(3.5)Themagnetic eldcirclesthewireusingthe"right-handrule":stickthethumbofyourrighthandinthedirectionofthecurrentandyour ngerscurlinthedirectionofthemagnetic eld.Notethatthesimplestexampleofamagnetic eldfallso as1=r.Incontrast,thesimplestexampleofanelectric eld{thepointcharge{fallsofas1=r2.Youcantracethisdi erencebacktothegeometryofthetwosituations.Becausemagnetic eldsaresourcedbycurrents,thesimplestexampleisastraightlineandthe1=rfall-o isbecausetherearetwotransversedirectionstothewire.Indeed,wesawinSection 2.1.3 thatwhenwelookatalineofcharge,theelectric eldalsodropso as1=r.3.1.2SurfaceCurrentsandDiscontinuitiesConsiderthe atplanelyingatz=0withasurfacecurrentdensitythatwe'llcallK.NotethatKisthecurrentperunitlength,asopposedtoJwhichisthecurrentperunitarea.Youcanthinkofthesurfacecurrentasabunchofwires,alllyingparalleltoeachother.We'lltakethecurrenttolieinthex-direction:K=K^xasshownbelow. Fromourpreviousresult,weknowthattheB eldshouldcurlaroundthecurrentintheright-handedsense.But,withanin nitenumberofwires,thiscanonlymeanthat{43{ Bisorientedalongtheydirection.Infact,fromthesymmetryoftheproblem,itmustlooklike withBpointinginthe�^ydirectionwhenz�0andinthe+^ydirectionwhenz0.WewriteB=�B(z)^ywithB(z)=�B(�z).WeinvokeAmpere'slawusingthefollowingopensurface: withlengthLintheydirectionandextendingtoz.WehaveICBdr=LB(z)�LB(�z)=2LB(z)=0KLsowe ndthatthemagnetic eldisconstantaboveanin niteplaneofsurfacecurrentB(z)=0K 2z�0Thisisrathersimilartothecaseoftheelectric eldinthepresenceofanin niteplaneofsurfacecharge.Theanalogywithelectrostaticscontinues.Themagnetic eldisnotcontinuousacrossaplaneofsurfacecurrent.WehaveB(z!0+)�B(z!0�)=0KInfact,thisisageneralresultthatholdsforanysurfacecurrentK.WecanprovethisstatementbyusingthesamecurvethatweusedintheFigureaboveandshrinkingit{44{ untilitbarelytouchesthesurfaceonbothsides.Ifthenormaltothesurfaceis^nandBdenotesthemagnetic eldoneithersideofthesurface,then^nBj+�^nBj�=0K(3.6)Meanwhile,themagnetic eldnormaltothesurfaceiscontinuous.(Toseethis,youcanuseaGaussianpillbox,togetherwiththeotherMaxwellequationrB=0).Whenwelookedatelectric elds,wesawthatthenormalcomponentwasdiscontinu-ousinthepresenceofsurfacecharge( 2.9 )whilethetangentialcomponentiscontinuous.Formagnetic elds,it'stheotherwayaround:thetangentialcomponentisdiscontin-uousinthepresenceofsurfacecurrents.ASolenoidAsolenoidconsistsofasurfacecurrentthattravelsaroundacylin- Figure27:der.It'ssimplesttothinkofasinglecurrent-carryingwirewindingmanytimesaroundtheoutsideofthecylinder.(Strictlyspeaking,thecross-sectionalshapeofthesolenoiddoesn'thavetobeacircle{itcanbeanything.Butwe'llstickwithacirclehereforsimplicity).Tomakelifeeasy,we'llassumethatthecylinderisin nitelylong.Thisjustmeansthatwecanneglecte ectsduetotheends.We'llagainusecylindricalpolarcoordinates,(r;';z),withtheaxisofthecylinderalong^z.Bysymmetry,weknowthatBwillpointalongthez-axis.Itsmagnitudecandependonlyontheradialdistance:B=B(r)^z.Onceagain,anymagnetic eldofthisformimmediatelysatis esrB=0.WesolveAmpere'slawindi erentialform.Anywhereotherthan Figure28:thesurfaceofthesolenoid,wehaveJ=0andrB=0)dB dr=0)B(r)=constantOutsidethesolenoid,wemusthaveB(r)=0sinceB(r)isconstantandweknowB(r)!0asr!1.To gureoutthemagnetic eldinsidethesolenoid,weturntotheintegralformofAmpere'slawandconsiderthesurfaceS,boundedbythecurveCshowninthe gure.Onlythelinethatrunsinsidethesolenoidcontributestothelineintegral.WehaveICBdr=BL=0INL{45{ whereNisthenumberofwindingsofwireperunitlength.Welearnthatinsidethesolenoid,theconstantmagnetic eldisgivenbyB=0IN^z(3.7)Notethat,sinceK=IN,thisisconsistentwithourgeneralformulaforthedisconti-nuityofthemagnetic eldinthepresenceofsurfacecurrents( 3.6 ).3.2TheVectorPotentialForthesimplecurrentdistributionsofthelastsection,symmetryconsiderationswereenoughtoleadustoamagnetic eldwhichautomaticallysatis edrB=0(3.8)But,formoregeneralcurrents,thiswon'tbethecase.InsteadwehavetoensurethatthesecondmagnetostaticMaxwellequationisalsosatis ed.Infact,thisissimpletodo.WeareguaranteedasolutiontorB=0ifwewritethemagnetic eldasthecurlofsomevector eld,B=rA(3.9)HereAiscalledthevectorpotential.Whilemagnetic eldsthatcanbewrittenintheform( 3.9 )certainlysatisfyrB=0,theconverseisalsotrue;anydivergence-freemagnetic eldcanbewrittenas( 3.9 )forsomeA.(Actually,thisprevioussentenceisonlytrueifourspacehasasuitablysimpletopology.SincewenearlyalwaysthinkofspaceasR3orsomeopenballonR3,werarelyrunintosubtleties.ButifspacebecomesmoreinterestingthenthepossiblesolutionstorB=0alsobecomemoreinteresting.Thisisanalogoustothestoryoftheelectrostaticpotentialthatwementionedbrie yinSection 2.2 ).Usingtheexpression( 3.9 ),Ampere'slawbecomesrB=�r2A+r(rA)=0J(3.10)where,inthe rstequality,we'veusedastandardidentityfromvectorcalculus.ThisistheequationthatwehavetosolvetodetermineAand,throughthat,B.{46{ 3.2.1MagneticMonopolesAbove,wedispatchedwiththeMaxwellequationrB=0fairlyquicklybywritingB=rA.Butweneverpausedtothinkaboutwhatthisequationisactuallytellingus.Infact,ithasaverysimpleinterpretation:itsaysthattherearenomagneticcharges.Apoint-likemagneticchargegwouldsourcethemagnetic eld,givingrisea1=r2fall-o B=g^r 4r2Anobjectwiththisbehaviourisusuallycalledamagneticmonopole.Maxwell'sequa-tionssaysthattheydon'texist.AndwehaveneverfoundoneinNature.However,wecouldask:howrobustisthisconclusion?Arewesurethatmagneticmonopolesdon'texist?Afterall,it'seasytoadaptMaxwell'sequationstoallowforpresenceofmagneticcharges:wesimplyneedtochange( 3.8 )toreadrB=mwheremisthemagneticchargedistribution.Ofcourse,thismeansthatwenolongergettousethevectorpotentialA.Butisthatsuchabigdeal?Thetwistcomeswhenweturntoquantummechanics.Becauseinquantummechan-icswe'reobligedtousethevectorpotentialA.NotonlyisthewholeframeworkofelectromagnetisminquantummechanicsbasedonwritingthingsusingA,butitturnsoutthatthereareexperimentsthatactuallydetectcertainpropertiesofAthatarelostwhenwecomputeB=rA.Iwon'texplainthedetailshere,butifyou'reinterestedthenlookupthe\Aharonov-Bohme ect".MonopolesAfterAll?Tosummarise,magneticmonopoleshaveneverbeenobserved.Wehavealawofphysics( 3.8 )whichsaysthattheydon'texist.AndwhenweturntoquantummechanicsweneedtousethevectorpotentialAwhichautomaticallymeansthat( 3.8 )istrue.Itsoundslikeweshouldprettymuchforgetaboutmagneticmonopoles,right?Well,no.Thereareactuallyverygoodreasonstosuspectthatmagneticmonopolesdoexist.ThemostimportantpartofthestoryisduetoDirac.HegaveabeautifulargumentwhichshowedthatitisinfactpossibletointroduceavectorpotentialAwhichallowsforthepresenceofmagneticcharge,butonlyifthemagneticchargegisrelatedtothechargeoftheelectronebyge=2~nn2Z(3.11)ThisisknownastheDiracquantizationcondition.{47{ Moreover,followingworkinthe1970sby'tHooftandPolyakov,wenowrealisethatmagneticmonopolesareubiquitousintheoriesofparticlephysics.Ourbestcurrenttheory{theStandardModel{doesnotpredictmagneticmonopoles.ButeverytheorythattriestogobeyondtheStandardModel,whetherGrandUni edTheories,orStringTheoryorwhatever,alwaysendsuppredictingthatmagneticmonopolesshouldexist.They'reoneofthefewpredictionsfornewphysicsthatnearlyalltheoriesagreeupon.Thesedaysmosttheoreticalphysiciststhinkthatmagneticmonopolesprobablyexistandtherehavebeenanumberofexperimentsaroundtheworlddesignedtodetectthem.However,whiletheoreticallymonopolesseemlikeagoodbet,theirfutureobservationalstatusisfarfromcertain.Wedon'tknowhowheavymagneticmonopoleswillbe,butallevidencesuggeststhatproducingmonopolesisbeyondthecapabilitiesofourcurrent(or,indeed,future)particleaccelerators.OuronlyhopeistodiscoversomethatNaturemadeforus,presumablywhentheUniversewasmuchyounger.Unfortunately,heretoothingsseemagainstus.Ourbesttheoriesofcosmology,inparticularin ation,suggestthatanymonopolesthatwerecreatedbackintheBigBanghavelongagobeendiluted.Ataguess,thereareprobablyonlyafew oatingaroundourentireobservableUniverse.Thechancesofonefallingintoourlapsseemslim.ButIhopeI'mwrong.3.2.2GaugeTransformationsThechoiceofAin( 3.9 )isfarfromunique:therearelotsofdi erentvectorpotentialsAthatallgiverisetothesamemagnetic eldB.Thisisbecausethecurlofagradientisautomaticallyzero.Thismeansthatwecanalwaysaddanyvectorpotentialoftheformrforsomefunctionandthemagnetic eldremainsthesame,A0=A+r)rA0=rASuchachangeofAiscalledagaugetransformation.AswewillseeinSection 5.3.1 ,itiscloselytiedtothepossibleshiftsoftheelectrostaticpotential.Ultimately,suchgaugetransformationsplayakeyroleintheoreticalphysics.But,fornow,we'resimplygoingtousethistoouradvantage.Because,bypickingacunningchoiceof,it'spossibletosimplifyourquestforthemagnetic eld.Claim:Wecanalways ndagaugetransformationsuchthatA0satis esrA0=0.MakingthischoiceisusuallyreferredtoasCoulombgauge.Proof:Supposethatwe'vefoundsomeAwhichgivesusthemagnetic eldthatwewant,sorA=B,butwhenwetakethedivergencewegetsomefunctionrA= (x).WeinsteadchooseA0=A+rwhichnowhasdivergencerA0=rA+r2= +r2{48{ SoifwewantrA0=0,wejusthavetopickourgaugetransformationtoobeyr2=� ButthisisjustthePoissonequationagain.AndweknowfromourdiscussioninSection 2 thatthereisalwaysasolution.(Forexample,wecanwriteitdowninintegralformusingtheGreen'sfunction).SomethingaLittleMisleading:TheMagneticScalarPotentialThereisanotherquantitythatissometimesusedcalledthemagneticscalarpotential, .Theideabehindthispotentialisthatyoumightbeinterestedincomputingthemagnetic eldinaregionwheretherearenocurrentsandtheelectric eldisnotchangingwithtime.Inthiscase,youneedtosolverB=0,whichyoucandobywritingB=�r Nowcalculationsinvolvingthemagnetic eldreallydolookidenticaltothoseinvolvingtheelectric eld.However,youshouldbewaryofwritingthemagnetic eldinthisway.Aswe'llseeinmoredetailinSection 5.3.1 ,wecanalwayssolvetwoofMaxwell'sequationsbywritingEandBintermsoftheelectricpotentialandvectorpotentialAandthisformulationbecomesimportantaswemoveontomoreadvancedareasofphysics.Incontrast,writingB=�r isonlyusefulinalimitednumberofsituations.Thereasonforthisreallygetstotheheartofthedi erencebetweenelectricandmagnetic elds:electricchargesexist;magneticchargesdon't!3.2.3Biot-SavartLawWe'renowgoingtousethevectorpotentialtosolveforthemagnetic eldBinthepresenceofageneralcurrentdistribution.Fromnow,we'llalwaysassumethatwe'reworkinginCoulombgaugeandourvectorpotentialobeysrA=0.ThenAmpere'slaw( 3.10 )becomesawholeloteasier:wejusthavetosolver2A=�0J(3.12)Butthisisjustsomethingthatwe'veseenalready.Toseewhy,it'sperhapsbesttowriteitoutinCartesiancoordinates.Thisthenbecomesthreeequations,r2Ai=�0Ji(i=1;2;3)(3.13)andeachoftheseisthePoissonequation.{49{ It'sworthgivingawordofwarningatthispoint:theexpressionr2AissimpleinCartesiancoordinateswhere,aswe'veseenabove,itreducestotheLaplacianoneachcomponent.But,inothercoordinatesystems,thisisnolongertrue.TheLaplaciannowalsoactsonthebasisvectorssuchas^rand^'.Sointheseothercoordinatesystems,r2Aisalittlemoreofamess.(Youshouldprobablyusetheidentityr2A=�r(rA)+r(rA)ifyoureallywanttocomputeintheseothercoordinatesystems).Anyway,ifwesticktoCartesiancoordinatestheneverythingissimple.Infact,theresultingequations( 3.13 )areofexactlythesameformthatwehadtosolveinelectrostatics.And,inanalogyto( 2.21 ),weknowhowtowritedownthemostgeneralsolutionusingGreen'sfunctions.ItisAi(x)=0 4ZVd3x0Ji(x0) jx�x0jOr,ifyou'refeelingbold,youcanrevertbacktovectornotationandwriteA(x)=0 4ZVd3x0J(x0) jx�x0j(3.14)whereyou'vejustgottorememberthatthevectorindexonAlinksupwiththatonJ(andnotonxorx0).CheckingCoulombGaugeWe'vederivedasolutionto( 3.12 ),butthisisonlyasolutiontoAmpere'sequation( 3.10 )iftheresultingAobeystheCoulombgaugecondition,rA=0.Let'snowcheckthatitdoes.WehaverA(x)=0 4ZVd3x0rJ(x0) jx�x0jwhereyouneedtorememberthattheindexofrisdottedwiththeindexofJ,butthederivativeinrisactingonx,notonx0.WecanwriterA(x)=0 4ZVd3x0J(x0)r1 jx�x0j=�0 4ZVd3x0J(x0)r01 jx�x0jHerewe'vedonesomethingclever.Nowourr0isdi erentiatingwithrespecttox0.Togetthis,we'veusedthefactthatifyoudi erentiate1=jx�x0jwithrespecttoxthen{50{ yougetthenegativeoftheresultfromdi erentiatingwithrespecttox0.Butsincer0sitsinsideanRd3x0integral,it'sripeforintegratingbyparts.ThisgivesrA(x)=�0 4ZVd3x0r0J(x0) jx�x0j�r0J(x0)1 jx�x0jThesecondtermvanishesbecausewe'redealingwithsteadycurrentsobeyingrJ=0.The rsttermalsovanishesifwetakethecurrenttobelocalisedinsomeregionofspace,^VVsothatJ(x)=0ontheboundary@V.We'llassumethatthisisthecase.WeconcludethatrA=0and( 3.14 )isindeedthegeneralsolutiontotheMaxwellequations( 3.1 )and( 3.2 )aswe'dhoped.TheMagneticFieldFromthesolution( 3.14 ),itissimpletocomputethemagnetic eldB=rA.Again,weneedtorememberthattheractsonthexin( 3.14 )ratherthanthex0.We ndB(x)=0 4ZVd3x0J(x0)(x�x0) jx�x0j3(3.15)ThisisknownastheBiot-Savartlaw.Itdescribesthemagnetic eldduetoageneralcurrentdensity.Thereisaslightvariationon( 3.15 )whichmoreoftengoesbythenameoftheBiot-Savartlaw.ThisarisesifthecurrentisrestrictedtoathinwirewhichtracesoutacurveC.Then,foracurrentdensityJpassingthroughasmallvolumeV,wewriteJV=(JA)xwhereAisthecross-sectionalareaofthewireandxliestangenttoC.Assumingthatthecross-sectionalareaisconstantthroughoutthewire,thecurrentI=JAisalsoconstant.TheBiot-SavartlawbecomesB(x)=0I 4ZCdx0(x�x0) jx�x0j3(3.16)Thisdescribesthemagnetic eldduetothecurrentIinthewire.AnExample:TheStraightWireRevisitedOfcourse,wealreadyderivedtheanswerforastraightwirein( 3.5 )withoutusingthisfancyvectorpotentialtechnology.Beforeproceeding,weshouldquicklycheckthattheBiot-Savartlawreproducesourearlierresult.Asbefore,we'llworkincylindricalpolar{51{ coordinates.Wetakethewiretopointalongthe^zaxisanduse Figure29:r2=x2+y2asourradialcoordinate.Thismeansthatthelineelementalongthewireisparametrisedbydx0=^zdzand,forapointxawayfromthewire,thevectordx0(x�x0)pointsalongthetangenttothecircleofradiusr,dx0(x�x0)=r^'dzSowehaveB=0I^' 4Z+1�1dzr (r2+z2)3=2=0I 2r^'whichisthesameresultwefoundearlier( 3.5 ).3.2.4AMathematicalDiversion:TheLinkingNumberThere'sarathercuteapplicationoftheseideastopuremathematics.Considertwoclosed,non-intersectingcurves,CandC0,inR3.Foreachpairofcurves,thereisanintegern2Zcalledthelinkingnumberwhichtellsyouhowmanytimesoneofthecurveswindsaroundtheother.Forexample,herearepairsofcurveswithlinkingnumberjnj=0;1and2. Figure30:Curveswithlinkingnumbern=0,n=1andn=2.Todeterminethesignofthelinkingnumber,weneedtospecifytheorientationofeachcurve.Inthelasttwo guresabove,thelinkingnumbersarenegative,ifwetraversebothredandbluecurvesinthesamedirection.Thelinkingnumbersarepositiveifwetraverseonecurveinaclockwisedirection,andtheotherinananti-clockwisedirection.Importantly,thelinkingnumberdoesn'tchangeasyoudeformeithercurve,providedthatthetwocurvesnevercross.Infancylanguage,thelinkingnumberisanexampleofatopologicalinvariant.{52{ Thereisanintegralexpressionforthelinkingnumber, rstwrittendownbyGaussduringhisexplorationofelectromagnetism.TheBiot-Savartformula( 3.16 )o ersasimplephysicsderivationofGauss'expression.SupposethatthecurveCcarriesacurrentI.Thissetsusamagnetic eldeverywhereinspace.WewillthencomputeHC0Bdx0aroundanothercurveC.(Ifyouwantajusti cationforcomputingHC0Bdx0thenyoucanthinkofitastheworkdonewhentransportingamagneticmonopoleofunitchargearoundC,butthisinterpretationisn'tnecessaryforwhatfollows.)TheBiot-SavartformulagivesIC0B(x0)dx0=0I 4IC0dx0ICdx(x0�x) jx�x0j3wherewe'vechangedourconventionssomewhatfrom( 3.16 ):nowxlabelscoordinatesonCwhilex0labelscoordinatesonC0.Meanwhile,wecanalsouseStokes'theorem,followedbyAmpere'slaw,towriteIC0B(x0)dx0=ZS0(rB)dS=0ZS0JdSwhereS0isasurfaceboundedbyC0.Thecurrentiscarriedbytheothercurve,C,whichpiercesS0preciselyntimes,sothatIC0B(x0)dx0=0ZS0JdS=n0IComparingthetwoequationsabove,wearriveatGauss'double-lineintegralexpressionforthelinkingnumbern,n=1 4IC0dx0ICdx(x0�x) jx�x0j3(3.17)Notethatour nalexpressionissymmetricinCandC0,eventhoughthesetwocurvesplayedaratherdi erentphysicalroleintheoriginalde nition,withCcarryingacurrent,andC0thepathtracedbysomehypotheticalmonopole.Toseethattheexpressionisindeedsymmetric,notethatthetripleproductcanbethoughtofasthedeterminantdet(x0;x;x0�x).Swappingxandx0changestheorderofthe rsttwovectorsandchangesthesignofthethird,leavingthedeterminantuna ected.Theformula( 3.17 )isratherpretty.It'snotatallobviousthattheright-hand-sidedoesn'tchangeunder(non-crossing)deformationsofCandC0;norisitobviousthattheright-hand-sidemustgiveaninteger.Yetbotharetrue,asthederivationaboveshows.Thisisthe rsttimethatideasoftopologysneakintophysics.It'snotthelast.{53{ 3.3MagneticDipolesWe'veseenthattheMaxwellequationsforbidmagneticmonopoleswithalong-rangeB1=r2fall-o ( 3.11 ).Sowhatisthegenericfall-o forsomedistributionofcurrentswhicharelocalisedinaregionofspace?Inthissectionwewillseethat,ifyou'restandingsuitablyfarfromthecurrents,you'lltypicallyobserveadipole-likemagnetic eld.3.3.1ACurrentLoopWestartwithaspeci c,simpleexample.Consider Figure31:acircularloopofwireCofradiusRcarryingacurrentI.Wecanguesswhatthemagnetic eldlookslikesimplybypatchingtogetherourresultforstraightwires:itmustroughlytaketheshapeshowninthe gureHowever,wecanbemoreac-curate.Herewerestrictourselvesonlytothemag-netic eldfarfromtheloop.Tocomputethemagnetic eldfaraway,wewon'tstartwiththeBiot-SavartlawbutinsteadreturntotheoriginalexpressionforAgivenin( 3.14 ).We'regoingtoreturntothenotationinwhichapointinspaceislabelledasrratherthanx.(Thisismoreappropriateforlong-distancedistance eldswhichareessentiallyanexpansioninr=jrj).ThevectorpotentialisthengivenbyA(r)=0 4ZVd3r0J(r0) jr�r0jWritingthisintermsofthecurrentI(ratherthanthecurrentdensityJ),wehaveA(r)=0I 4ICdr0 jr�r0jWewanttoaskwhatthislookslikefarfromtheloop.Justaswedidfortheelectrostaticpotential,wecanTaylorexpandtheintegrandusing( 2.22 ),1 jr�r0j=1 r+rr0 r3+:::SothatA(r)=0I 4ICdr01 r+rr0 r3+:::(3.18){54{ The rstterminthisexpansionvanishesbecausewe'reintegratingaroundacircle.Thisisjustare ectionofthefactthattherearenomagneticmonopoles.Forthesecondterm,there'sawaytowriteitinslightlymoremanageableform.Toseethis,let'sintroduceanarbitraryconstantvectorgandusethistolookatICdr0g(rr0)Recallthat,fromthepointofviewofthisintegral,bothgandrareconstantvectors;it'sthevectorr0thatwe'reintegratingover.ThisisnowthekindoflineintegralofavectorthatallowsustouseStokes'theorem.WehaveICdr0g(rr0)=ZSdSr(g(rr0))=ZSdSiijk@0j(gkrlr0l)where,inthe nalequality,we'veresortedtoindexnotationtohelpusrememberwhat'sconnectedtowhat.Nowthederivative@0actsonlyonther0andwegetICdr0g(rr0)=ZSdSiijkgkrj=gZSdSrButthisistrueforallconstantvectorsgwhichmeansthatitmustalsoholdasavectoridentityoncewestripawayg.WehaveICdr0(rr0)=Srwherewe'veintroducedthevectorareaSofthesurfaceSboundedbyC,de nedasS=ZSdSIftheboundaryCliesinaplane{asitdoesforus{thenthevectorSpointsoutoftheplane.Nowlet'sapplythisresulttoourvectorpotential( 3.18 ).Withtheintegraloverr0,wecantreatrastheconstantvectorgthatweintroducedinthelemma.Withthe rsttermvanishing,we'releftwithA(r)=0 4mr r3(3.19)wherewe'veintroducedthemagneticdipolemomentm=IS{55{ Thisisour nal,simple,answerforthelong-rangebehaviourofthevectorpotentialduetoacurrentloop.Itremainsonlytocomputethemagnetic eld.AlittlealgebragivesB(r)=0 43(m^r)^r�m r3(3.20)Nowweseewhymiscalledthemagneticdipole;thisformofthemagnetic eldisexactlythesameasthedipoleelectric eld( 2.19 ).IstressthattheB eldduetoacurrentloopandE eldduetotwochargesdon'tlookthesamecloseup.Buttheyhaveidentical\dipole"long-rangefall-o s.3.3.2GeneralCurrentDistributionsWecannowperformthesamekindofexpansionforageneralcurrentdistributionJlocalisedwithinsomeregionofspace.WeusetheTaylorexpansion( 2.22 )inthegeneralformofthevectorpotential( 3.14 ),Ai(r)=0 4Zd3r0Ji(r0) jr�r0j=0 4Zd3r0Ji(r0) r+Ji(r0)(rr0) r3+:::(3.21)wherewe'reusingacombinationofvectorandindexnotationtohelprememberhowtheindicesontheleftandright-handsidesmatchup.The rsttermabovevanishes.Heuristically,thisisbecausecurrentscan'tstopandend,theyhavetogoaroundinloops.Thismeansthatthecontributionfromonepartmustbecancelledbythecurrentsomewhereelse.Toseethismathematically,weusetheslightlyoddidentity@j(Jjri)=(@jJj)ri+Ji=Ji(3.22)wherethelastequalityfollowsfromthecontinuityconditionrJ=0.Usingthis,weseethatthe rsttermin( 3.21 )isatotalderivative(of@=@r0iratherthan@=@ri)whichvanishesifwetaketheintegraloverR3andkeepthecurrentlocalisedwithinsomeinteriorregion.Forthesecondtermin( 3.21 )weuseasimilartrick,nowwiththeidentity@j(Jjrirk)=(@jJj)rirk+Jirk+Jkri=Jirk+JkriBecauseJin( 3.21 )isafunctionofr0,weactuallyneedtoapplythistricktotheJir0jtermsintheexpression.Weonceagainabandontheboundarytermtoin nity.{56{ DroppingtheargumentofJ,wecanusetheidentityabovetowritetherelevantpieceofthesecondtermasZd3r0Jirjr0j=Zd3r0rj 2(Jir0j�Jjr0i)=Zd3r01 2(Ji(rr0)�r0i(Jr))Butnowthisisinaformthatisripeforthevectorproductidentitya(bc)=b(ac)�c(ab).ThismeansthatwecanrewritethistermasZd3r0J(rr0)=1 2rZd3r0Jr0(3.23)Withthisinhand,weseethatthelongdistancefall-o ofanycurrentdistributionagaintakesthedipoleform( 3.19 )A(r)=0 4mr r3nowwiththemagneticdipolemomentgivenbytheintegral,m=1 2Zd3r0r0J(r0)(3.24)Justasintheelectriccase,themultipoleexpansioncontinuestohigherterms.Thistimeyouneedtousevectorsphericalharmonics.Justasintheelectriccase,ifyouwantfurtherdetailsthenlookinJackson.3.4MagneticForcesWe'veseenthatacurrentproducesamagnetic eld.Butacurrentissimplymovingcharge.AndweknowfromtheLorentzforcelawthatachargeqmovingwithvelocityvwillexperienceaforceF=qvBThismeansthatifasecondcurrentisplacedsomewhereintheneighbourhoodofthe rst,thentheywillexertaforceononeanother.Ourgoalinthissectionisto gureoutthisforce.3.4.1ForceBetweenCurrentsLet'sstartsimple.TaketwoparallelwirescarryingcurrentsI1andI2respectively.We'llplacethemadistancedapartinthexdirection.{57{ Thecurrentinthe rstwiresetsupamagnetic eld Figure32:( 3.5 ).Soifthechargesinthesecondwirearemovingwithvelocityv,theywilleachexperienceaforceF=qvB=qv0I1 2d^ywhere^yisthedirectionofthemagnetic eldexperiencedbythesecondwireasshownintheFigure.ThenextstepistowritethevelocityvintermsofthecurrentI2inthesecondwire.WedidthisinSection 1.1 whenwe rstintroducedtheideaofcurrents:ifthere'sadensitynoftheseparticlesandeachcarrieschargeq,thenthecurrentdensityisJ2=nqvForawirewithcross-sectionalareaA,thetotalcurrentisjustI2=J2A.Forourset-up,J2=J2^z.Finally,wewanttocomputetheforceonthewireperunitlength,f.SincethenumberofchargesperunitlengthisnAandFistheforceoneachcharge,wehavef=nAF=0I1I2 2d^z^y=�0I1I2 2d^x(3.25)Thisisouranswerfortheforcebetweentwoparallelwires.Ifthetwocurrentsareinthesamedirection,sothatI1I2�0,theoverallminussignmeansthattheforcebetweentwowiresisattractive.Forcurrentsinoppositedirections,withI1I20,theforceisrepulsive.TheGeneralForceBetweenCurrentsWecanextendourdiscussiontotheforceexperiencedbetweentwocurrentdistributionsJ1andJ2.Westartbyconsideringthemagnetic eldB(r)duetothe rstcurrentJ1.Aswe'veseen,theBiot-Savartlaw( 3.15 )tellsusthatthiscanbewrittenasB(r)=0 4Zd3r0J1(r0)(r�r0) jr�r0j3IfthecurrentJ1islocalisedonacurveC1,thenwecanreplacethisvolumeintegralwiththelineintegral( 3.16 )B(r)=0I1 4IC1dr1(r�r1) jr�r1j3{58{ NowweplaceasecondcurrentdistributionJ2inthismagnetic eld.Itexperiencesaforceperunitareagivenby( 1.3 ),sothetotalforceisF=Zd3rJ2(r)B(r)(3.26)Again,ifthecurrentJ2isrestrictedtolieonacurveC2,thenthisvolumeintegralcanbereplacedbythelineintegralF=I2IC2drB(r)andtheforcecannowbeexpressedasadoublelineintegral,F=0 4I1I2IC1IC2dr2dr1r2�r1 jr2�r1j3Ingeneral,thisintegralwillbequitetrickytoperform.However,ifthecurrentsarelocalised,andwell-separated,thereisasomewhatbetterapproachwheretheforcecanbeexpressedpurelyintermsofthedipolemomentofthecurrent.3.4.2ForceandEnergyforaDipoleWestartbyaskingaslightlydi erentquestion.We'llforgetaboutthesecondcurrentandjustfocusonthe rst:callitJ(r).We'llplacethiscurrentdistributioninamagnetic eldB(r)andask:whatforcedoesitfeel?Ingeneral,therewillbetwokindsofforces.Therewillbeaforceonthecentreofmassofthecurrentdistribution,whichwillmakeitmove.Therewillalsobeatorqueonthecurrentdistribution,whichwillwanttomakeitre-orientitselfwithrespecttothemagnetic eld.Herewe'regoingtofocusontheformer.Ratherremarkably,we'llseethatwegettheanswertothelatterforfree!TheLorentzforceexperiencedbythecurrentdistributionisF=ZVd3rJ(r)B(r)We'regoingtoassumethatthecurrentislocalisedinsomesmallregionr=Randthatthemagnetic eldBvariesonlyslowlyinthisregion.ThisallowsustoTaylorexpandB(r)=B(R)+(rr)B(R)+:::{59{ WethengettheexpressionfortheforceF=�B(R)ZVd3rJ(r)+ZVd3rJ(r)[(rr)B(R)]+:::The rsttermvanishesbecausethecurrentshavetogoaroundinloops;we'vealreadyseenaproofofthisfollowingequation( 3.21 ).We'regoingtodosome ddlymanipula-tionswiththesecondterm.TohelpusrememberthatthederivativerisactingonB,whichisthenevaluatedatR,we'llintroduceadummyvariabler0andwritetheforceasF=ZVd3rJ(r)[(rr0)B(r0)] r0=R(3.27)Nowwewanttoplayaroundwiththis.First,usingthefactthatrB=0inthevicinityofthesecondcurrent,we'regoingtoshow,thatwecanrewritetheintegrandasJ(r)[(rr0)B(r0)]=�r0[(rB(r0))J(r)]Toseewhythisistrue,it'ssimplesttorewriteitinindexnotation.Aftershuingacoupleofindices,whatwewanttoshowis:ijkJj(r)rl@0lBk(r0)=ijkJj(r)rl@0kBl(r0)Or,subtractingonefromtheother,ijkJj(r)rl(@0lBk(r0)�@0kBl(r0))=0ButthetermsinthebracketsarethecomponentsofrBandsovanish.Soourresultistrueandwecanrewritetheforce( 3.27 )asF=�r0ZVd3r(rB(r0))J(r) r0=RNowweneedtomanipulatethisalittlemore.Wemakeuseoftheidentity( 3.23 )wherewereplacetheconstantvectorbyB.Thus,uptosomerelabelling,( 3.23 )isthesameasZVd3r(Br)J=1 2BZVd3rJr=�Bmwheremisthemagneticdipolemomentofthecurrentdistribution.Suddenly,ourexpressionfortheforceislookingmuchnicer:itreadsF=r(Bm){60{ wherewe'vedroppedther0=Rnotationbecause,havinglosttheintegral,there'snocauseforconfusion:themagneticdipolemisaconstant,whileBvariesinspace.Nowweinvokeastandardvectorproductidentity.UsingrB=0,thissimpli esandwe'releftwithasimpleexpressionfortheforceonadipoleF=r(Bm)(3.28)Afterallthatwork,we'releftwithsomethingremarkablysimple.Moreover,likemanyforcesinNewtonianmechanics,itcanbewrittenasthegradientofafunction.Thisfunction,ofcourse,istheenergyUofthedipoleinthemagnetic eld,U=�Bm(3.29)ThisisanimportantexpressionthatwillplayaroleinlatercoursesinQuantumMechanicsandStatisticalPhysics.Fornow,we'lljusthighlightsomethingclever:wederived( 3.29 )byconsideringtheforceonthecentreofmassofthecurrent.ThisisrelatedtohowUdependsonr.Butour nalexpressionalsotellsushowtheenergydependsontheorientationofthedipolemat xedposition.Thisisrelatedtothetorque.Computingtheforcegivesusthetorqueforfree.Thisisbecause,ultimately,bothquantitiesarederivedfromtheunderlyingenergy.TheForceBetweenDipolesAsaparticularexampleoftheforce( 3.28 ),considerthecasewherethemagnetic eldissetupbyadipolem1.Weknowthattheresultinglong-distancemagnetic eldis( 3.24 ),B(r)=0 43(m1^r)^r�m1 r3(3.30)Nowwe'llconsiderhowthisa ectstheseconddipolem=m2.From( 3.28 ),wehaveF=0 4r3(m1^r)(m2^r)�m1m2 r3whereristhevectorfromm1tom2.Notethatthestructureoftheforceisidenticaltothatbetweentwoelectricdipolesin( 2.30 ).Thisisparticularlypleasingbecauseweusedtworatherdi erentmethodstocalculatetheseforces.Ifweactwiththederivative,wehaveF=30 4r4(m1^r)m2+(m2^r)m1+(m1m2)^r�5(m1^r)(m2^r)^r(3.31){61{ Firstnotethatifweswapm1andm2,sothatwealsosendr!�r,thentheforceswapssign.ThisisamanifestationofNewton'sthirdlaw:everyactionhasanequalandoppositereaction.Recallfrom DynamicsandRelativity lecturesthatweneededNewton'sthirdlawtoprovetheconservationofmomentumofacollectionofparticles.Weseethatthisholdsforabunchofdipolesinamagnetic eld.ButtherewasalsoasecondparttoNewton'sthirdlaw:toprovetheconservationofangularmomentumofacollectionofparticles,weneededtheforcetolieparalleltotheseparationofthetwoparticles.Andthisisnottruefortheforce( 3.31 ).Ifyousetupacollectionofdipoles,theywillstartspinning,seeminglyincontradictionoftheconservationofangularmomentum.What'sgoingon?!Well,angularmomentumisconserved,butyouhavetolookelsewheretoseeit.Theangularmomentumcarriedbythedipolesiscompensatedbytheangularmomentumcarriedbythemagnetic elditself.Finally,afewbasiccomments:thedipoleforcedropso as1=r4,quickerthantheCoulombforce.Correspondingly,itgrowsquickerthantheCoulombforceatshortdistances.Ifm1andm2pointinthesamedirectionandlieparalleltotheseparationR,thentheforceisattractive.Ifm1andm2pointinoppositedirectionsandlieparalleltotheseparationbetweenthem,thentheforceisrepulsive.Theexpression( 3.31 )tellsusthegeneralresult.3.4.3SoWhatisaMagnet?Untilnow,we'vebeentalkingaboutthemagnetic eld Figure33:associatedtoelectriccurrents.Butwhenaskedtoen-visageamagnet,mostpeoplewouldthinkifapieceofmetal,possiblystucktotheirfridge,possiblyintheformofabarmagnetliketheoneshowninthepicture.Howaretheserelatedtoourdiscussionabove?Thesemetalsarepermanentmagnets.Theyoftenin-volveiron.Theycanbethoughtofascontainingmanymicroscopicmagneticdipoles,whichaligntoformalargemagneticdipoleM.Inabarmagnet,thedipoleMpointsbetweenthetwopoles.Theiron lingsinthepicturetraceoutthemagnetic eldwhichtakesthesameformthatwesawforthecurrentloopinSection 3.3 .Thismeansthattheleadingforcebetweentwomagnetsisdescribedbyourresult( 3.31 ).SupposethatM1,M2andtheseparationRallliealongaline.IfM1andM2{62{ pointinthesamedirection,thentheNorthpoleofonemagnetfacestheSouthpoleofanotherand( 3.31 )tellsusthattheforceisattractive.Alternatively,ifM1andM2pointinoppositedirectionsthentwopolesofthesametypefaceeachotherandtheforceisrepulsive.This,ofcourse,iswhatwealllearnedaskids.Theonlyremainingquestionis:wheredothemicroscopicdipolemomentsmcomefrom?Youmightthinkthattheseareduetotinyelectricatomiccurrentsbutthisisn'tquiteright.Instead,theyhaveamorefundamentalorigin.Theelectriccharges|whichareelectrons|possessaninherentangularmomentumcalledspin.RoughlyyoucanthinkoftheelectronasspinningarounditsownaxisinmuchthesamewayastheEarthspins.But,ultimately,spinisaquantummechanicalphenomenonandthisclassicalanalogybreaksdownwhenpushedtoofar.Themagnitudeofthespinis:s=1 2~where,recall,~hasthesamedimensionsasangularmomentum.Wecanpushtheclassicalanalogyofspinjustalittlefurther.Classically,anelectri-callychargedspinningballwouldgiverisetoamagneticdipolemoment.Soonemaywonderifthespinningelectronalsogivesrisetoamagneticdipole.Theanswerisyes.Itisgivenbym=ge 2mswhereeisthechargeoftheelectronandmisitsmass.Thenumbergisdimensionlessandcalled,ratheruninspiringly,theg-factor.Ithasbeenoneofthemostimportantnumbersinthehistoryoftheoreticalphysics,withseveralNobelprizesawardedtopeopleforcorrectlycalculatingit!Theclassicalpictureofaspinningelectronsuggestsg=1.Butthisiswrong.The rstcorrectprediction(and,correspondingly, rstNobelprize)wasbyDirac.Hisfamousrelativisticequationfortheelectrongivesg=2SubsequentlyitwasobservedthatDirac'spredictionisnotquiteright.Thevalueofgreceivescorrections.Thebestcurrentexperimentalvalueisg=2:00231930419922(1:510�12)Ratherastonishingly,thissamevaluecanbecomputedtheoreticallyusingtheframe-workofquantum eldtheory(speci cally,quantumelectrodynamics).Intermsofprecision,thisisoneofthegreattriumphsoftheoreticalphysics.{63{ Thereismuchmuchmoretothestoryofmagnetism,notleastwhatcausesthemagneticdipolesmtoalignthemselvesinamaterial.Thedetailsinvolvequantummechanicsandarebeyondthescopeofthiscourse.3.5UnitsofElectromagnetismMorethananyothersubject,electromagnetismisawashwithdi erentunits.Inlargepartthisisbecauseelectromagnetismhassuchdiverseapplicationsandeveryonefromastronomers,toelectricalengineers,toparticlephysicistsneedstouseit.Butit'sstillannoying.HereweexplainthebasicsofSIunits.TheSIunitofchargeistheCoulomb.Asof20192,theCoulombisde nedintermsofthecharge�ecarriedbytheelectron.Thisistakentobeexactlye=1:60217663410�19CIfyourubaballoononyoursweater,itpicksupachargeofaround10�6Corso.Aboltoflighteningdepositsachargeofabout15C.ThetotalchargethatpassesthroughanAAbatteryinitslifetimeisabout5000C.TheSIunitofcurrentistheAmpere,denotedA.Itisde nedasoneCoulombofchargepassingeverysecond.Thecurrentthatrunsthroughsingleionchannelsincellmembranesisabout10�12A.Thecurrentthatpowersyourtoasterisaround1Ato10A.ThereisacurrentintheEarth'satmosphere,knownastheBirkelandcurrent,whichcreatestheauroraandvariesbetween105Aand106A.Galacticsizecurrentsinso-calledSeyfertgalaxies(particularlyactivegalaxies)havebeenmeasuredatawhopping1018A.Theelectric eldismeasuredinunitsofNC�1.TheelectrostaticpotentialhasunitsofVolts,denotedV,wherethe1Voltisthepotentialdi erencebetweentwoin nite,parallelplates,separatedby1m,whichcreateanelectric eldof1NC�1. 2Priorto2019,areluctancetorelyonfundamentalphysicsmeantthatthede nitionswerealittlemoretortuous.TheAmperewastakentobethebaseunit,andtheCoulombwasde nedastheamountofchargetransportedbyacurrentof1Ainasecond.TheAmpere,inturn,wasde nedtobethecurrentcarriedbytwostraight,parallelwireswhenseparatedbyadistanceof1m,inordertoexperienceanattractiveforce-per-unit-lengthof210�7Nm�1.(RecallthataNewtonistheunitofforceneededtoaccelerate1Kgat1ms�1.)Fromourresult( 3.25 ),weseethatifwepluginI1=I2=1Aandd=1mthenthisforceisf=0=2A2m�1.Thisde nitionisthereasonthat0hasthestrange-lookingvalue0=410�7mKgC�2.Thenewde nitionsofSIunitsmeansthatwecannolongersaywithcertaintythat0=410�7mKgC�2,butthisonlyholdsuptotheexperimentalaccuracyofadozensigni cant guresorso.Forourpurposes,themainlessontodrawfromthisisthat,fromtheperspectiveoffundamentalphysics,SIunitsarearbitraryandalittledaft.{64{ Anervecellsitsataround10�2V.AnAAbatterysitsat1:5V.Thelargestman-madevoltageis107VproducedinavanderGraafgenerator.Thisdoesn'tcompetewellwithwhatNatureiscapableof.Thepotentialdi erencebetweentheendsofalighteningboltcanbe108V.Thevoltagearoundapulsar(aspinningneutronstar)canbe1015V.Theunitofamagnetic eldistheTesla,denotedT.Aparticleofcharge1C,passingthroughamagnetic eldof1Tat1ms�1willexperienceaforceof1N.Fromtheexamplesthatwe'veseenaboveit'sclearthat1Cisalotofcharge.Correspondingly,1Tisabigmagnetic eld.Ourbestinstruments(SQUIDs)candetectchangesinmagnetic eldsof10�18T.Themagnetic eldinyourbrainis10�12T.ThestrengthoftheEarth'smagnetic eldisaround10�5Twhileamagnetstucktoyourfridgehasabout10�3T.Thestrongestmagnetic eldwecancreateonEarthisaround100T.Again,Naturebeatsusquiteconsiderably.Themagnetic eldaroundneutronstarscanbebetween106Tand109T.(Thereisanexceptionhere:in\heavyioncollisions",inwhichgoldorleadnucleiaresmashedtogetherinparticlecolliders,itisthoughtthatmagnetic eldscomparabletothoseofneutronstarsarecreated.However,thesemagnetic eldsare eetingandsmall.Theyarestretchoverthesizeofanucleusandlastforamillionthofasecondorso).Astheabovediscussionamplydemonstrates,SIunitsarebasedentirelyonhistoricalconventionratherthananydeepunderlyingphysics.Amuchbetterchoiceistopickunitsofchargesuchthatwecandiscard0and0.Therearetwocommonlyusedframeworksthatdothis,calledLorentz-HeavisideunitsandGaussianunits.IshouldwarnyouthattheMaxwellequationstakeaslightlydi erentformineach.Tofullyembracenaturalunits,weshouldalsosetthespeedoflightc=1.(Seetherantinthe DynamicsandRelativity lectures).Howeverwecan'tseteverythingtoone.ThereisonecombinationofthefundamentalconstantsofNaturewhichisdimensionless.Itisknownasthe nestructureconstant, =e2 40~candtakesvalue 1=137.Ultimately,thisisthecorrectmeasureofthestrengthoftheelectromagneticforce.Ittellsusthat,inunitswith0=~=c=1,thenatural,dimensionlessvalueofthechargeoftheelectronise0:3.3.5.1AHistoryofMagnetostaticsThehistoryofmagnetostatics,likeelectrostatics,startswiththeGreeks.Thefactthatmagneticironore,sometimesknownas\lodestone",canattractpiecesofironwas{65{ apparentlyknowntoThales.Hethoughtthathehadfoundthesoulinthestone.Theword\magnetism"comesfromtheGreektownMagnesia,whichissituatedinanarearichinlodestone.Ittookover1500yearstoturnThales'observationintosomethinguseful.Inthe11thcentury,theChinesescientistShenKuorealisedthatmagneticneedlescouldbeusedtobuildacompass,greatlyimprovingnavigation.Themodernstoryofmagnetismbegins,aswithelectrostatics,withWilliamGilbert.FromthetimeofThales,ithadbeenthoughtthatelectricandmagneticphenomenonarerelated.OneofGilbert'simportantdiscoverieswas,ironically,toshowthatthisisnotthecase:theelectrostaticforcesandmagnetostaticforcesaredi erent.Yetoverthenexttwocenturies,suspicionsremained.Severalpeoplesuggestedthatelectricandmagneticphenomenaareintertwined,althoughnocredibleargumentsweregiven.Thetwojustsmelledalike.ThefollowingunisightfulquotefromHenryElles,writtenin1757totheRoyalSociety,prettymuchsumsupthesituation:\Therearesomethingsinthepowerofmagnetismverysimilartothoseofelectricity.ButIdonotbyanymeansthinkthemthesame".Anumberofspeci crelationshipsbetweenelectricityandmagnetismweresuggestedandallsubsequentlyrefutedbyexperiment.Whenthebreakthrough nallycame,ittookeveryonebysurprise.In1820,theDan-ishscientistHansChristianrstednoticedthattheneedleonamagnetwasde ectedwhenacurrentwasturnedonoro .Afterthat,progresswasrapid.Withinmonths,rstedwasabletoshowthatasteadycurrentproducesthecircularmagnetic eldaroundawirethatwehaveseenintheselectures.InSeptemberthatyear,rsted'sexperimentswerereproducedinfrontoftheFrenchAcademybyFrancoisArago,atalkwhichseemedtomobilisethecountry'sentirescienti ccommunity.FirstoutoftheblockswereJean-BaptisteBiotandFelixSavartwhoquicklydeterminedthestrengthofthemagnetic eldaroundalongwireandthemathematicallawwhichbearstheirname.OfthoseinspiredbyArago'stalk,themostimportantwasAndre-MarieAmpere.Skilledinbothexperimentalandtheoreticalphysics,Amperedeterminedtheforcesthatarisebetweencurrentcarryingwiresandderivedthemathematicallawwhichnowbearshisname:HBdr=0I.Hewasalsothe rsttopostulatethatthereexistsanatomofelectricity,whatwewouldnowcalltheelectron.Ampere'sworkwaspublishedin1827abookwiththecatchytitle\MemoirontheMathematicalTheoryofElectrodynamicPhenomena,UniquelyDeducedfromExperience".Itisnowviewedasthebeginningofthesubjectofelectrodynamics.{66{ 4.ElectrodynamicsForstaticsituations,Maxwell'sequationssplitintotheequationsofelectrostatics,( 2.1 )and( 2.2 ),andtheequationsofmagnetostatics,( 3.1 )and( 3.2 ).Theonlyhintthatthereisarelationshipbetweenelectricandmagnetic eldscomesfromthefactthattheyarebothsourcedbycharge:electric eldsbystationarycharge;magnetic eldsbymovingcharge.Inthissectionwewillseethattheconnectionbecomesmoredirectwhenthingschangewithtime.4.1Faraday'sLawofInduction\Iwasat rstalmostfrightenedwhenIsawsuchmathematicalforcemadetobearuponthesubject,andthenwonderedtoseethatthesubjectstooditsowell."FaradaytoMaxwell,1857OneoftheMaxwellequationsrelatestimevaryingmagnetic eldstoelectric elds,rE+@B @t=0(4.1)Thisequationtellsusthatifyouchangeamagnetic eld,you'llcreateanelectric eld.Inturn,thiselectric eldcanbeusedtoacceleratechargeswhich,inthiscontext,isusuallythoughtofascreatingacurrentinwire.Theprocessofcreatingacurrentthroughchangingmagnetic eldsiscalledinduction.We'llconsiderawiretobeaconductor,stretchedalong Figure34:astationary,closedcurve,C,asshowninthe gure.Wewillrefertoclosedwiresofthistypeasa\circuit".Weintegratebothsidesof( 4.1 )overasurfaceSwhichisboundedbyC,ZS(rE)dS=�ZS@B @tdSByStokestheorem,wecanwritethisasZCEdr=�ZS@B @tdS=�d dtZSBdSRecallthatthelineintegralaroundCshouldbeintheright-handedsense;ifthe ngersonyourright-handcurlaroundCthenyourthumbpointsinthedirectionofdS.(Thismeansthatinthe guredSpointsinthesamedirectionasB).Togetthelastequalityabove,weneedtousethefactthatneitherCnorSchangewithtime.Bothsides{67{ ofthisequationareusuallygivennames.Theintegraloftheelectric eldaroundthecurveCiscalledtheelectromotiveforce,E,oremfforshort,E=ZCEdrIt'snotagreatnamebecausetheelectromotiveforceisnotreallyaforce.Insteadit'sthetangentialcomponentoftheforceperunitcharge,integratedalongthewire.AnotherwaytothinkaboutitisastheworkdoneonaunitchargemovingaroundthecurveC.Ifthereisanon-zeroemfpresentthenthechargeswillbeacceleratedaroundthewire,givingrisetoacurrent.Theintegralofthemagnetic eldoverthesurfaceSiscalledthemagnetic uxthroughS,=ZSBdSTheMaxwellequation( 4.1 )canbewrittenasE=�d dt(4.2)Inthisform,theequationisusuallycalledFaraday'sLaw.Sometimesitiscalledthe uxrule.Faraday'slawtellsusthatifyouchangethemagnetic uxthroughSthenacurrentwill ow.Thereareanumberofwaystochangethemagnetic eld.Youcouldsimplymoveabarmagnetinthepresenceofcircuit,passingitthroughthesurfaceS;oryoucouldreplacethebarmagnetwithsomeothercurrentdensity,restrictedtoasecondwireC0,andmovethat;oryoucouldkeepthesecondwireC0 xedandvarythecurrentinit,perhapsturningitonando .AllofthesewillinduceacurrentinC.However,thereisthenasecondarye ect.Whenacurrent owsinC,itwillcreateitsownmagnetic eld.We'veseenhowthisworksforsteadycurrentsinSection 3 .Thisinducedmagnetic eldwillalwaysbeinthedirectionthatopposesthechange.ThisiscalledLenz'slaw.Ifyoulike,\Lenz'slaw"isreallyjusttheminussigninFaraday'slaw( 4.2 ).{68{ Wecanillustratethiswithasimpleexample.Con- Figure35:Lenz'slawsiderthecasewhereCisacircle,lyinginaplane.We'llplaceitinauniformB eldandthenmakeBsmallerovertime,so_0.ByFaraday'slaw,E&#x]TJ/;༕ ;.9;Ւ ;&#xTf 1;.68; 0 ;&#xTd [;0andthecurrentwill owintheright-handeddirectionaroundCasshown.Butnowyoucanwrapyourright-handinadi erentway:pointyourthumbinthedirectionofthecurrentandletyour ngerscurltoshowyouthedirectionoftheinducedmagnetic eld.Thesearethecirclesdrawninthe gure.YouseethattheinducedcurrentcausesBtoincreaseinsidetheloop,counteractingtheoriginaldecrease.Lenz'slawisratherlikealawofinertiaformagnetic elds.Itisnecessarythatitworksthiswaysimplytoensureenergyconservation:iftheinducedmagnetic eldaidedtheprocess,we'dgetanunstablerunawaysituationinwhichbothcurrentsandmagnetic eldswereincreasingforever.4.1.1Faraday'sLawforMovingWiresThereisanother,relatedwaytoinducecur- Figure36:Movingcircuitrentsinthepresenceofamagnetic eld:youcankeepthe eld xed,butmovethewire.Perhapsthesimplestexampleisshowninthe gure:it'sarectangularcircuit,butwhereoneofthewiresisametalbarthatcanslidebackwardsandfor-wards.Thiswholeset-upisthenplacedinamagnetic eld,whichpassesup,perpendicularthroughthecircuit.Slidethebartotheleftwithspeedv.EachchargeqinthebarexperiencesaLorentzforceqvB,pushingitintheydirection.Thisresultsinanemfwhich,now,isde nedastheintegratedforcepercharge.Inthiscase,theresultingemfisE=vBdwheredisthelengthofthemovingbar.But,becausetheareainsidethecircuitisgettingsmaller,the uxthroughCisalsodecreasing.Inthiscase,it'ssimpleto{69{ computethechangeof ux:itisd dt=�vBdWeseethatonceagainthechangeof uxisrelatedtotheemfthroughthe uxruleE=�d dtNotethatthisisthesameformula( 4.2 )thatwederivedpreviously,butthephysicsbehinditlookssomewhatdi erent.Inparticular,weusedtheLorentzforcelawanddidn'tneedtheMaxwellequations.Asinourpreviousexample,theemfwilldriveacurrentaroundtheloopC.And,justasinthepreviousexample,thiscurrentwillopposethemotionofthebar.Inthiscase,itisbecausethecurrentinvolveschargesmovingwithsomespeeduaroundthecircuit.ThesetoofeelaLorentzforcelaw,nowpushingthebarbacktotheright.Thismeansthatifyouletthebargo,itwillnotcontinuewithconstantspeed,eveniftheconnectionisfrictionless.Insteaditwillslowdown.ThisistheanalogofLenz'slawinthepresentcase.We'llreturntothisexampleinSection 4.1.3 andcomputethebar'ssubsequentmotion. Figure37:MovingCircuitsTheGeneralCaseThereisanicewaytoincludeboththee ectsoftime-dependentmagnetic eldsandthepossibilitythatthecircuitCchangeswithtime.WeconsiderthemovingloopC(t),asshowninthe gure.Nowthechangein uxthroughasurfaceShastwoterms:onebecauseBmaybechanging,andonebecauseCischanging.Inasmalltimet,wehave=(t+t)�(t)=ZS(t+t)B(t+t)dS�ZS(t)B(t)dS=ZS(t)@B @ttdS+ZS(t+t)�ZS(t)B(t)dS+O(t2)Wecandosomethingwiththemiddleterms.ConsidertheclosedsurfacecreatedbyS(t)andS(t+t),togetherwiththecylindricalregionsweptoutbyC(t)whichwecallSc.BecauserB=0,theintegralofB(t)overanyclosedsurfacevanishes.But{70{ RS(t+t)�RS(t)isthetopandbottompartoftheclosedsurface,withtheminussignjustensuringthattheintegraloverthebottompartS(t)isintheoutwarddirection.ThismeansthatwemusthaveZS(t+t)�ZS(t)B(t)dS=�ZScB(t)dSFortheintegraloverSc,wecanwritethesurfaceelementasdS=(drv)twheredristhelineelementalongC(t)andvisthevelocityofapointonC.We ndthattheexpressionforthechangein uxcanbewrittenasd dt=limt!0 t=ZS(t)@B @tdS�ZC(t)(vB)drwherewe'vetakenthelibertyofrewriting(drv)B=dr(vB).NowweusetheMaxwellequation( 4.1 )torewritethe@B=@tintermsoftheelectric eld.Thisgivesusour nalexpressiond dt=�ZC(E+vB)drwheretheright-handsidenowincludestheforcetangentialtothewirefrombothelectric eldsandalsofromthemotionofthewireinthepresenceofmagnetic elds.Theelectromotiveforceshouldbede nedtoincludebothofthesecontributions,E=ZC(E+vB)drandweonceagaingetthe uxruleE=�d=dt.4.1.2InductanceandMagnetostaticEnergyInSection 2.3 ,wecomputedtheenergystoredintheelectric eldbyconsideringtheworkdoneinbuildingupacollectionofcharges.Butwedidn'trepeatthiscalculationforthemagnetic eldinSection 3 .Thereasonisthatweneedtheconceptofemftodescribetheworkdoneinbuildingupacollectionofcurrents.SupposethataconstantcurrentI owsalongsomecurveC.FromtheresultsofSection 3 weknowthatthisgivesrisetoamagnetic eldandhencea ux=RSBdSthroughthesurfaceSboundedbyC.NowincreasethecurrentI.Thiswillincreasethe ux.Butwe'vejustlearnedthattheincreasein uxwill,inturn,induceanemfaroundthecurveC.TheminussignofLenz'slawensuresthatthisactstoresistthechangeofcurrent.Theworkneededtobuildupacurrentiswhat'sneededtoovercomethisemf.{71{ InductanceIfacurrentI owingaroundacurveCgivesrisetoa ux=RSBdSthentheinductanceLofthecircuitisde nedtobeL= ITheinductanceisapropertyonlyofourchoiceofcurveC.AnExample:TheSolenoidAsolenoidconsistsofacylinderoflengthlandcross-sectionalareaA. Figure38:Wetakelp Asothatanyend-e ectscanbeneglected.AwirewrappedaroundthecylindercarriescurrentIandwindsNtimesperunitlength.Wepreviouslycomputedthemagnetic eldthroughthecentreofthesolenoidtobe( 3.7 )B=0INThismeansthata uxthroughasingleturnis0=0INA.ThesolenoidconsistsofNlturnsofwire,sothetotal uxis=0IN2Al=0IN2VwithV=Althevolumeinsidethesolenoid.TheinductanceofthesolenoidisthereforeL=0N2VMagnetostaticEnergyThede nitionofinductanceisusefultoderivetheenergystoredinthemagnetic eld.Let'stakeourcircuitCwithcurrentI.We'lltrytoincreasethecurrent.TheinducedemfisE=�d dt=�LdI dtAswementionedabove,theinducedemfcanbethoughtofastheworkdoneinmovingaunitchargearoundthecircuit.ButwehavecurrentI owingwhichmeansthat,intimet,achargeItmovesaroundthecircuitandtheamountofworkdoneisW=EIt=�LIdI dtt)dW dt=�LIdI dt=�L 2dI2 dt{72{ Theworkneededtobuildupthecurrentisjusttheoppositeofthis.Integratingovertime,welearnthatthetotalworknecessarytobuildupacurrentIalongacurvewithinductanceLisW=1 2LI2=1 2IFollowingourdiscussionforelectricenergyin( 2.3 ),weidentifythiswiththeenergyUstoredinthesystem.WecanwriteitasU=1 2IZSBdS=1 2IZSrAdS=1 2IICAdr=1 2Zd3xJAwhere,inthelaststep,we'veusedthefactthatthecurrentdensityJislocalisedonthecurveCtoturntheintegralintooneoverallofspace.AtthispointweturntotheMaxwellequationrB=0JtowritetheenergyasU=1 20Zd3x(rB)A=1 20Zd3x[r(BA)+B(rA)]WeassumethatBandAfallo fastenoughatin nitysothatthe rsttermvanishes.We'releftwiththesimpleexpressionU=1 20Zd3xBBCombiningthiswithourpreviousresult( 2.27 )fortheelectric eld,wehavetheenergystoredintheelectricandmagnetic elds,U=Zd3x0 2EE+1 20BB(4.3)Thisisaniceresult.Butthere'ssomethingalittleunsatisfactorybehindourderivationof( 4.3 ).First,wereiterateacomplaintfromSection 2.3 :wehadtoapproachtheenergyinboththeelectricandmagnetic eldsinaratherindirectmanner,byfocussingnotonthe eldsbutontheworkdonetoassemblethenecessarychargesandcurrents.There'snothingwrongwiththis,butit'snotaveryelegantapproachanditwouldbenicetounderstandtheenergydirectlyfromthe eldsthemselves.OnecandobetterbyusingtheLagrangianapproachtoMaxwell'sequations.Second,wecomputedtheenergyfortheelectric eldsandmagnetic eldsaloneandthensimplyaddedthem.Wecan'tbesure,atthispoint,thatthereisn'tsomemixedcontributiontotheenergysuchasEB.Itturnsoutthattherearenosuchterms.Again,we'llpostponeaproofofthisuntilthenextcourse.{73{ 4.1.3ResistanceYoumayhavenoticedthatourdiscussionabovehasbeenalittlequalitative.Ifthe uxchanges,wehavegivenexpressionsfortheinducedemfEbutwehavenotgivenanexplicitexpressionfortheresultingcurrent.Andthere'sagoodreasonforthis:it'scomplicated.Thepresenceofanemfmeansthatthereisaforceonthechargesinthewire.AndweknowfromNewtonianmechanicsthataforcewillcausethechargestoaccelerate.Thisiswherethingsstarttogetcomplicated.Acceleratingchargeswillemitwavesofelectromagneticradiation,aprocessthatyouwillexplorelater.Relatedly,therewillbeanoppositiontotheformationofthecurrentthroughtheprocessthatwe'vecalledLenz'slaw.Sothingsaretricky.What'smore,inrealwiresandmaterialsthereisyetanothercomplication:friction.Throughouttheselectureswehavemodelledourchargesasiftheyaremovingunimpeded,whetherthroughthevacuumofspaceorthroughacon-ductor.Butthat'snotthecasewhenelectronsmoveinrealmaterials.Instead,there'sstu thatgetsintheirway:variousmessyimpuritiesinthematerial,orsoundwaves(usuallycalledphononsinthiscontext)whichknockthemo -course,orevenotherelectrons.Allthesee ectscontributetoafrictionforcethatactsonthemovingelec-trons.Theupshotofthisisthattheelectronsdonotaccelerateforever.Infact,theydonotaccelerateforverylongatall.Instead,theyveryquicklyreachanequilibriumspeed,analogoustothe\terminalvelocity"thatparticlesreachwhenfallingingrav-itational eldwhileexperiencingairresistance.Inmanycircumstances,theresultingcurrentIisproportionaltotheappliedemf.ThisrelationshipiscalledOhm'slaw.ItisE=IR(4.4)TheconstantofproportionalityRiscalledtheresistance.TheemfisE=REdx.IfwewriteE=�r,thenE=V,thepotentialdi erencebetweentwoendsofthewire.ThisgivesustheversionofOhm'slawthatisfamiliarfromschool:V=IR.TheresistanceRdependsonthesizeandshapeofthewire.IfthewirehaslengthLandcross-sectionalareaA,wede netheresistivityas=AR=L.(It'sthesameGreekletterthatweearlierusedtodenotechargedensity.They'renotthesamething.Sorryforanyconfusion!)Theresistivityhastheadvantagethatit'sapropertyofthematerialonly,notitsdimensions.Alternatively,wetalkabouttheconductivity=1=.(ThisisthesameGreekletterthatwepreviouslyusedtodenotesurface{74{ chargedensity.They'renotthesamethingeither.)ThegeneralformofOhm'slawisthenJ=EUnliketheMaxwellequations,Ohm'slawdoesnotrepresentafundamentallawofNature.Itistrueinmany,perhapsmost,materials.Butnotall.Thereisaverysimpleclassicalmodel,knownastheDrudemodel,whichtreatselectronsasbilliardballsexperiencinglineardragwhichgivesrisetoOhm'slaw..ButaproperderivationofOhm'slawneedsquantummechanicsandamoremicroscopicunderstandingofwhat'shappeninginmaterials.Needlesstosay,thisis(way)beyondthescopeofthiscourse.So,atleastinthissmallsection,wewilltakeOhm'slaw( 4.4 )asanextrainputinourtheory.WhenOhm'slawholds,thephysicsisverydi erent.Nowtheappliedforce(or,inthiscase,theemf)isproportionaltothevelocityoftheparticlesratherthantheacceleration.It'slikelivingintheworldthatAristotleenvisagedratherthantheoneGalileounderstood.Butitalsomeansthattheresultingcalculationstypicallybecomemuchsimpler.AnExampleLet'sreturntoourpreviousexampleofaslid- Figure39:ingbaroflengthdandmassmwhichformsacircuit,sittinginamagnetic eldB=B^z.Butnowwewilltakeintoaccountthee ectofelec-tricalresistance.WetaketheresistanceoftheslidingbartobeR.Butwe'llmakelifeeasyforourselvesandassumethattheresistanceoftherestofthecircuitisnegligible.Therearetwodynamicaldegreesoffreedominourproblem:thepositionxoftheslidingbarandthecurrentIthat owsaroundthecircuit.WetakeI�0ifthecurrent owsalongthebarinthepositive^ydirection.TheLorentzforcelawtellsusthattheforceonasmallvolumeofthebarisF=IB^y^z.TheforceonthewholebaristhereforeF=IBd^xTheequationofmotionforthepositionofthewireisthenmx=IBd{75{ NowweneedanequationthatgovernsthecurrentI(t).Ifthetotalemfaroundthecircuitcomesfromtheinducedemf,wehaveE=�d dt=�Bd_xOhm'slawtellsusthatE=IR.Combiningthese,wegetasimpledi erentialequationforthepositionofthebarmx=�B2d2 R_xwhichwecansolvetoseethatanyinitialvelocityofthebar,v,decaysexponentially:_x(t)=�ve�B2d2t=mRNotethat,inthiscalculationweneglectedthemagnetic eldcreatedbythecurrent.It'ssimpletoseethequalitativee ectofthis.Ifthebarmovestotheleft,so_x0,thenthe uxthroughthecircuitdecreases.TheinducedcurrentisI&#x]TJ/;༕ ;.9;Ւ ;&#xTf 2;.39; 0 ;&#xTd [;0whichincreasesBinsidethecircuitwhich,inaccordwithLenz'slaw,attemptstocounteractthereduced ux.Intheabovederivation,weassumedthatthetotalemfaroundthecircuitwaspro-videdbytheinducedemf.Thisistantamounttosayingthatnocurrent owswhenthebarisstationary.ButwecanalsorelaxthisassumptionandincludeinouranalysisanemfE0acrossthecircuit(provided,forexample,byabattery)whichinducesacurrentI0=E0d=R.NowthetotalemfisE=E0+Einduced=E0�Bd_xThetotalcurrentisagaingivenbyOhmslawI=E=R.Thepositionofthebarisnowgovernedbytheequationmx=�Bd R(E0�Bd_x)Again,it'ssimpletosolvethisequation.JouleHeatingInSection 4.1.2 ,wecomputedtheworkdoneinchangingthecurrentinacircuitC.Thisignoredthee ectofresistance.Infact,ifweincludetheresistanceofawirethenweneedtodoworkjusttokeepaconstantcurrent.Thisshouldbeunsurprising.It'sthesamestatementthat,inthepresenceoffriction,weneedtodoworktokeepanobjectmovingataconstantspeed.{76{ Let'sreturntoa xedcircuitC.Aswementionedabove,ifabatteryprovidesanemfE0,theresultingcurrentisI=E0=R.Wecannowrunthroughargumentssimilartothosethatwesawwhencomputingthemagnetostaticenergy.TheworkdoneinmovingaunitchargearoundCisE0whichmeansthatamountofworknecessarytokeepacurrentImovingfortimetisW=E0It=I2RtWelearnthatthepower(workperunittime)dissipatedbyacurrentpassingthroughacircuitofresistanceRisdW=dt=I2R.Thisisnotenergythatcanbeusefullystoredlikethemagneticandelectricenergy( 4.3 );insteaditislosttofrictionwhichiswhatwecallheat.(Thedi erencebetweenheatandotherformsofenergyisexplainedintheThermodynamicssectionintheStatisticalPhysicsnotes).TheproductionofheatbyacurrentiscalledJouleheatingor,sometimes,Ohmicheating.4.1.4MichaelFaraday(1791-1867)\Theword\physicist"isbothtomymouthandearssoawkwardthatIthinkIshallneverbeabletouseit.Theequivalentofthreeseparatesoundsof\s"inonewordistoomuch."FaradayinalettertoWilliamWhewell3MichaelFaraday'srouteintosciencewasfarfromthestandardone.Thesonofablacksmith,hehadlittleschoolingand,attheageof14,wasapprenticedtoabookbinder.Thereheremaineduntiltheageof20whenFaradayattendedaseriesofpopularlecturesattheRoyalInstitutionbythechemistSirHumphryDavy.Inspired,Faradaywroteuptheselectures,lovinglyboundthemandpresentedthemtoDavyasagift.Davywasimpressedandsomemonthslater,aftersu eringaneyeinjuryinanexplosion,turnedtoFaradaytoactashisassistant.Notlongafter,Davydecidedtoretireandtakeatwo-yearleisurelytourofEurope,meetingmanyofthecontinent'stopscientistsalongtheway.HeaskedFaradaytojoinhimandhiswife,halfasassistant,halfasvalet.Thesciencepartofthiswasasuccess;thevaletpartlessso.ButFaradaydutifullyplayedhisroles,emptyinghismaster'schamberpoteachmorning,whileaidinginanumberofimportantscienti cdiscoveriesalongtheway,includingawonderfulcaperinFlorencewhereDavyandFaradayusedGalileo'soldlenstoburnadiamond,reducingit,forthe rsttime,toCarbon. 3Accordingtotherestoftheinternet,Faradaycomplainsaboutthreeseparatesoundsof\i".Therestoftheinternetiswrongandcan'treadFaraday'swriting.TheoriginalletterisintheWrenlibraryinTrinityCollegeandisshownonthenextpage.I'mgratefultoFrankJames,editorofFaraday'scorrespondence,forhelpwiththis.{77{ BackinEngland,Faradaystartedworkatthe Figure40:RoyalInstitution.Hewouldremainthereforover45years.AnearlyattempttostudyelectricityandmagnetismwasabandonedafteraprioritydisputewithhisformermentorDavyanditwasonlyafterDavy'sdeathin1829thatFaradayturnedhisat-tentionsfullytothesubject.Hemadehisdiscoveryofinductionon28thOctober,1831.Theinitialex-perimentinvolvedtwo,separatedcoilsofwire,bothwrappedaroundthesamemagnet.Turningonacurrentinonewireinducesamomentarycurrentinthesecond.Soonafter,hefoundthatacurrentisalsoinducedbypassingaloopofwireoveramag-net.Thediscoveryofinductionunderliestheelec-tricaldynamoandmotor,whichconvertmechanicalenergyintoelectricalenergyandvice-versa.Faradaywasnotagreattheoristandthemathe-maticalexpressionthatwehavecalledFaraday'slawisduetoMaxwell.YetFaraday'sintuitionledhimtomakeoneofthemostimportantcontributionsofalltimetotheoreticalphysics:hewasthe rsttoproposetheideaofthe eld.AsFaraday'sresearchintoelectromagnetismincreased,hefoundhimselflackingthevocabularyneededtodescribethephenomenahewasseeing.Sincehedidn'texactlyreceiveaclassicaleducation,heturnedtoWilliamWhewell,thenMasterofTrinity,forsomeadvice.Betweenthem,theycookedupthewords`anode',`cathode',`ion',`dielectric',`diamagnetic'and`paramagnetic'.Theyalsosuggestedtheelectricchargeberenamed`Franklinic'inhonourofBenjaminFranklin.Thatonedidn'tstick.ThelastyearsofFaraday'slifewerespentinthesamewayasEinstein:seekingauni edtheoryofgravityandelectromagnetism.Thefollowingquotedescribeswhatis,perhaps,the rstgenuineattemptatuni cation:Gravity:SurelyhisforcemustbecapableofanexperimentalrelationtoElectricity,Magnetismandtheotherforces,soastobinditupwiththeminreciprocalactionandequivalente ect.Considerforamomenthowtosetabouttouchingthismatterbyfactsandtrial...Faraday,19thMarch,1849.{78{ Asthisquotemakesclear,Faraday'sapproachtothisproblemincludessomethingthatEinstein'sdidnot:experiment.Ultimately,neitherofthemfoundaconnectionbetweenelectromagnetismandgravity.ButitcouldbearguedthatFaradaymadethemoreimportantcontribution:whileanulltheoryisuseless,anullexperimenttellsyousomethingaboutNature.4.2OneLastThing:TheDisplacementCurrentWe'venowworkedourwaythroughmostoftheMaxwellequations.We'velookedatGauss'law(whichisreallyequivalenttoCoulomb'slaw)rE= 0(4.5)andthelawthatsaystherearenomagneticmonopolesrB=0(4.6)andAmpere'slawrB=0J(4.7)andnowalsoFaraday'slawrE+@B @t=0(4.8)Infact,there'sonlyonetermlefttodiscuss.When eldschangewithtime,thereisanextratermthatappearsinAmpere'slaw,whichreadsinfull:rB=0J+0@E @t(4.9)Thisextratermiscalledthedisplacementcurrent.It'snotagreatnamebecauseit'snotacurrent.Nonetheless,asyoucansee,itsitsintheequationinthesameplaceasthecurrentwhichiswherethenamecomesfrom.Sowhatdoesthisextratermdo?Well,somethingquiteremarkable.Butbeforewegettothis,there'sastorytotellyou.The rstfourequationsabove( 4.5 ),( 4.6 ),( 4.7 )and( 4.8 )|whichincludeAmpere'slawinunmodi edform|werearrivedatthroughmanydecadesofpainstakingex-perimentalworktotrytounderstandthephenomenaofelectricityandmagnetism.Ofcourse,ittooktheoreticalphysicistsandmathematicianstoexpresstheselawsintheelegantlanguageofvectorcalculus.Butallthehardworktouncoverthelawscamefromexperiment.{79{ Thedisplacementcurrenttermisdi erent.Thiswasarrivedatbypurethoughtalone.ThisisoneofMaxwell'scontributionstothesubjectand,inpart,whyhisnamenowlordsoverallfourequations.Herealisedthatthelawsofelectromagnetismcapturedby( 4.5 )to( 4.8 )arenotinternallyconsistent:thedisplacementcurrenttermhastobethere.Moreover,onceyouaddit,thereareastonishingconsequences.4.2.1WhyAmpere'sLawisNotEnoughWe'lllookattheconsequencesinthenextsection.Butfornow,let'sjustseewhytheunmodi edAmperelaw( 4.7 )isinconsistent.Wesimplyneedtotakethedivergenceto nd0rJ=r(rB)=0Thismeansthatanycurrentthat owsintoagivenvolumehastoalso owout.Butweknowthat'snotalwaysthecase.Togiveasimpleexample,wecanimagineputtinglotsofchargeinasmallregionandwatchingitdisperse.Sincethechargeisleavingthecentralregion,thecurrentdoesnotobeyrJ=0,seeminglyinviolationofAmpere'slaw.Thereisastandardthoughtexperimentinvolvingcir- Figure41:cuitswhichisusuallyinvokedtodemonstratetheneedtoamendAmpere'slaw.Thisisshowninthe gure.Theideaistocookupasituationwherecurrentsarechangingovertime.Todothis,wehookituptoacapacitor|whichcanbethoughtofastwoconductingplateswithagapbetweenthem|toacircuitofresistanceR.Thecircuitincludesaswitch.Whentheswitchisclosed,thecurrentwill owoutofthecapacitorandthroughthecircuit,ultimatelyheatinguptheresistor.Sowhat'stheproblemhere?Let'strytocomputethemagnetic eldcreatedbythecurrentatsomepointalongthecircuitusingAmpere'slaw.WecantakeacurveCthatsurroundsthewireandsurfaceSwithboundaryC.IfwechoseStobetheobviouschoice,cuttingthroughthewire,thenthecalculationisthesameaswesawinSection 3.1 .WehaveZCBdr=0I(4.10)whereIisthecurrentthroughthewirewhich,inthiscase,ischangingwithtime.{80{ Figure42:Thischoiceofsurfacesug-geststhereisamagnetic eldFigure43:Thischoiceofsurfacesug-geststhereisnone.Suppose,however,thatweinsteaddecidedtoboundthecurveCwiththesurfaceS0,whichnowsneaksthroughthegapbetweenthecapacitorplates.NowthereisnocurrentpassingthroughS0,soifweweretouseAmpere'slaw,wewouldconcludethatthereisnomagnetic eldZCBdr=0(4.11)Thisisincontradictiontoour rstcalculation( 4.10 ).Sowhat'sgoingonhere?Well,Ampere'slawonlyholdsforsteadycurrentsthatarenotchangingwithtime.Andwe'vedeliberatelyputtogetherasituationwhereIistimedependenttoseethelimitationsofthelaw.AddingtheDisplacementCurrentLet'snowseehowaddingthedisplacementcurrent( 4.9 ) xesthesituation.We'll rstlookattheabstractissuethatAmpere'slawrequiresrJ=0.Ifweaddthedisplacementcurrent,thentakingthedivergenceof( 4.9 )gives0rJ+0r@E @t=r(rB)=0But,usingGauss'slaw,wecanwrite0rE=,sotheequationabovebecomesrJ+@ @t=0whichisthecontinuityequationthattellsusthatelectricchargeislocallyconserved.It'sonlywiththeadditionofthedisplacementcurrentthatMaxwell'sequationsbecomeconsistentwiththeconservationofcharge.{81{ Nowlet'sreturntoourpuzzleofthecircuitandcapacitor.WithoutthedisplacementcurrentwefoundthatB=0whenwechosethesurfaceS0whichpassesbetweenthecapacitorplates.Butthedisplacementcurrenttellsusthatwemissedsomething,becausethebuildupofchargeonthecapacitorplatesleadstoatime-dependentelectric eldbetweentheplates.Forstaticsituations,wecomputedthisin( 2.10 ):itisE=Q 0AwhereAistheareaofeachplateandQisthechargethatsitsoneachplate,andweareignoringtheedgee ectswhichisacceptableaslongasthesizeoftheplatesismuchbiggerthanthegapbetweenthem.SinceQisincreasingovertime,theelectric eldisalsoincreasing@E @t=1 0AdQ dt=1 0AI(t)SonowifwerepeatthecalculationofBusingthesurfaceS0,we ndanextratermfrom( 4.9 )whichgivesZCBdr=ZS000@E @t=0IThisisthesameanswer( 4.10 )thatwefoundusingAmpere'slawappliedtothesurfaceS.Great.SoweseewhytheMaxwellequationsneedtheextratermknownasthedisplacementcurrent.Nowtheimportantthingis:whatdowedowithit?Aswe'llnowsee,theadditionofthedisplacementcurrentleadstooneofthemostwonderfuldiscoveriesinphysics:theexplanationforlight.4.3AndThereWasLightTheemergenceoflightcomesfromlookingforsolutionsofMaxwell'sequationsinwhichtheelectricandmagnetic eldschangewithtime,evenintheabsenceofanyexternalchargesorcurrents.Thismeansthatwe'redealingwiththeMaxwellequationsinvacuum:rE=0andrB=00@E @trB=0andrE=�@B @tTheessenceofthephysicsliesinthetwoMaxwellequationsontheright:iftheelectric eldshakes,itcausesthemagnetic eldtoshakewhich,inturn,causestheelectric{82{ eldtoshake,andsoon.Toderivetheequationsgoverningtheseoscillations,westartbycomputingthesecondtimederivativeoftheelectric eld,00@2E @t2=@ @t(rB)=r@B @t=�r(rE)(4.12)Tocompletethederivation,weneedtheidentityr(rE)=r(rE)�r2EBut,the rstofMaxwellequationstellsusthatrE=0invacuum,sothe rsttermabovevanishes.We ndthateachcomponentoftheelectric eldsatis es,1 c2@2E @t2�r2E=0(4.13)Thisisthewaveequation.Thespeedofthewaves,c,isgivenbyc=r 1 00Identicalmanipulationsholdforthemagnetic eld.Wehave@2B @t2=�@ @t(rE)=�r@E @t=�1 00r(rB)=1 00r2Bwhere,inthelastequality,wehavemadeuseofthevectoridentity( 4.12 ),nowappliedtothemagnetic eldB,togetherwiththeMaxwellequationrB=0.Weagain ndthateachcomponentofthemagnetic eldsatis esthewaveequation,1 c2@2B @t2�r2B=0(4.14)Thewavesofthemagnetic eldtravelatthesamespeedcasthoseoftheelectric eld.Whatisthisspeed?Attheverybeginningoftheselecturesweprovidedthenumericalvaluesoftheelectricconstant0=8:85418781710�12m�3Kg�1s2C2andthemagneticconstant,0=410�7mKgC�2Plugginginthesenumbersgivesthespeedofelectricandmagneticwavestobec=299792458ms�1Butthisissomethingthatwe'veseenbefore.It'sthespeedoflight!This,ofcourse,isbecausetheseelectromagneticwavesarelight.Inthewordsofthemanhimself{83{ \Thevelocityoftransverseundulationsinourhypotheticalmedium,calcu-latedfromtheelectro-magneticexperimentsofMM.KohlrauschandWeber,agreessoexactlywiththevelocityoflightcalculatedfromtheopticalex-perimentsofM.Fizeau,thatwecanscarcelyavoidtheinferencethatlightconsistsinthetransverseundulationsofthesamemediumwhichisthecauseofelectricandmagneticphenomena"JamesClerkMaxwellThesimplecalculationthatwehavejustseenrepresentsoneofthemostimportantmomentsinphysics.Notonlyareelectricandmagneticphenomenauni edintheMaxwellequations,butnowoptics{oneoftheoldest eldsinscience{isseentobecapturedbytheseequationsaswell.4.3.1SolvingtheWaveEquationWe'vederivedtwowaveequations,oneforEandoneforB.Wecansolvetheseindependently,butit'simportanttokeepinourmindthatthesolutionsmustalsoobeytheoriginalMaxwellequations.ThiswillthengiverisetoarelationshipbetweenEandB.Let'sseehowthisworks.We'llstartbylookingforaspecialclassofsolutionsinwhichwavespropagateinthex-directionanddonotdependonyandz.Thesearecalledplane-wavesbecause,byconstruction,the eldsEandBwillbeconstantinthe(y;z)planefor xedxandt.TheMaxwellequationrE=0tellsusthatwemusthaveExconstantinthiscase.Anyconstantelectric eldcanalwaysbeaddedasasolutiontotheMaxwellequationsso,withoutlossofgenerality,we'llchoosethisconstanttovanish.WelookforsolutionsoftheformE=(0;E(x;t);0)whereEsatis esthewaveequation( 4.13 )whichisnow1 c2@2E @t2�r2E=0ThemostgeneralsolutiontothewaveequationtakestheformE(x;t)=f(x�ct)+g(x+ct)Heref(x�ct)describesawavepro lewhichmovestotherightwithspeedc.(Because,astincreases,xalsohastoincreasetokeepfconstant).Meanwhile,g(x+ct)describesawavepro lemovingtotheleftwiththespeedc.{84{ Themostimportantclassofsolutionsofthiskindarethosewhichoscillatewithasinglefrequency!.Suchwavesarecalledmonochromatic.Fornow,we'llfocusontheright-movingwavesandtakethepro letobethesinefunction.(We'lllookattheoptiontotakecosinewavesorothershiftsofphaseinamomentwhenwediscusspolarisation).WehaveE=E0sinh!x c�tiWeusuallywritethisasE=E0sin(kx�!t)(4.15)wherekisthewavenumber.Thewaveequation( 4.13 )requiresthatitisrelatedtothefrequencyby!2=c2k2Equationsofthiskind,expressingfrequencyintermsofwavenumber,arecalleddis-persionrelations.Becausewavesaresoimportantinphysics,there'sawholebunchofassociatedquantitieswhichwecande ne.Theyare:Thequantity!ismoreproperlycalledtheangularfrequencyandistakentobepositive.Theactualfrequencyf=!=2measureshowoftenawavepeakpassesyouby.Butbecausewewillonlytalkabout!,wewillbelazyandjustrefertothisasfrequency.TheperiodofoscillationisT=2=!.Thewavelengthofthewaveis=2=k.Thisisthepropertyofwavesthatyou rstlearnaboutinkindergarten.Thewavelengthofvisiblelightisbetween3:910�7mand710�7m.Atoneendofthespectrum,gammarayshavewavelength10�12mandX-raysaround10�10to10�8m.Attheotherend,radiowaveshave1cmto10km.Ofcourse,theelectromagneticspectrumdoesn'tstopatthesetwoends.Solutionsexistforall.Althoughwegrowupthinkingaboutwavelength,movingforwardthewavenum-berkwillturnouttobeamoreusefuldescriptionofthewave.E0istheamplitudeofthewave.{85{ Sofarwehaveonlysolvedfortheelectric eld.Todeterminethemagnetic eld,weuserB=0totellusthatBxisconstantandweagainsetBx=0.WeknowthattheothercomponentsByandBzmustobeythewaveequation( 4.14 ).Buttheirbehaviourisdictatedbywhattheelectric eldisdoingthroughtheMaxwellequationrE=�@B=@t.ThistellsusthatB=(0;0;B)with@B @t=�@E @x=�kE0cos(kx�!t)We ndB=E0 csin(kx�!t)(4.16)WeseethattheelectricEandmagneticB eldsoscillateinphase,butinorthogonaldirections.Andbothoscillateindirectionswhichareorthogonaltothedirectioninwhichthewavetravels. BecausetheMaxwellequationsarelinear,we'reallowedtoaddanynumberofsolu-tionsoftheform( 4.15 )and( 4.16 )andwewillstillhaveasolution.Thissometimesgoesbythenameoftheprincipleofsuperposition.(Wementioneditearlierwhendiscussingelectrostatics).Thisisaparticularlyimportantpropertyinthecontextoflight,becauseit'swhatallowlightraystravellingindi erentdirectionstopassthrougheachother.Inotherwords,it'swhywecanseeanythingatall.ThelinearityoftheMaxwellequationsalsoencouragesustointroducesomenewnotationwhich,at rstsight,looksratherstrange.Wewilloftenwritethesolutions( 4.15 )and( 4.16 )incomplexnotation,E=E0^yei(kx�!t);B=E0 c^zei(kx�!t)(4.17){86{ Thisisstrangebecausethephysicalelectricandmagnetic eldsshouldcertainlyberealobjects.Youshouldthinkofthemassimplytherealpartsoftheexpressionsabove.ButthelinearityoftheMaxwellequationsmeansbothrealandimaginarypartsofEandBsolvetheMaxwellequations.And,moreimportantly,ifwestartaddingcomplexEandBsolutions,thentheresultingrealandimaginarypieceswillalsosolvetheMaxwellequations.Theadvantageofthisnotationissimplythatit'stypicallyeasiertomanipulatecomplexnumbersthanlotsofcosandsinformulae.However,youshouldbeawarethatthisnotationcomeswithsomedanger:wheneveryoucomputesomethingwhichisn'tlinearinEandB|forexample,theenergystoredinthe elds,whichisaquadraticquantity|youcan'tusethecomplexnotationabove;youneedtotaketherealpart rst.4.3.2PolarisationAbovewehavepresentedaparticularsolutiontothewaveequation.Let'snowlookatthemostgeneralsolutionwitha xedfrequency!.Thismeansthatwelookforsolutionswithintheansatz,E=E0ei(kx�!t)andB=B0ei(kx�!t)(4.18)where,fornow,bothE0andB0couldbecomplex-valuedvectors.(Again,weonlygetthephysicalelectricandmagnetic eldsbytakingtherealpartoftheseequations).Thevectorkiscalledthewavevector.Itsmagnitude,jkj=k,isthewavenumberandthedirectionofkpointsinthedirectionofpropagationofthewave.Theexpressions( 4.18 )alreadysatisfythewaveequations( 4.13 )and( 4.14 )if!andkobeythedispersionrelation!2=c2k2.WegetfurtherconstraintsonE0,B0andkfromtheoriginalMaxwellequations.ThesearerE=0)ikE0=0rB=0)ikB0=0rE=�@B @t)ikE0=i!B0Let'snowinterprettheseequations:LinearPolarisationSupposethatwetakeE0andB0tobereal.The rsttwoequationsabovesaythatbothE0andB0areorthogonaltothedirectionofpropagation.Thelastoftheequations{87{ abovesaysthatE0andB0arealsoorthogonaltoeachother.YoucancheckthatthefourthMaxwellequationdoesn'tleadtoanyfurtherconstraints.Usingthedispersionrelation!=ck,thelastconstraintabovecanbewrittenas^k(E0=c)=B0Thismeansthatthethreevectors^k,E0=candB0formaright-handedorthogonaltriad.Wavesofthisformaresaidtobelinearlypolarised.Theelectricandmagnetic eldsoscillatein xeddirections,bothofwhicharetransversetothedirectionofpropagation.CircularandEllipticPolarisationSupposethatwenowtakeE0andB0tobecomplex.Theactualelectricandmagnetic eldsarejusttherealpartsof( 4.18 ),butnowthepolarisationdoesnotpointina xeddirection.Toseethis,writeE0= �i Therealpartoftheelectric eldisthenE= cos(kx�!t)+ sin(kx�!t)withMaxwellequationsensuringthat k= k=0.IfwelookatthedirectionofEatsome xedpointinspace,saytheoriginx=0,weseethatitdoesn'tpointina xeddirection.Instead,itrotatesovertimewithintheplanespannedby and (whichistheplaneperpendiculartok).AspecialcaseariseswhenthephaseofE0isei=4,sothatj j=j j,withthefurtherrestrictionthat  =0.ThenthedirectionofEtracesoutacircleovertimeintheplaneperpendiculartok.Thisiscalledcircularpolarisation.Thepolarisationissaidtoberight-handedif =^k andleft-handedif =�^k .Ingeneral,thedirectionofEatsomepointinspacewilltraceoutanellipseintheplaneperpendiculartothedirectionofpropagationk.Unsurprisingly,suchlightissaidtohaveellipticpolarisation.GeneralWaveAgeneralsolutiontothewaveequationconsistsofcombinationsofwavesofdi erentwavenumbersandpolarisations.ItisnaturallyexpressedasaFourierdecompositionbysummingoversolutionswithdi erentwavevectors,E(x;t)=Zd3k (2)3E(k)ei(kx�!t)Here,thefrequencyofeachwavedependsonthewavevectorbythenow-familiardis-persionrelation!=ck.{88{ 4.3.3AnApplication:Re ectiono aConductorTherearelotsofthingstoexplorewithelectromagneticwavesandwewillseemanyexampleslaterinthecourse.Fornow,welookatasimpleapplication:wewillre ectwaveso aconductor.Weallknowfromexperiencethatconductors,likemetals,lookshiny.Herewe'llseewhy.Supposethattheconductoroccupiesthehalfofspace Figure44:x�0.Westartbyshiningthelighthead-onontothesurface.Thismeansanincidentplanewave,travellinginthex-direction,Einc=E0^yei(kx�!t)where,asbefore,!=ck.Insidetheconductor,weknowthatwemusthaveE=0.ButthecomponentE^yliestangentialtothesurfaceandso,bycontinuity,mustalsovanishjustoutsideatx=0�.Weachievethisbyaddingare ectedwave,travellingintheoppositedirectionEref=�E0^yei(�kx�!t)SothatthecombinationE=Einc+Erefsatis esE(x=0)=0asitmust.Thisisillustratedinthe gure.(Note,however,thatthe gureisalittlebitmisleading:thetwowavesareshowndisplacedbut,inreality,both llallofspaceandshouldbesuperposedontopofeachother).We'vealreadyseenabovethatthecorrespondingmagnetic eldcanbedeterminedbyrE=�@B=@t.ItisgivenbyB=Binc+Bref,withBinc=E0 c^zei(kx�!t)andBref=E0 c^zei(�kx�!t)(4.19)ThisobeysBn=0,asitshouldbycontinuity.Butthetangentialcomponentdoesn'tvanishatthesurface.Instead,wehaveB^zjx=0�=2E0 ce�i!tSincethemagnetic eldvanishesinsidetheconductor,wehaveadiscontinuity.Butthere'snomysteryhere.Weknowfromourpreviousdiscussion( 3.6 )thatthiscorre-spondstoasurfacecurrentKinducedbythewaveK=2E0 c0^ye�i!tWeseethatthesurfacecurrentoscillateswiththefrequencyofthere ectedwave.{89{ Re ectionatanAngle Figure45:Let'snowtrysomethingalittlemorecomplicated:we'llsendintheoriginalrayatanangle,,tothenormalasshowninthe gure.Ourincidentelectric eldisEinc=E0^yei(kx�!t)wherek=kcos^x+ksin^zNoticethatwe'vemadeaspeci cchoiceforthepolarisationoftheelectric eld:itisoutofthepageinthe gure,tangentialtothesurface.Nowwehavetwocontinuityconditionstoworryabout.Wewanttoaddare ectedwave,Eref=�E0^ei(k0x�!0t)wherewe'veallowedforthepossibilitythatthepolarisation^,thewavevectork0andfrequency!0arealldi erentfromtheincidentwave.Werequiretwocontinuitycondi-tionsontheelectric eld(Einc+Eref)^n=0and(Einc+Eref)^n=0where,forthisset-up,thenormalvectoris^n=�^x.Thisisachievedbytaking!0=!and=^y,sothatthere ectedwavechangesneitherfrequencynorpolarisation.There ectedwavevectorisk0=�kcos^x+ksin^zWecanalsocheckwhatbecomesofthemagnetic eld.ItisB=Binc+Bref,withBinc=E0 c(^k^y)ei(kx�!0t)andBref=�E0 c(^k0^y)ei(k0x�!0t)Notethat,incontrastto( 4.19 ),thereisnowaminussigninthere ectedBref,butthisissimplytoabsorbasecondminussigncomingfromtheappearanceof^k0inthepolarisationvector.ItissimpletocheckthatthenormalcomponentB^nvanishesattheinterface,asitmust.Meanwhile,thetangentialcomponentagaingivesrisetoasurfacecurrent.{90{ Themainupshotofallofthisdiscussionisrelationshipbetweenkandk0whichtellsussomethingthatweknewwhenwewere ve:theangleofincidenceisequaltotheangleofre ection.Onlynowwe'vederivedthisfromtheMaxwellequations.Ifthisisalittleunderwhelming,we'llderivemanymorepropertiesofwaveslater.4.3.4JamesClerkMaxwell(1831-1879)Stillthosepaperslaybeforeme,Problemsmadeexpresstoboreme,Whenasilentchangecameo'erme,Inmyharduneasychair.Fireandfog,andcandlefaded,Spectralformstheroominvaded,Littlecreatures,thatparadedOntheproblemslyingthere.JamesClerkMaxwell,\AVisionofaWrangler,ofaUniversity,ofPedantry,andofPhilosophy"JamesClerkMaxwellwasaverysmartman.BorninEdinburgh,hewasastudent, rstinhishometown,andlaterinCambridge,atPeterhouseandthenatTrinity.HeheldfacultypositionsattheUniversityofAberdeen(wherethey redhim)andKingsCollegeLondonbeforereturningtoCambridgeasthe rstCavendishprofessorofphysics.Perhapsthe rstverysmartthingthatMaxwelldid Figure46:Maxwell'svor-ticeswastodeterminethecompositionofSaturn'srings.Hedidn'tdothisusingatelescope.Hediditusingmathe-matics!Heshowedthatneitherasolidnora uidringcouldbestable.Suchringscouldonlybemadeofmanysmallparticles.ForthishewasawardedtheAdamsPrize.(Thesedaysyoucanwinthisprizeformuchmuchless!)Maxwell'sgreatworkonelectromagnetismwasaccom-plishedbetween1861and1862.Hestartedbyconstruct-inganelaboratemechanicalmodelofelectricityandmag-netisminwhichspaceis lledbyvorticesofanincom-pressible uid,separatedbytinyrotatingparticlesthatgiverisetoelectricity.Oneofhisillustrationsisshownabove.Needlesstosay,wedon'tteachthispictureofspace{91{ anymore.Fromthis,hemanagedtodistilleverythingthatwasknownaboutelectro-magnetisminto20coupledequationsin20variables.Thiswastheframeworkinwhichhediscoveredthedisplacementcurrentanditsconsequencesforlight.YoumightthinkthattheworldchangedwhenMaxwellpublishedhiswork.Infact,noonecared.Theequationsweretoohardforphysicists,thephysicstoohardformathematicians.Thingsimprovedmarginallyin1873whenMaxwellreducedhisequationstojustfour,albeitwritteninquaternionnotation.ThemodernversionofMaxwellequations,writteninvectorcalculusnotation,isduetoOliverHeavisidein1881.Inall,ittookalmost30yearsforpeopletoappreciatethesigni canceofMaxwell'sacheivement.Maxwellmadeanumberofotherimportantcontributionstoscience,includingthe rsttheoryofcolourvisionandthetheoryofcolourphotography.Hisworkonther-modynamicsandstatisticalmechanicsdeservesatleastequalstatuswithhisworkonelectromagnetism.Hewasthe rsttounderstandthedistributionofvelocitiesofmoleculesinagas,the rsttoextractanexperimentalpredictionfromthetheoryofatomsand,remarkably,the rst(withthehelpofhiswife)tobuildtheexperimentanddothemeasurement,con rminghisowntheory.4.4TransportofEnergy:ThePoyntingVectorElectromagneticwavescarryenergy.Thisisanimportantfact:wegetmostofourenergyfromthelightoftheSun.Herewe'dliketounderstandhowtocalculatethisenergy.Ourstartingpointistheexpression( 4.3 )fortheenergystoredinelectricandmag-netic elds,U=ZVd3x0 2EE+1 20BBTheexpressioninbracketsistheenergydensity.Herewehaveintegratedthisonlyoversome nitevolumeVratherthanoverallofspace.Thisisbecausewewanttounderstandthewayinwhichenergycanleavethisvolume.WedothisbycalculatingdU dt=ZVd3x0E@E @t+1 0B@B @t=ZVd3x1 0E(rB)�EJ�1 0B(rE){92{ wherewe'veusedthetwoMaxwellequations.NowweusetheidentityE(rB)�B(rE)=�r(EB)andwritedU dt=�ZVd3xJE�1 0ZS(EB)dS(4.20)wherewe'veusedthedivergencetheoremtowritethelastterm.ThisequationissometimescalledthePoyntingtheorem.The rsttermontheright-handsideisrelatedtosomethingthatwe'vealreadyseeninthecontextofNewtonianmechanics.Theworkdoneonaparticleofchargeqmovingwithvelocityvfortimetinanelectric eldisW=qvEt.TheintegralRVd3xJEaboveissimplythegeneralisationofthistocurrents:itshouldbethoughtofastherateofgainofenergyoftheparticlesintheregionV.Sinceitappearswithaminussignin( 4.20 ),itistherateoflossofenergyoftheparticles.Nowwecaninterpret( 4.20 ).IfwewriteitasdU dt+ZVd3xJE=�1 0ZS(EB)dSthentheleft-handsideisthecombinedchangeinenergyofboth eldsandparticlesinregionV.Sinceenergyisconserved,theright-handsidemustdescribetheenergythatescapesthroughthesurfaceSofregionV.Wede nethePoyntingvectorS=1 0EBThisisavector eld.Ittellsusthemagnitudeanddirectionofthe owofenergyinanypointinspace.(ItisunfortunatethatthecanonicalnameforthePoyntingvectorisSbecauseitmakesitnotationallydiculttointegrateoverasurfacewhichweusuallyalsoliketocallS.Needlesstosay,thesetwothingsarenotthesameandhopefullynoconfusionwillarise).Let'snowlookattheenergycarriedinelectromagneticwaves.BecausethePoyntingvectorisquadraticinEandB,we'renotallowedtousethecomplexformofthewaves.Weneedtoreverttotherealform.Forlinearpolarisation,wewritethesolutionsintheform( 4.17 ),butwitharbitrarywavevectork,E=E0sin(kx�!t)andB=1 c(^kE0)sin(kx�!t){93{ ThePoyntingvectoristhenS=E20 c0^ksin2(kx�!t)Averagingoveraperiod,T=2=!,wehaveS=E20 2c0^kWelearnthattheelectromagneticwavedoesindeedtransportenergyinitsdirectionofpropagation^k.It'sinstructivetocomparethistotheenergydensityofthe eld( 4.3 ).Evaluatedontheelectromagneticwave,theenergydensityisu=0 2EE+1 20BB=0E20sin2(kx�!t)AveragedoveraperiodT=2=!,thisisu=0E20 2Then,usingc2=1=00,wecanwriteS=cu^kTheinterpretationissimplythattheenergySisequaltotheenergydensityinthewaveutimesthespeedofthewave,c.4.4.1TheContinuityEquationRevisitedRecallthat,waybackinSection 1 ,weintroducedthecontinuityequationforelectriccharge,@ @t+rJ=0Thisequationisnotspecialtoelectriccharge.Itmustholdforanyquantitythatislocallyconserved.Nowwehaveencounteredanotherquantitythatislocallyconserved:energy.InthecontextofNewtonianmechanics,weareusedtothinkingofenergyasasinglenumber.Now,in eldtheory,itisbettertothinkofenergydensityE(x;t).Thisincludestheenergyinboth eldsandtheenergyinparticles.Thinkinginthisway,wenoticethat( 4.20 )issimplytheintegratedversionofacontinuityequationforenergy.Wecouldequallywellwriteitas@E @t+rS=0WeseethatthePoyntingvectorSistoenergywhatthecurrentJistocharge.{94{ 5.ElectromagnetismandRelativityWe'veseenthatMaxwell'sequationshavewavesolutionswhichtravelatthespeedoflight.Butthere'sanotherplaceinphysicswherethespeedoflightplaysapromi-nentrole:thetheoryofspecialrelativity.Howdoeselectromagnetism twithspecialrelativity?Historically,theMaxwellequationswerediscoveredbeforethetheoryofspecialrel-ativity.Itwasthoughtthatthelightwaveswederivedabovemustbeoscillationsofsomesubstancewhich llsallofspace.Thiswasdubbedtheaether.TheideawasthatMaxwell'sequationsonlyholdintheframeinwhichtheaetherisatrest;lightshouldthentravelatspeedcrelativetotheaether.Wenowknowthattheconceptoftheaetherisunnecessarybaggage.Instead,Maxwell'sequationsholdinallinertialframesandarethe rstequationsofphysicswhichareconsistentwiththelawsofspecialrelativity.Ultimately,itwasbystudyingtheMaxwellequationsthatLorentzwasabletodeterminetheformoftheLorentztransformationswhichsubsequentlylaidthefoundationforEinstein'svisionofspaceandtime.Ourgoalinthissectionistoviewelectromagnetismthroughthelensofrelativity.Wewill ndthatobserversindi erentframeswilldisagreeonwhattheycallelectric eldsandwhattheycallmagnetic elds.Theywillobservedi erentchargedensitiesanddi erentcurrents.ButallwillagreethatthesequantitiesarerelatedbythesameMaxwellequations.Moreover,thereisapay-o tothis.It'sonlywhenweformulatetheMaxwellequationsinawaywhichismanifestlyconsistentwithrelativitythatweseetheirtruebeauty.Theslightlycumbersomevectorcalculusequationsthatwe'vebeenplayingwiththroughouttheselectureswillbereplacedbyamuchmoreelegantandsimple-lookingsetofequations.5.1AReviewofSpecialRelativityWestartwithaveryquickreviewoftherelevantconceptsofspecialrelativity.(Formoredetailsseethelecturenoteson DynamicsandRelativity ).Thebasicpostulateofrelativityisthatthelawsofphysicsarethesameinallinertialreferenceframes.Thegutsofthetheorytellushowthingslooktoobserverswhoaremovingrelativetoeachother.The rstobserversitsinaninertialframeSwithspacetimecoordinates(ct;x;y;z)thesecondobserversitsinaninertialframeS0withspacetimecoordinates(ct0;x0;y0;z0).{95{ IfwetakeS0tobemovingwithspeedvinthex-directionrelativetoSthenthecoordinatesystemsarerelatedbytheLorentzboostx0= x�v cctandct0= ct�v cx(5.1)whiley0=yandz0=z.Herecisthespeedoflightwhichhasthevalue,c=299792458ms�1Meanwhile istheubiquitousfactor =s 1 1�v2=c2(5.2)TheLorentztransformation( 5.1 )encodeswithinitallofthefunideasoftimedilationandlengthcontractionthatwesawinour rstcourseonrelativity.5.1.1Four-VectorsIt'sextremelyusefultopackagethesespacetimecoordinatesin4-vectors,withindicesrunningfrom=0to=3X=(ct;x;y;z)=0;1;2;3Notethattheindexisasuperscriptratherthansubscript.Thiswillbeimportantshortly.AgeneralLorentztransformationisalinearmapfromXtoX0oftheform(X0)=XHereisa44matrixwhichobeysthematrixequationT=,=(5.3)withtheMinkowskimetric=diag(+1;�1;�1;�1)Thesolutionsto( 5.3 )fallintotwoclasses.The rstclassissimplyrotations.Givena33rotationmatrixRobeyingRTR=1,wecanconstructaLorentztransformationobeying( 5.3 )byembeddingRinthespatialpart,=0BBBB@1 000 0 0 R0 1CCCCA(5.4)Thesetransformationsdescribehowtorelatethecoordinatesoftwoobserverswhoarerotatedwithrespecttoeachother.{96{ Theotherclassofsolutionsto( 5.3 )aretheLorentzboosts.Thesearethetransfor-mationsappropriateforobserversmovingrelativetoeachother.TheLorentztransfor-mation( 5.1 )isequivalentto=0BBBB@ � v=c 00� v=c 00 00 1000 011CCCCA(5.5)Therearesimilarsolutionsassociatedtoboostsalongtheyandzaxes.Thebeautyof4-vectorsisthatit'sextremelyeasytowritedowninvariantquantities.Thesearethingswhichallobservers,nomatterwhichtheirreferenceframe,canagreeon.Toconstructthesewetaketheinnerproductoftwo4-vectors.ThetrickisthatthisinnerproductusestheMinkowskimetricandsocomeswithsomeminussigns.Forexample,thesquareofthedistancefromtheorigintosomepointinspacetimelabelledbyXisXX=XX=c2t2�x2�y2�z2whichistheinvariantinterval.Similarly,ifwe'regiventwofour-vectorsXandYthentheinnerproductXY=XYisalsoaLorentzinvariant.5.1.2ProperTimeThekeytobuildingrelativistictheoriesofNatureisto ndthevariablesthathavenicepropertiesunderLorentztransformations.The4-vectorsX,labellingspacetimepoints,areagoodstart.Butweneedmore.Herewereviewhowtheotherkinematicalvariablesofvelocity,momentumandacceleration tinto4-vectors.Supposethat,insomeframe,theparticletracesoutaworldline.Theclevertrickisto ndawaytoparameterisethispathinawaythatallobserversagreeupon.Thenaturalchoiceisthepropertime,thedurationoftimeexperiencedbytheparticleitself.Ifyou'resittinginsomeframe,watchingsomeparticlemovewithanold-fashionedNewtonian3-velocityu(t),thenit'ssimpletoshowthattherelationshipbetweenyourtimetandthepropertimeoftheparticleisgivenbydt d= (u){97{ Thepropertimeallowsustode nethe4-velocityandthe4-momentum.SupposethattheparticletracesoutapathX()insomeframe.Thenthe4-velocityisU=dX d= cu!Similarly,the4-momentumisP=mUwheremistherestmassoftheparticle.WewriteP= E=cp!(5.6)whereE=m c2istheenergyoftheparticleandp= muisthe3-momentuminspecialrelativity.TheimportanceofUandPisthattheytooare4-vectors.Becauseallobserversagreeon,thetransformationlawofUandPareinheritedfromX.ThismeansthatunderaLorentztransformation,theytoochangeasU!UandP!P.AnditmeansthatinnerproductsofUandPareguaranteedtobeLorentzinvariant.5.1.3IndicesUp,IndicesDownBeforewemoveon,wedoneedtointroduceoneextranotationalnovelty.TheminussignsintheMinkowskimetricmeansthatit'susefultointroduceaslighttwisttotheusualsummationconventionofrepeatedindices.Forallthe4-vectorsthatweintroducedabove,wealwaysplacethespacetimeindex=0;1;2;3asasuperscript(i.e.up)ratherthanasubscript.X= ctx!Thisisbecausethesameobjectwithanindexdown,X,willmeansomethingsubtlydi erent.Wede neX= ct�x!Withthisconvention,theMinkowskiinnerproductcanbewrittenusingtheusualconventionofsummingoverrepeatedindicesasXX=c2t2�xxIncontrast,XX=c2t2+x2isadumbthingtowriteinthecontextofspecialrelativitysinceitlooksverydi erenttoobserversindi erentinertialframes.Infact,wewillshortlydeclareitillegaltowritethingslikeXX.{98{ ThereisanaturalwaytothinkofXintermsofXusingtheMinkowskimetric=diag(+1;�1;�1;�1).Thefollowingequationistriviallytrue:X=XThismeansthatwecanthinkoftheMinkowskimetricasallowingustolowerindices.Toraiseindicesbackup,weneedtheinverseofwhich,fortunately,isthesamematrix:=diag(+1;�1;�1;�1)whichmeanswehave=andwecanwriteX=XFromnowon,we'regoingtoretainthisdistinctionbetweenallupperandlowerindices.Allthefour-vectorsthatwe'vemetsofarhaveupperindices.Butallcanbeloweredinthesameway.Forexample,wehaveU= c�u!(5.7)ThistrickofdistinguishingbetweenindicesupandindicesdownprovidesasimpleformalismtoensurethatallobjectshavenicetransformationpropertiesundertheLorentzgroup.Weinsistthat,justasintheusualsummationconvention,repeatedindicesonlyeverappearinpairs.Butnowwefurtherinsistthatpairsalwaysappearwithoneindexupandtheotherdown.TheresultwillbeanobjectwhichisinvariantunderLorentztransformations.5.1.4Vectors,CovectorsandTensorsInfuturecourses,youwilllearnthatthereissomewhatdeepermathematicslyingbe-hinddistinguishingXandX:formally,theseobjectsliveindi erentspaces(some-timescalleddualspaces).We'llcontinuetorefertoXasvectors,buttodistinguishthem,we'llcallXcovectors.(Inslightlyfancierlanguage,thecomponentsofthevec-torXaresometimessaidtobecontravariantwhilethecomponentsofthecovectorXaresaidtobecovariant).Fornow,theprimarydi erencebetweenavectorandcovectorishowtheytransformunderrotationsandboosts.Weknowthat,underaLorentztransformation,any4-vectorchangesasX!X0=X{99{ Fromthis,weseethatacovectorshouldtransformasX!X0=X0=X=XUsingourruleforraisingandloweringindices,nowappliedtotheLorentztransforma-tion,wecanalsowritethisasX!Xwhereournotationisnowgettingdangerouslysubtle:youhavetostaretoseewhethertheupperorlowerindexontheLorentztransformationcomes rst.Thereisasenseinwhichcanbethoughtofathecomponentsoftheinversematrix�1.Toseethis,wegobacktothede nitionoftheLorentztransformation( 5.3 ),andstarttouseournewrulesforraisingandloweringindices=)=)=)=Inthelastlineabove,we'vesimplyreversedtheorderofthetwotermsontheleft.(Whenwritteninindexnotation,thesearejusttheentriesofthematrixsothere'snoproblemwithcommutingthem).Nowwecomparethistotheformulafortheinverseofamatrix,(�1)=)(�1)=(5.8)Notethatyouneedtobecarefulwhereyouplacetheindicesinequationslikethis.Theresult( 5.8 )isanalogoustothestatementthattheinverseofarotationmatrixisthetransposematrix.ForgeneralLorentztransformations,welearnthattheinverseissortofthetransposewhere\sortof"meansthatthereareminussignsfromraisingandlowering.Theplacementofindicesin( 5.8 )tellsuswherethoseminussignsgo.Theupshotof( 5.8 )isthatifwewanttoabandonindexnotationalltogetherthenvectorstransformasX!Xwhilecovectors{which,forthepurposeofthissentence,we'llcall~X{transformas~X!�1~X.However,inwhatfollows,wehavenointentionofabandoningindexnotation.Instead,wewillembraceit.ItwillbeourfriendandourguideinshowingthattheMaxwellequationsareconsistentwithspecialrelativity.{100{ Aparticularlyusefulexampleofacovectoristhefour-derivative.Thisistherela-tivisticgeneralisationofr,de nedby@=@ @X=1 c@ @t;rNoticethatthesuperscriptonthespacetime4-vectorXhasmigratedtoasubscriptonthederivative@.Forthistomakenotationalsense,weshouldcheckthat@doesindeedtransformascovector.Thisisasimpleapplicationofthechainrule.UnderaLorentztransformation,X!X0=X,sowehave@=@ @X!@ @X0=@X @X0@ @X=(�1)@=@whichisindeedthetransformationofaco-vector.TensorsVectorsandcovectorsarethesimplestexamplesofobjectswhichhavenicetransfor-mationpropertiesundertheLorentzgroup.Buttherearemanymoreexamples.Themostgeneralobjectcanhaveabunchofupperindicesandabunchoflowerindices,T1:::n1:::m.Theseobjectsarealsocalledtensorsoftype(n;m).Inordertoqualifyasatensor,theymusttransformunderaLorentztransformationasT01:::n1:::m=11:::nn11:::mmT1:::n1:::m(5.9)YoucanalwaysusetheMinkowskimetrictoraiseandlowerindicesontensors,changingthetypeoftensorbutkeepingthetotalnumberofindicesn+m xed.Tensorsofthiskindarethebuildingblocksofallourtheories.Thisisbecauseifyoubuildequationsonlyoutoftensorswhichtransforminthismannerthen,aslongasthe;;:::indicesmatchuponbothsidesoftheequation,you'reguaranteedtohaveanequationthatlooksthesameinallinertialframes.Suchequationsaresaidtobecovariant.You'llseemoreofthiskindofthingincoursesonGeneralRelativityandDi erentialGeometry.Insomesense,thisindexnotationistoogood.Rememberallthosewonderfulthingsthatyou rstlearnedaboutinspecialrelativity:timedilationandlengthcontractionandtwinsandspaceshipssoon.You'llneverhavetoworryaboutthoseagain.Fromnowon,youcanguaranteethatyou'reworkingwithatheoryconsistentwithrelativitybyensuringtwosimplethingsThatyouonlydealwithtensors.Thattheindicesmatchuponbothsidesoftheequation.It'ssad,buttrue.It'sallpartofgrowingupandnothavingfunanymore.{101{ 5.2ConservedCurrentsWestartedtheselecturesbydiscussingthechargedensity(x;t),thecurrentdensityJ(x;t)andtheirrelationthroughthecontinuityequation,@ @t+rJ=0whichtellsusthatchargeislocallyconserved.Thecontinuityequationisalreadyfullyconsistentwithrelativity.Toseethis,we rstneedtoappreciatethatthechargeandcurrentdensitiessitnicelytogetherina4-vector,J= cJ!Ofcourse,placingobjectsinafour-vectorhasconsequence:ittellsushowtheseobjectslooktodi erentobservers.Let'squicklyconvinceourselvesthatitmakessensethatchargedensityandcurrentdoindeedtransforminthisway.Wecanstartbyconsideringasituationwherethereareonlystaticchargeswithdensity0andnocurrent.SoJ=(0;0).Now,inaframethatisboostedbyvelocityv,thecurrentwillappearasJ0=JwiththeLorentztransformationgivenby( 5.5 ).Thenewchargedensityandcurrentarethen0= 0;J0=� vThe rstoftheseequationstellsusthatdi erentobserversseedi erentchargedensities.ThisisbecauseofLorentzcontraction:chargedensitymeanschargeperunitvolume.AndthevolumegetssqueezedbecauselengthsparalleltothemotionundergoLorentzcontraction.That'sthereasonforthefactorof intheobservedchargedensity.Meanwhile,thesecondoftheseequationsisjusttherelativisticextensionoftheformulaJ=vthatwe rstsawintheintroduction.(Theextraminussignisbecausevheredenotesthevelocityoftheboostedobserver;thechargeisthereforemovingwithrelativevelocity�v).Inournew,relativistic,notation,thecontinuityequationtakestheparticularlysim-pleform@J=0(5.10)ThisequationisLorentzinvariant.Thisfollowssimplybecausetheindicesarecon-tractedintherightway:oneup,andonedown.{102{ 5.2.1MagnetismandRelativityWe'velearnedsomethingunsurprising:boostedchargegivesrisetoacurrent.But,combinedwithourpreviousknowledge,thistellsussomethingnewandimportant:boostedelectric eldsmustgiverisetomagnetic elds.Therestofthischapterwillbedevotedtounderstandingthedetailsofhowthishappens.But rst,we'regoingtolookatasimpleexamplewherewecanre-derivethemagneticforcepurelyfromtheCoulombforceandadoseofLorentzcontraction.Tostart,considerabunchofpositivecharges Figure47:+qmovingalongalinewithspeed+vandabunchofnegativecharges�qmovingintheoppositedirectionwithspeed�vasshowninthe gure.Ifthereisequaldensity,n,ofpositiveandnegativechargesthenthechargedensityvanisheswhilethecurrentisI=2nAqvwhereAisthecross-sectionalareaofthewire.Nowconsideratestparticle,alsocarryingchargeq,whichismovingparalleltothewirewithsomespeedu.Itdoesn'tfeelanyelectricforcebecausethewireisneutral,butweknowitexperiencesamagneticforce.Herewewillshowhowto ndanexpressionforthisforcewithouteverinvokingthephenomenonofmagnetism.Thetrickistomovetotherestframeofthetestparticle.Thismeanswehavetoboostbyspeedu.Theusualadditionformulatellsusthatthevelocitiesofthepositiveandnegativechargesnowdi er,givenbyv=vu 1uv=c2ButwiththeboostcomesaLorentzcontractionwhichmeansthatthechargedensitychanges.Moreover,becausethevelocitiesofpositiveandnegativechargesarenowdi erent,thiswillmeanthat,viewedfromtherestframeofourparticle,thewireisnolongerneutral.Let'sseehowthisworks.First,we'llintroducen0,thedensityofchargeswhentheparticlesinthewireareatrest.Thenthedensityofthe+qchargesintheoriginalframeis=qn= (v)qn0Thechargedensityofthe�qparticlesisthesame,butwithoppositesign,sothatintheoriginalframethewireisneutral.However,inournewframe,thechargedensities{103{ are=qn=q (v)n0=1uv c2 (u) (v)qn0whereyou'vegottodoalittlebitofalgebratogettothelastresult.Sincev��v+,wehaven��n+andthewirecarriesnegativecharge.Theoverallnetchargedensityinthenewframeis0=qn0=q(n+�n�)=�2uv c2 (u)qnButweknowthatalineofelectricchargecreatesanelectric eld;wecalculateditin( 2.6 );itisE(r)=�2uv c2 (u)qnA 20r^rwhereristheradialdirectionawayfromthewire.Thismeansthat,initsrestframe,theparticleexperiencesaforceF0=�u (u)nAq2v 0c2rwheretheminussigntellsusthattheforceistowardsthewireforu�0.Butifthere'saforceinoneframe,theremustalsobeaforceinanother.Transformingbacktowherewecamefrom,weconcludethatevenwhenthewireisneutraltherehastobeaforceF=F0 (u)=�unq2Av 0c2r=�uq0I 2r(5.11)ButthispreciselyagreeswiththeLorentzforcelaw,withthemagnetic eldgivenbytheexpression( 3.5 )thatwecomputedforastraightwire.Noticethatifu�0thenthetestparticle{whichhaschargeq{ismovinginthesamedirectionastheparticlesinthewirewhichhavechargeqandtheforceisattractive.Ifu0thenitmovesintheoppositedirectionandtheforceisrepulsive.Thisanalysisprovidesanexplicitdemonstrationofhowanelectricforceinoneframeofreferenceisinterpretedasamagneticforceinanother.There'salsosomethingrathersurprisingabouttheresult.We'reusedtothinkingoflengthcontractionasanexoticresultwhichisonlyimportantwhenweapproachthespeedoflight.Yettheelectronsinawirecrawlalong.Theytakearoundanhourtotravelameter!Nonetheless,wecaneasilydetectthemagneticforcebetweentwowireswhich,aswe'veseenabove,canbedirectlyattributedtothelengthcontractionintheelectrondensity.{104{ Thediscussionaboveneedsaminoralterationforactualwires.Intherestframeofthewirethepositivecharges{whichareions,atomsstrippedofsomeoftheirelectrons{arestationarywhiletheelectronsmove.Followingtheexplanationabove,youmightthinkthatthereisanimbalanceofchargedensityalreadyinthisframe.Butthat'snotcorrect.Thecurrentisduetosomebatteryfeedingelectronsintothewireandtakingthemouttheotherend.Andthisisdoneinsuchawaythatthewireisneutralintherestframe,withtheelectrondensityexactlycompensatingtheiondensity.Incontrast,ifwemovedtoaframeinwhichtheionsandelectronshadequalandoppositespeeds,thewirewouldappearcharged.Althoughthestartingpointisslightlydi erent,theendresultremains.5.3GaugePotentialsandtheElectromagneticTensorUnderLorentztransformations,electricandmagnetic eldswilltransformintoeachother.Inthissection,wewanttounderstandmorepreciselyhowthishappens.At rstsight,itlooksasifit'sgoingtobetricky.SofartheobjectswhichhavenicetransformationpropertiesunderLorentztransformationsare4-vectors.Butherewe'vegottwo3-vectors,EandB.Howdowemakethosetransformintoeachother?5.3.1GaugeInvarianceandRelativityTogetanideaforhowthishappens,we rstturntosomeobjectsthatwemetprevi-ously:thescalarandvectorpotentialsandA.Recallthatweintroducedthesetosolvesomeoftheequationsofelectrostaticsandmagnetostatics,rE=0)E=�rrB=0)B=rAHowever,ingeneraltheseexpressionscan'tbecorrect.WeknowthatwhenBandEchangewithtime,thetwosource-freeMaxwellequationsarerE+@B @t=0andrB=0Nonetheless,it'sstillpossibletousethescalarandvectorpotentialstosolvebothoftheseequations.ThesolutionsareE=�r�@A @tandB=rAwherenow=(x;t)andA=A(x;t).{105{ Justaswesawbefore,thereisnouniquechoiceofandA.WecanalwaysshiftA!A+randBremainsunchanged.However,nowthisrequiresacompensatingshiftof.!�@ @tandA!A+r(5.12)with=(x;t).Thesearegaugetransformations.TheyreproduceourearliergaugetransformationforA,whilealsoencompassingconstantshiftsin.Howdoesthishelpwithourattempttoreformulateelectromagnetisminawaycompatiblewithspecialrelativity?Well,nowwehaveascalar,anda3-vector:theseareripetoplaceina4-vector.Wede neA= =cA!Or,equivalently,A=(=c;�A).Inthislanguage,thegaugetransformations( 5.12 )takeaparticularlyniceform,A!A�@(5.13)whereisanyfunctionofspaceandtime5.3.2TheElectromagneticTensorWenowhavealltheingredientsnecessarytodeterminehowtheelectricandmagnetic eldstransform.Fromthe4-derivative@=(@=@(ct);r)andthe4-vectorA=(=c;�A),wecanformtheanti-symmetrictensorF=@A�@AThisisconstructedtobeinvariantundergaugetransformations( 5.13 ).WehaveF!F+@@�@@=FThisalreadysuggeststhatthecomponentsinvolvetheEandB elds.Tocheckthatthisisindeedthecase,wecandoafewsmallcomputations,F01=1 c@(�Ax) @t�@(=c) @x=Ex candF12=@(�Ay) @x�@(�Ax) @y=�Bz{106{ Similarcomputationsforallotherentriesgiveusamatrixofelectricandmagnetic elds,F=0BBBB@0Ex=cEy=cEz=c�Ex=c0�BzBy�Ey=cBz0�Bx�Ez=c�ByBx01CCCCA(5.14)This,then,istheanswertoouroriginalquestion.YoucanmakeaLorentzcovariantobjectconsistingoftwo3-vectorsbyarrangingtheminananti-symmetrictensor.Fiscalledtheelectromagnetictensor.Equivalently,wecanraisebothindicesusingtheMinkowskimetrictogetF=F=0BBBB@0�Ex=c�Ey=c�Ez=cEx=c0�BzByEy=cBz0�BxEz=c�ByBx01CCCCABothFandFaretensors.Theyaretensorsbecausethey'reconstructedoutofobjects,A,@and,whichthemselvestransformnicelyundertheLorentzgroup.Thismeansthatthe eldstrengthmusttransformasF0=F(5.15)Alternatively,ifyouwanttogetridoftheindices,thisreadsF0=FT.Theobserverinanewframeseeselectricandmagnetic eldsE0andB0thatdi erfromtheoriginalobserver.Thetwoarerelatedby( 5.15 ).Let'slookatwhatthismeansinacoupleofillustrativeexamples.RotationsTocomputethetransformation( 5.15 ),it'sprobablysimplesttojustdothesumsthatareimplicitintherepeatedandlabels.Alternatively,ifyouwanttoreverttomatrixmultiplicationthenthisisthesameasF0=FT.Eitherway,wegetthesameresult.Forarotation,the33matrixRisembeddedinthelower-righthandblockofasshownin( 5.4 ).Aquickcalculationshowsthatthetransformationoftheelectricandmagnetic eldsin( 5.15 )isasexpected,E0=REandB0=RB{107{ BoostsThingsaremoreinterestingforboosts.Let'sconsideraboostvinthex-direction,withgivenby( 5.5 ).Again,youneedtodoafewshortcalculations.Forexample,wehave�E0x c=F001=01F=0011F01+0110F10= 2v2 c2Ex c� 2Ex c=�Ex cand�E0y c=F002=02F=0022F02+0122F12=� Ey c+ v cBz=� c(Ey�vBz)and�B0z=F012=12F=1022F02+1122F12= v c2Ey� Bz=� (Bz�vEy=c2)The nalresultforthetransformationoftheelectric eldafteraboostinthex-directionisE0x=ExE0y= (Ey�vBz)(5.16)E0z= (Ez+vBy)and,forthemagnetic eld,B0x=BxB0y= By+v c2Ez(5.17)B0z= Bz�v c2EyAsweanticipatedabove,whatappearstobeamagnetic eldtooneobserverlookslikeanelectric eldtoanother,andviceversa.{108{ Notethatinthelimitvc,wehaveE0=E+vBandB0=B.ThiscanbethoughtofastheGalileanboostofelectricandmagnetic elds.WerecogniseE+vBasthecombinationthatappearsintheLorentzforcelaw.We'llreturntothisforceinSection 5.4.1 wherewe'llseehowit'scompatiblewithspecialrelativity.5.3.3AnExample:ABoostedLineChargeInSection 2.1.3 ,wecomputedtheelectric eldduetoalinewithuniformchargedensityperunitlength.Ifwetakethelinetoliealongthex-axis,wehave( 2.6 )E= 20(y2+z2) 0yz!(5.18)Meanwhile,themagnetic eldvanishesforstaticelectriccharges:B=0.Let'sseewhatthislookslikefromtheperspectiveofanobservermovingwithspeedvinthex-direction,paralleltothewire.Inthemovingframetheelectricandmagnetic eldsaregivenby( 5.16 )and( 5.17 ).ThesereadE0= 20(y2+z2) 0yz!= 20(y02+z02) 0y0z0!B0= v 20c2(y2+z2) 0z�y!= v 20c2(y02+z02) 0z0�y0!(5.19)Inthesecondequality,we'verewrittentheexpressionintermsofthecoordinatesofS0which,becausetheboostisinthex-direction,aretrivial:y=y0andz=z0.FromtheperspectiveofanobserverinframeS0,thechargedensityinthewireis0= ,wherethefactorof comesfromLorentzcontraction.Thiscanbeseenintheexpressionabovefortheelectric eld.Sincethechargedensityisnowmoving,theobserverinframeS0seesacurrentI0=� v.Thenwecanrewrite( 5.19 )asB0=0I0 2p y02+z02^'0(5.20)Butthisissomethingthatwe'veseenbefore.It'sthemagnetic eldduetoacurrentinawire( 3.5 ).WecomputedthisinSection 3.1.1 usingAmpere'slaw.Butherewe'vere-derivedthesameresultwithoutevermentioningAmpere'slaw!Instead,ourstartingpoint( 5.18 )neededGauss'lawandwethenusedonlytheLorentztransformationofelectricandmagnetic elds.Wecanonlyconcludethat,underaLorentztransforma-tion,Gauss'lawmustberelatedtoAmpere'slaw.Indeed,we'llshortlyseeexplicitlythatthisisthecase.Fornow,it'sworthrepeatingthelessonthatwelearnedinSection 5.2.1 :themagnetic eldcanbeviewedasarelativistice ect.{109{ 5.3.4AnotherExample:ABoostedPointChargeConsiderapointchargeQ,stationaryinaninertialframeS.Weknowthatit'selectric eldisgivenbyE=Q 40r2^r=Q 40[x2+y2+z2]3=2 xyz!whileitsmagnetic eldvanishes.Nowlet'slookatthissameparticlefromtheframeS0,movingwithvelocityv=(v;0;0)withrespecttoS.TheLorentzboostwhichrelatesthetwoisgivenby( 5.5 )andsothenewelectric eldaregivenby( 5.16 ),E0=Q 40[x2+y2+z2]3=2 x y z!Butthisisstillexpressedintermsoftheoriginalcoordinates.WeshouldnowrewritethisintermsofthecoordinatesofS0,whicharex0= (x�vt)andy0=yandz0=z.Invertingthese,wehaveE0=Q 40[ 2(x0+vt0)2+y02+z02]3=2 x0+vt0y0z0!(5.21)IntheframeS0,theparticlesitsatx0=(�vt0;0;0),soweseethattheelectric eldemanatesfromthepositionofthecharge,asitshould.Fornow,let'slookattheelectric eldwhent0=0sothattheparticlesitsattheorigininthenewframe.Theelectric eldpointsoutwardsradially,alongthedirectionr0= x0y0z0!However,theelectric eldisnotisotropic.Thisarisesfromthedenominatorof( 5.21 )whichisnotproportionaltor03becausethere'sanextrafactorof 2infrontofthex0component.Instead,att0=0,thedenominatorinvolvesthecombination 2x02+y02+z02=( 2�1)x02+r02=v2 2 c2x02+r02=v2 2 c2cos2+1r02= 21�v2 c2sin2r02{110{ Figure48:Theisotropic eldlinesofastaticchargeFigure49:Thesqueezed eldlinesofamovingchargewheretheistheanglebetweenr0andthex0-axisand,inthelastline,we'vejustusedsomesimpletrigandthede nitionof 2=1=(1�v2=c2).Thismeansthatwecanwritetheelectric eldinframeS0asE0=1 2(1�v2sin2=c2)3=2Q 40r02^r0Thepre-factorisresponsibleforthefactthattheelectric eldisnotisotropic.Weseethatitreducestheelectric eldalongthex0-axis(i.ewhen=0)andincreasesthe eldalongtheperpendiculary0andz0axes(i.e.when==2).ThiscanbethoughtofasaconsequenceofLorentzcontraction,squeezingtheelectric eldlinesinthedirectionoftravel.Themovingparticlealsogivesrisetoamagnetic eld.ThisiseasilycomputedusingtheLorentztransformations( 5.17 ).ItisB=0Q v 4[ 2(x0+vt0)2+y02+z02]3=2 0z0�y0!5.3.5LorentzScalarsWecannowaskafamiliarquestion:isthereanycombinationoftheelectricandmagnetic eldsthatallobserversagreeupon?Nowwehavethepowerofindexnotationatourdisposal,thisiseasytoanswer.Wejustneedtowritedownanobjectthatdoesn'thaveany oatingorindices.Unfortunately,wedon'tgettousetheobviouschoiceofFbecausethisvanishesonaccountoftheanti-symmetryofF.Thesimplestthingwecanwritedownis1 2FF=�E2 c2+B2NotetherelativeminussignbetweenEandB,mirroringasimilarminussigninthespacetimeinterval.{111{ However,thisisn'ttheonlyLorentzscalarthatwecanconstructfromEandB.Thereisanother,somewhatmoresubtle,object.Tobuildthis,weneedtoappreciatethatMinkowskispacetimecomesequippedwithanothernaturaltensorobject,beyondthefamiliarmetric.Thisisthefullyanti-symmetricobjectknownasthealternatingtensor,=(+1ifisanevenpermutationof0123�1ifisanoddpermutationof0123while=0ifthereareanyrepeatedindices.ToseewhythisisanaturalobjectinMinkowskispace,let'slookathowitchangesunderLorentztransformations.Theusualtensortransformationis0=   It'ssimpletocheckthat0isalsofullanti-symmetric;itinheritsthispropertyfrom ontheright-handside.Butthismeansthat0mustbeproportionalto.Weonlyneedtodeterminetheconstantofproportionality.Todothis,wecanlookat00123=012 3  =det()NowanyLorentztransformationshavedet()=1.Thosewithdet()=1makeupthe\properLorentzgroup"SO(1;3).(ThiswascoveredintheDynamicsandRelativitynotes).TheseproperLorentztransformationsdonotincludere ectionsortimereversal.WelearnthatthealternatingtensorisinvariantunderproperLorentztransformations.Whatit'sreallytellingusisthatMinkowskispacecomeswithanorientedorthonormalbasis.ByloweringindiceswiththeMinkowskimetric,wecanalsoconstructthetensorwhichhas0123=�1.Thealternatingtensorallowsustoconstructasecondtensor eld,sometimescalledthedualelectromagnetictensor(although\dual"isperhapsthemostoverusedwordinphysics),~F=1 2F=0BBBB@0�Bx�By�BzBx0Ez=c�Ey=cBy�Ez=c0Ex=cBzEy=c�Ex=c01CCCCA(5.22)~Fissometimesalsowrittenas?F.WeseethatthisislooksjustlikeFbutwiththeelectricandmagnetic eldsswappedaround.Actually,lookingcloselyyou'llseethatthere'saminussigndi erenceaswell:~FarisesfromFbythesubstitutionE!cBandB!�E=c.{112{ Thestatementthat~FisatensormeansthatittoohasnicepropertiesunderLorentztransformations,~F0=~FandwecanusethistobuildnewLorentzinvariantquantities.Takingtheobvioussquareof~Fdoesn'tgiveusanythingnew,since~F~F=�FFButbycontracting~FwiththeoriginalFwedo ndanewLorentzinvariant1 4~FF=1 cEBThistellsusthattheinner-productofEandBisthesameviewedinallframes.5.4MaxwellEquationsWenowhavethemachinerytowritetheMaxwellequationsinawaywhichismanifestlycompatiblewithspecialrelativity.Theytakeaparticularlysimpleform:@F=0Jand@~F=0(5.23)Prettyaren'tthey!TheMaxwellequationsarenotinvariantunderLorentztransformations.Thisisbecausethereisthedanglingindexonbothsides.However,becausetheequationsarebuiltoutofobjectswhichtransformnicely{F,~F,Jand@{theequationsthemselvesalsotransformnicely.Forexample,wewillseeshortlythatGauss'lawtransformsintoAmpere'slawunderaLorentzboost,somethingweanticipatedinSection 5.3.3 .WesaythattheequationsarecovariantunderLorentztransformations.Thismeansthatanobserverinadi erentframewillmixeverythingup:spaceandtime,chargesandcurrents,andelectricandmagnetic elds.Althoughobserversdisagreeonwhatthesethingsare,theyallagreeonhowthey ttogether.Thisiswhatitmeansforanequationtobecovariant:theingredientschange,buttherelationshipbetweenthemstaysthesame.Allobserversagreethat,intheirframe,theelectricandmagnetic eldsaregovernedbythesameMaxwellequations.GiventheobjectsF,~F,Jand@,theMaxwellequationsarenottheonlythingyoucouldwritedowncompatiblewithLorentzinvariance.Buttheyarebyfarthesimplest.Anyotherequationwouldbenon-linearinFor~Forcontainmorederivativetermsorsomesuchthing.Ofcourse,simplicityisnoguaranteethatequationsarecorrect.Forthisweneedexperiment.Butsurprisinglyofteninphysicswe ndthatthesimplestequationsarealsotherightones.{113{ UnpackingtheMaxwellEquationsLet'snowcheckthattheMaxwellequations( 5.23 )inrelativisticformdoindeedcoincidewiththevectorcalculusequationsthatwe'vebeenstudyinginthiscourse.Wejustneedtoexpandthedi erentpartsoftheequation.Thecomponentsofthe rstMaxwellequationgive@iFi0=0J0)rE= 0@Fi=0Ji)�1 c2@E @t+rB=0JInthe rstequation,whicharisesfrom=0,wesumonlyoverspatialindicesi=1;2;3becauseF00=0.MeanwhilethecomponentsofthesecondMaxwellequationgive@i~Fi0=0)rB=0@~Fi=0)@B @t+rE=0These,ofcourse,arethefamiliarequationsthatwe'veallgrowntoloveoverthiscourse.Hereafewfurther,simplecommentsabouttheadvantagesofwritingtheMaxwellequationsinrelativisticform.First,theMaxwellequationsimplythatcurrentiscon-served.ThisfollowsbecauseFisanti-symmetric,so@@F=0automatically,simplybecause@@issymmetric.The rstoftheMaxwellequations( 5.23 )thenrequiresthatthecontinuityequationholds@J=0ThisisthesamecalculationthatwedidinvectornotationinSection 4.2.1 .Notethatit'smarginallyeasierintherelativisticframework.ThesecondMaxwellequationcanbewritteninanumberofdi erentways.Itisequivalentto:@~F=0,@F=0,@F+@F+@F=0wherethelastoftheseequalitiesfollowsbecausetheequationisconstructedsothatitisfullyanti-symmetricwithrespecttoexchanginganyoftheindices,and.(Justexpandoutforafewexamplestoseethis).{114{ ThegaugepotentialAwasoriginallyintroducedtosolvethetwoMaxwellequationswhicharecontainedin@~F=0.Again,thisismarginallyeasiertoseeinrelativisticnotation.IfwewriteF=@A�@Athen@~F=1 2@F=1 2@(@A�@A)=0wherethe nalequalityholdsbecauseofthesymmetryofthetwoderivatives,combinedwiththeanti-symmetryofthe-tensor.ThismeansthatwecouldequallywellwritetheMaxwellequationsas@F=0JwhereF=@A�@AThe rstofthesecoincideswiththe rstequationin( 5.23 );thesecondisanalternativewayofwritingthesecondequationin( 5.23 ).Inmoreadvancedformulationsofelec-tromagnetism(forexample,intheLagrangianformulation),thisistheforminwhichtheMaxwellequationsarise.5.4.1TheLorentzForceLawThere'sonelastaspectofelectromagnetismthatweneedtoshowiscompatiblewithrelativity:theLorentzforcelaw.IntheNewtonianworld,theequationofmotionforaparticlemovingwithvelocityuandmomentump=muisdp dt=q(E+uB)(5.24)Wewanttowritethisequationin4-vectornotationinawaythatmakesitclearhowalltheobjectschangeunderLorentztransformations.Bynowitshouldbeintuitivelyclearhowthisisgoingtowork.Amovingparticleexperiencesthemagneticforce.Butifweboosttoitsrestframe,thereisnomagneticforce.Instead,themagnetic eldtransformsintoanelectric eldandwe ndthesameforce,nowinterpretedasanelectricforce.Therelativisticversionof( 5.24 )involvesthe4-momentumP,de nedin( 5.6 ),thepropertime,reviewedinSection 5.1.2 ,andournewfriendtheelectromagnetictensorF.TheelectromagneticforceactingonapointparticleofchargeqcanthenbewrittenasdP d=qFU(5.25){115{ wherethe4-velocityisU=dX d= cu!(5.26)andthe4-momentumisP=mU.Again,weseethattherelativisticformoftheequation( 5.25 )issomewhatprettierthantheoriginalequation( 5.24 ).UnpackingtheLorentzForceLawLet'schecktoseethattherelativisticequation( 5.25 )isgivingustherightphysics.Itis,ofcourse,fourequations:oneforeach=0;1;2;3.It'ssimpletomultiplyouttheright-handside,rememberingthatUcomeswithanextraminussigninthespatialcomponentsrelativeto( 5.26 ).We ndthatthe=1;2;3componentsof( 5.25 )arrangethemselvesintoafamiliarvectorequation,dp d=q (E+uB))dp dt=q(E+uB)(5.27)wherewe'veusedtherelationshipdt=d= .We ndthatwerecovertheLorentzforcelaw.Actually,there'saslightdi erencefromtheusualNewtonianforcelaw( 5.24 ),althoughthedi erenceisburiedinournotation.IntheNewtoniansetting,themomentumisp=mu.However,intherelativisticsettingabove,themomentumisp=m u.Needlesstosay,therelativisticversioniscorrect,althoughthedi erenceonlyshowsupathighspeeds.TherelativisticformulationoftheLorentzforce( 5.25 )alsocontainsanextraequationcomingfrom=0.ThisreadsdP0 d=q c Eu(5.28)Recallthatthetemporalcomponentofthefour-momentumistheenergyP0=E=c.HeretheenergyisE=m c2whichincludesboththerest-massoftheparticleanditskineticenergy.Theextraequationin( 5.25 )issimplytellingusthatthekineticenergyincreaseswhenworkisdonebyanelectric eldd(Energy) dt=qEuwhereI'vewrittenenergyasawordratherthanasEtoavoidconfusingitwiththeelectric eldE.{116{ 5.4.2MotioninConstantFieldsWealreadyknowhowelectricandmagnetic eldsactonparticlesinaNewtonianworld.Electric eldsaccelerateparticlesinstraightlines;magnetic eldsmakeparticlesgoincircles.Herewe'regoingtoredothisanalysisintherelativisticframework.TheLorentzforcelawremainsthesame.Theonlydi erenceisthatmomentumisnowp=m u.We'llseehowthischangesthings.ConstantElectricFieldConsideravanishingmagnetic eldandconstantelectric eldE=(E;0;0).(NotethatEheredenoteselectric eld,notenergy!).Theequationofmotion( 5.27 )forachargedparticlewithvelocityu=(u;0;0)ismd( u) dt=qE)m u=qEtwherewe'veimplicitlyassumedthattheparticlestartsfromrestatt=0.Rearranging,wegetu=dx dt=qEt p m2+q2E2t2=c2Reassuringly,thespeedneverexceedsthespeedoflight.Instead,u!cast!1asonewouldexpect.It'ssimpletointegratethisoncemore.Iftheparticlestartsfromtheorigin,wehavex=mc2 qE r 1+q2E2t2 m2c2�1!Forearlytimes,whenthespeedsarenottoohigh,thisreducestomx1 2qEt2+:::whichistheusualnon-relativisticresultforparticlesundergoingconstantaccelerationinastraightline.ConstantMagneticFieldNowlet'sturntheelectric eldo andlookatthecaseofconstantmagnetic eldB=(0;0;B).Inthenon-relativisticworld,weknowthatparticlesturncircleswithfrequency!=qB=m.Let'sseehowrelativitychangesthings.{117{ Westartbylookingatthezerothcomponentoftheforceequation( 5.28 )which,intheabsenceofanelectric eld,readsdP0 d=0Thistellsusthatmagnetic eldsdonowork.WeknewthisfromourcourseonNewtonianphysics,butitremainstrueintherelativisticcontext.Soweknowthatenergy,E=m c2,isconstant.Butthistellsusthatthespeed(i.e.themagnitudeofthevelocity)remainsconstant.Inotherwords,thevelocity,andhencetheposition,onceagainturncircles.Theequationofmotionisnowmd( u) dt=quBSince isconstant,theequationtakesthesameformasinthenon-relativisticcaseandthesolutionsarecircles(orhelicesiftheparticlealsomovesinthez-direction).Theonlydi erenceisthatthefrequencywithwhichtheparticlemovesinacirclenowdependsonhowfasttheparticleismoving,!=qB m Ifyouwanted,youcouldinterpretthisasduetotherelativisticincreaseinthemassofamovingparticle.Naturally,forsmallspeeds 1andwereproducethemorefamiliarcyclotronfrequency!qB=m.SofarwehavelookedatsituationsinwhichE=0andinwhichB=0.Butwe'veseenthatEB=0andE2�B2arebothLorentzinvariantquantities.Thismeansthatthesolutionswe'vedescribedabovecanbeboostedtoapplytoanysituationwhereEB=0andE2�B2iseither�0or0.Inthegeneralsituation,bothelectricandmagnetic eldsareturnedonsoEB6=0andwehavethreepossibilitiestoconsiderdependingonwhetherE2�B2is&#x]TJ/;༕ ;.9;Ւ ;&#xTf 1;.42; 0 ;&#xTd [;0or0or=0.5.5EpilogueThisbringustotheendofour rstcourseonelectromagnetism.WehavelearnedhowtheMaxwellequationscapturetheelectricandmagneticforces,therelationshipbe-tweenthem,andtheexistenceofelectromagneticwaves.However,therearemanymorephenomenastilltodiscoverintheseequations.Prominentamongthemisthewayinwhichacceleratedchargesemitlight,andadescriptionofhowelectromagnetismworksinsidedi erentmaterials.Bothofthesewillbecoveredinnextyear'sElectrodynamicscourse.{118{ Thesecondstrandrunningthroughtheselecturesisthat,despitethecomplexityofphenomenathattheycontain,theMaxwellequationsthemselvesareextraordinarilysimpleandelegant.Indeed,whenviewedintherightway,intermsoftheelectromag-netictensorF=@A�@A,theequationsare@F=0JThisformalismprovidesablueprintfortheotherforcesinNature.Likeelectromag-netism,allforcesaredescribedintermsof eldsinteractingwithparticleswhichcarryatypeofconservedcharge.Ratherremarkably,theequationsgoverningtheweakandstrongnuclearforceareessentiallyidenticaltotheMaxwellequationsabove;allthatchangesisthemeaningofthetensorF(and,forwhatit'sworth,thederivativeisalsoreplacedbysomethingcalleda\covariantderivative").TheresultingequationsarecalledtheYang-MillsequationsandwilldescribedinsomedetailincoursesinPartIII.Gravityissomewhatdi erent,buteventheretheingredientsthatgointotheequa-tionsareverysimilartothoseseenhere.And,aswithelectromagnetism,onceyouhavetheseingredientstheequationsthatgovernourUniverseturnouttobethesimplestonesthatyoucanwritedown.Indeed,thisisperhapsthemostimportantlessontotakefromthiscourse:thelawsofphysicsaregloriouslysimple.Youshouldlearnthem.{119{

Related Contents


Next Show more