/
(persistentNa (persistentNa

(persistentNa - PDF document

debby-jeon
debby-jeon . @debby-jeon
Follow
368 views
Uploaded On 2016-12-08

(persistentNa - PPT Presentation

channelsslowandfastK channelsand theactivityoftheNa K pump8Figure1 Withthedevelopmentoftherapidautomatictesting protocolknownas ID: 499068

+ channels slowandfastK + channels)and theactivityoftheNa + /K + pump[8](Figure1). Withthedevelopmentoftherapidautomatictesting protocolknownas

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "(persistentNa" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

(persistentNa + channels,slowandfastK + channels)and theactivityoftheNa + /K + pump[8](Figure1). Withthedevelopmentoftherapidautomatictesting protocolknownas “ TROND ” (namesaftera3-daytrain- ingsymposiumheldin1999atTrondheim,Norway) andthethreshold-trackingsoftwareQTRAC(©Institute ofNeurology,QueenSquare,London,UK)thatrunsthe protocol,asetofaxonalexcitabilityindicesaregenerated, thatreflectthebiophysicalpropertiesandmembrane potentialoftheaxon[9](Figure2). Thesenon-invasivetechniquesallowtheassessmentof axonalmembranefunctioninvivoinaclinicalsetting, andprovideinsightintobothnormalnervefunctionand pathophysiologicalmechanismsindisease[10].Overthe years,nerveexcitabilitystudieshavebeenutilizedina diverserangeofconditionsincludingtoxic,metabolic, bothacquiredandinheriteddemyelinatingneuropathies, neurodegenerativedisorderssuchasamyotrophiclateral sclerosis,aswellasprovidinginsightintopathophysio- logicalchangesoccurringattheperipheralnervelevelin disordersofthecentralnervoussystemsuchasstroke, spinalcordinjuryandmultiplesclerosis[7,11-32].In morerecentyears,theuseofnerveexcitabilitystudies haveprovidedfurtherinsightsintothepathophysio- logicalmechanismsunderlyingcerebellardisordersthat includestrokeandfamilialcerebellarataxiassuchasepi- sodicataxiatypes1and2[33-35].Inaddition,thistech- niquemayhavediagnosticandtherapeuticimplications thatmayencompassabroaderrangeofneurodegenerative cerebellarataxiasinyearstocome. Theperipheralnerveexcitabilitychangesobservedin ischemicstrokeinvolvingthecerebellummaybeare- flectionofatransynapticplasticprocessoralterationsin activityofthelimb(s)thatresultfromtheresultantfunc- tionaldeficit[13,15].Downstreamperipheralnerveex- citabilitychangeshavebeenobservedinpost-stroke patientsinvolvingmotorpathwaysinthebrainthatmay reflectalterationsininwardrectifying(I H )andslowK + conductance,suggestingthattransynapticplasticityin peripheralmotoraxonsdevelopinresponsetoaremote lesioninthecentralnervoussystem[14,15],possibly reflectinganalterationordisturbanceinsupraspinalcir- cuitryandtherebyinputtospinalmotoneurons,conse- quentlyresultinginchangesintheiraxonalphysiology [11,36].Assuch,thebiophysicalchangespresentincere- bellarstrokepatientsmaybeaconsequenceofadown- streamtransynapticplasticprocessfollowingchangesin excitabilityreportedtooccurinbothmotorcorticesin cerebellarstroke[37].Additionally,theintricateconnec- tionsthatexistbetweenthedeepcerebellarnucleiand motoneuronsofthecervicalspinalcord,maymeanthat lesionsinvolvingthesedeepcerebellarstructuresmay ultimatelyaffectexcitabilityofdownstreamlowermotor neuronswithinthecircuitry[38-41]. Geneticneuronalchannelopathiescommonlymanifest withparoxysmalsymptomsthatmayvaryconsiderable betweenpatientsrenderingdiagnosisanoftenchallen- gingfeat.Inpatientswithepisodicataxiatype1(EA1), mutationsinKCNA1generesultinalterationsinfastK + channelfunction.Specifically,thegeneencodesforthe Figure1 Diagramofamyelinatedaxonillustratingionchannels,pumpsandexchangersresponsiblefordeterminingaxonalexcitability. TransientNa + channels(Na t )areclusteredathighdensityatthenodeofRanvier,withpersistentNa + channels(Na p )andslowK + channels(K s ) contributingtoexcitabilityandrestingmembranepotential.FastK + channels(K f )arelocatedathighestdensityatthejuxtaparanode,actingto limitre-excitationofthenodefollowinganactionpotential.Internodalconductancesincludevoltage-independent ‘ leak ’ conductances(Lk)and hyperpolarization-activatedcationconductance(I H ).TheNa + – K + pump(Na + /K + -ATPase)utilisesenergytomaintaintheelectrochemicalgradient necessaryforimpulseconductionbyremoving3Na + ionsforevery2K + ionspumpedintotheaxon.TheNa + – Ca2 + exchangerexportsCa2 + ions andimportsNa + ,drivenbytheelectrochemicalNa + gradient.Paranodalmyelinterminalloopsaredepictedwithanchoringproteinstoformparanodal junctionsattheparanodalregion. HuynhandKiernan Cerebellum&Ataxias (2015) 2:4 Page2of5  subunitoftheK v 1.1channel.Withsuchchannelsalso presentatthejuxtaparanodalregionofperipheralaxons, aspecificpatternofnerveexcitabilityabnormalitiesin patientswithEA1havebeenobservedwhichdonotap- peartobedifferentamongstthedifferentmutations [34].Moreover,therearepatientswithEA1whopresent withapredominantlyperipheralphenotypebutwithtyp- icalEA1changesobservedinnerveexcitabilityparame- tersrenderingthisapotentialusefuldiagnostictoolin identifyingthosepatientswithanatypicalpresentation [33].Offurtherrelevance,thechangesinparametersin EA1differfromthoseseeninacquiredautoimmuneneu- romyotonia(Isaac ’ ssyndrome)whichisachannelopathy affectingthesameK + channels,suggestingapathophysio- logicallydifferenteffectonthesechannelsalongtheaxon betweenthetwoconditions.Studiesonpatientswith episodicataxiatype2(EA2)havealsoshownaunique patternofnerveexcitabilityalterations.Mutationsof theCACNA1AgenethatencodestheCa v 2.1subunitof thevoltage-gatedCa 2+ channelsrepresentthegenetic defectunderlyingthisdisorder,andthechangesobserved inaxonalfunctionarepostulatedtohavebeenaresultof Ca 2+ channeldysfunctionwhichconsequentlyaffectthe functionofslowK + channels[35]. Studieshaveshownchangesinvoltage-gatedK+chan- nelkineticspresentinthecerebellumofmurinemodels withspinocerebellarataxiatype3(SCA3)thatprecede theonsetofPurkinjecellloss [42].Basedontheseprelimin- aryobservations,futurestudie sutilizingnerveexcitability inhumanpatientswiththespinocerebellarataxiamay Figure2 Plotsofexcitabilityparametersrecordedfromabductorpollicisbrevisinasinglesubjectobtainedfromautomatedprotocol. (A) Charge-durationrelationship,inwhichinter ceptonstimuluswidthaxisgivesstrength-dur ationtimeconstantandslopegivesrheobase. (B) Threshold electrotonusfor100mspolarizingcurrents,±40%ofthreshold.Responsestodepolarizingcurrentsstartabovethelineandthosetohyperpolarizin g currentsbelowtheline. (C) Recoverycyclefollowingsupramaximalstimulation. (D) Current-thresholdrelationship. HuynhandKiernan Cerebellum&Ataxias (2015) 2:4 Page3of5 allowforthedevelopmentofadiagnosticelectrophysio- logicalbiomarker. Takentogether,nerveexcitabilitystudiesmayprovide forasensitivetechniquethatcanbeappliedinaquick andnon-invasivemannertofacilitatethediagnosisofa rangeofacquiredautoimmuneorneurodegenerativeas wellasgeneticcerebellardisorders. Studiesofnerveexcitabilityinchemotherapy-induced neurotoxicityhaveprovidedi nsightintothep athophysio- logicalmechanismsinvolvedan denableearlyidentification ofneurotoxicitytherebyopti mizingtreatmentstrategies andimprovingpatientqualityoflifeincancerpatients[43]. Assessmentofmotorandsensorynervefunctioninmany chemotherapy-inducedneuropathiesusingconventional NCShasrevealedsignificantreductionsincompound sensoryactionpotential(CSAP)amplitudewhilst CMAPandconductionvelocitiesareoftenpreserved, consistentwithasensoryneuropathyoftheaxonaltype [20,44].Studiesofsensorynerveexcitabilityhavedemon- stratedadirecteffectofoxaliplatinonnerveexcitability, withchangesinsensoryaxonsimmediatelyfollowinginfu- sionsimilartothoseseenwiththeNa + channelblocker tetrodotoxin[19],suggestingpartialblockadeofaxonal Na + channels[9,20,22].Longitudinalassessmentofaxonal excitabilityhaveshownthatbe foreeachsuccessi veoxalipla- tintreatment,progressivechangesinnerveexcitabilitywith increasedcumulativedosingwereobserved[45].There weresignificantchangesinthresholdelectrotonusand recoverycycleindices.Importantly,progressivechanges insensorynerveexcitabilityacrosstreatmentcycles occurbeforereductionsinpeakCSAPamplitudearede- tected[46].Thissuggeststhatsuchchangesmaybeable toidentifyat-riskpatientspriortothedevelopmentof chronicneuropathy[47,48]. Indiabeticneuropathypatient,studiesofnerveexcit- abilityhavedemonstratedalterationsinthresholdelectrot- onusconsistentwithreductionsinNa + /K + pump function,thatsubsequentlyimprovedfollowingstrictgly- cemiccontrol[23,49].Otherstudieshavesuggested changesinonNa + channelfunctionwithalterationsinre- coverycycleparameters[50].Recentstudieshavealso shownmarkedimprovementinnerveexcitabilityparame- tersinpatientstreatedwithcontinuousinsulintherapycom- paredtootherregimens[51].Moreimportantly,changesin nerveexcitabilityprecededthedevelopmentofneuropathy indiabeticpatientsthusprovidingapromisingbiomarker fordetectingpreclinicalneuropathyinsuchpatients[52,53]. Furthermore,inthosepatient swithtypicalneuropathic symptomsthatmayreflectsmallfibreneuropathyand hencenormalresultsonconventionalnerveconduction studies,nerveexcitabilitytechniquesofferamoresensitive waytoestablishthepresenceofalterednervefunction underlyingthesesymptomsandprovidingapotentialbio- markertoaidthetreatmentofsymptomsinthesepatients. Excitabilitystudiesinpatien tswithchronickidneydisease andneuropathyhavedemonstratedsignificantchanges consistentwithaxonaldepolarizationdrivenbyhyperkale- miapriortodialysisthatnormalizedfollowingsuchrenal replacementtherapies[21,54].Suchtechniqueshavealso providedinsightintothedifferentialeffectsofvarious haemodialysisregimensonnervefunction[55],aswellas potentialneurotoxiceffectsofvariousimmunosuppressants followingrenaltransplant[56],allowingfortheappropriate selectionofmanagementstrategiesinvolvedinrenal replacement. Insummary,nerveexcitabilitytechniquesareapowerful andnovelnon-invasivemeansofdetectingalterationsin axonalbiophysicalpropertiesthatmaypotentiallyexpand thecurrentarmamentariumavailabletotheclinicalneuro- physiologist.Therecentdevelopmentofcommercially availablesoftwareandhardwarerepresentasteptoward implementingthesetechniquesasaclinicaldiagnostic tool.Thesemeasurementsarenotonlyimportant ininvestigatingthepathophysiologyofdisordersofthe peripheralandtoalesserdegreethecentralnervoussys- tems,theywillplayasignificantroleinchartingdisease progress,anddetectingsubclinicalalterationsinnerve functioninneuropathiesandduringtreatmentwithpo- tentiallyneurotoxicdrugs.Thisinturnwillaidinthe developmentofnoveltherapiesfordisordersofthener- voussystem. Competinginterests Theauthorsdeclarethattheyhavenocompetinginterests. Authors ’ contributions WHprepared,draftedandeditedmanuscript.MKeditedthefinalmanuscript draft.Bothauthorsreadandapprovedthefinalmanuscript. Received:2February2015Accepted:12February2015 References 1.HuynhW,KiernanMC.Nerveconductionstudies.AustFamPhysician. 2011;40(9):693 – 7. 2.BostockH,CikurelK,BurkeD.Thresholdtrackingtechniquesinthestudyof humanperipheralnerve.MuscleNerve.1998;21(2):137 – 58. 3.BergmansJ.ThePhysiologyofSingleHumanNerveFibres.Vander,Belgium: UniversityofLouvain;1970. 4.WeiglP,BostockH,FranzP,MartiusP,MullerW,GrafeP.Thresholdtracking providesarapidindicationofischaemicresistanceinmotoraxonsof diabeticsubjects.ElectroencephalogrClinNeurophysiol.1989;73(4):369 – 71. 5.KiernanMC,BurkeD,AndersenKV,BostockH.Multiplemeasuresofaxonal excitability:anewapproachinclinicaltesting.MuscleNerve. 2000;23(3):399 – 409. 6.KrishnanAV,LinCSY,ParkSB,KiernanMC.Axonalionchannelsfrombench tobedside:atranslationalneuroscienceperspective.ProgNeurobiol. 2009;89(3):288 – 313. 7.KrishnanAV,LinCS,ParkSB,KiernanMC.Assessmentofnerveexcitabilityin toxicandmetabolicneuropathies.JPeripherNervSyst.2008;13(1):7 – 26. 8.BurkeD,KiernanMC,BostockH.Excitabilityofhumanaxons.Clin Neurophysiol.2001;112(9):1575 – 85. 9.ParkSB,LinCS,KiernanMC:Nerveexcitab ilityassessmentinche motherapy-induced neurotoxicity.JVisualExp:2012(62). 10.KuwabaraS,BostockH,OgawaraK,SungJ-Y,MisawaS,KitanoY,etal.Excitability propertiesofhumanmedianaxonsmeasuredatthemotorpoint.MuscleNerve. 2004;29(2):227 – 33. HuynhandKiernan Cerebellum&Ataxias (2015) 2:4 Page4of5 11.HuynhW,KrishnanAV,LinCS,VucicS,KatrakP,HornbergerM,etal. Botulinumtoxinmodulatescorticalmaladaptationinpost-strokespasticity. MuscleNerve.2013;48(1):93 – 9. 12.HuynhW,KrishnanAV,LinCS,VucicS,KiernanMC.Theeffectsoflarge arteryischemiaandsubsequentrecanalizationonnerveexcitability.Muscle Nerve.2011;44(5):841. 13.HuynhW,LinCS,KrishnanAV,VucicS,KiernanMC.Transynapticchanges evidentinperipheralaxonalfunctionafteracutecerebellarinfarct. Cerebellum.2014;13(6):669 – 76. 14.HuynhW,VucicS,KrishnanAV,LinCS,HornbergerM,KiernanMC. Longitudinalplasticityacrosstheneuralaxisinacutestroke.Neurorehabil NeuralRepair.2013;27(3):219 – 29. 15.JankelowitzSK,HowellsJ,BurkeD.Plasticityofinwardlyrectifying conductancesfollowingacorticospinallesioninhumansubjects.JPhysiol. 2007;581(Pt3):927 – 40. 16.KiernanMC,BostockH.Effectsofmembranepolarizationandischaemiaonthe excitabilitypropertiesofhumanmotoraxons.Brain.2000;123(Pt12):2542 – 51. 17.KiernanMC,BurkeD,BostockH.Nerveexcitabilitymeasures:biophysical basisanduseintheinvestigationofperipheralnervedisease.In:DyckPJ, ThomasPK,editors.PeripheralNeuropathy.Philadelphia:ElsevierSaunders; 2005.p.113 – 30. 18.KiernanMC,GuglielmiJM,KajiR,MurrayNM,BostockH.Evidenceforaxonal membranehyperpolarizationinmultifocalmotorneuropathywith conductionblock.Brain.2002;125(Pt3):664 – 75. 19.KiernanMC,IsbisterGK,LinCS,BurkeD,BostockH.Acutetetrodotoxin-induced neurotoxicityafteringestionofpufferfish.AnnNeurol.2005;57(3):339 – 48. 20.KiernanMC,KrishnanAV,KiernanMC,KrishnanAV.Thepathophysiologyof oxaliplatin-inducedneurotoxicity.CurrMedChem.2006;13(24):2901 – 7. 21.KiernanMC,WaltersRJ,AndersenKV,TaubeD,MurrayNM,BostockH. Nerveexcitabilitychangesinchronicrenalfailureindicatemembrane depolarizationduetohyperkalaemia.Brain.2002;125(Pt6):1366 – 78. 22.KrishnanAV,GoldsteinD,FriedlanderM,KiernanMC.Oxaliplatinandaxonal Na+channelfunctioninvivo.ClinCancerRes.2006;12(15):4481 – 4. 23.KrishnanAV,KiernanMC.Alterednerveexcitabilitypropertiesinestablished diabeticneuropathy.Brain.2005;128(Pt5):1178 – 87. 24.KrishnanAV,KiernanMC.Uremicneuropathy:clinicalfeaturesandnew pathophysiologicalinsights.MuscleNerve.2007;35(3):273 – 90. 25.KrishnanAV,KiernanMC.Activity-dependentexcitabilitychangessuggest Na + /K + pumpdysfunctionindiabeticneuropathy.Brain. 2008;131(5):1209 – 16. 26.KrishnanAV,ParkSB,HuynhW,LinCS,HendersonRD,KiernanMC.Impaired energy-dependentprocessesunderlieacuteleadneuropathy.MuscleNerve. 2012;46(6):957 – 61. 27.KuwabaraS,OgawaraK,SungJY,MoriM,KanaiK,HattoriT,etal.Differencesin membranepropertiesofaxonalanddemyelinatingGuillain-Barresyndromes. AnnNeurol.2002;52(2):180 – 7. 28.Cappelen-SmithC,KuwabaraS,LinCS,BurkeD.Abnormalitiesofaxonal excitabilityarenotgeneralizedinearlymultifocalmotorneuropathy.Muscle Nerve.2002;26(6):769 – 76. 29.Cappelen-SmithC,KuwabaraS,LinCS,Mo gyorosI,BurkeD.Activity-dependent hyperpolarizationandconductionblocki nchronicinflammatorydemyelinating polyneuropathy.AnnNeurol.2000;48(6):826 – 32. 30.SungJY,KuwabaraS,KajiR,OgawaraK,MoriM,KanaiK,etal.Threshold electrotonusinchronicinflammatorydemyelinatingpolyneuropathy: correlationwithclinicalprofiles.MuscleNerve.2004;29(1):28 – 37. 31.VucicS,KiernanMC,VucicS,KiernanMC.Axonalexcitabilitypropertiesin amyotrophiclateralsclerosis.ClinNeurophysiol.2006;117(7):1458 – 66. 32.FarrarMA,LinCSY,KrishnanAV,ParkSB,AndrewsPI,KiernanMC.Acute, reversibleaxonalenergyfailureduringstroke-likeepisodesinMELAS. Pediatrics.2010;126(3):e734 – 9. 33.TanSV,WraigeE,LascellesK,BostockH.Episodicataxiatype1without episodicataxia:thediagnosticutilityofnerveexcitabilitystudiesin individualswithKCNA1mutations.DevMedChildNeurol. 2013;55(10):959 – 62. 34.TomlinsonSE,TanSV,KullmannDM,GriggsRC,BurkeD,HannaMG,etal. NerveexcitabilitystudiescharacterizeKv1.1fastpotassiumchannel dysfunctioninpatientswithepisodicataxiatype1.Brain. 2010;133(Pt12):3530 – 40. 35.KrishnanAV,BostockH,IpJ,HayesM,WatsonS,KiernanMC.Axonal functioninafamilywithepisodicataxiatype2duetoanovelmutation. JNeurol.2008;255(5):750 – 5. 36.KiernanMC,VucicS,CheahBC,TurnerMR,EisenA,HardimanO,etal. Amyotrophiclateralsclerosis.Lancet.2011;377(9769):942 – 55. 37.HuynhW,KrishnanAV,VucicS,LinCS,KiernanMC.Motorcortexexcitability inacutecerebellarinfarct.Cerebellum.2013;12(6):826 – 34. 38.McLeodJG.Hreflexstudiesinpatientswithcerebellardisorders.JNeurol NeurosurgPsychiatry.1969;32(1):21 – 7. 39.ChenXY,WolpawJR.AblationofcerebellarnucleipreventsH-reflex down-conditioninginrats.LearnMem.2005;12(3):248 – 54. 40.WolpawJR,ChenXY.Thecerebelluminmaintenanceofamotorskill:a hierarchyofbrainandspinalcordplasticityunderliesH-reflexconditioning. LearnMem.2006;13(2):208 – 15. 41.HainesDE,DietrichsE.Thecerebellum-structureandconnections.Handbook ofclinicalneurology/editedbyPJVinkenandGWBruyn.2012;103:3 – 36. 42.ShakkottaiVG,DoCarmoCostaM,Dell ’ OrcoJM,SankaranarayananA,Wulff H,PaulsonHL.Earlychangesincerebellarphysiologyaccompanymotor dysfunctioninthepolyglutaminediseasespinocerebellarataxiatype3. JNeurosci.2011;31(36):13002 – 14. 43.ParkSB,GoldsteinD,LinCS,KrishnanAV,FriedlanderML,KiernanMC. Neuroprotectionforoxaliplatin-inducedneurotoxicity:whathappenedto objectiveassessment?JClinOncolOffJAmSocClinOncol. 2011;29(18):e553 – 4.authorreplye555-556. 44.KrishnanAV,GoldsteinD,FriedlanderM,KiernanMC.Oxaliplatin-induced neurotoxicityandthedevelopmentofneuropathy.MuscleNerve. 2005;32(1):51 – 60. 45.ParkSB,LinCS,KrishnanAV,GoldsteinD,FriedlanderML,KiernanMC.Dose effectsofoxaliplatinonpersistentandtransientNa+conductancesandthe developmentofneurotoxicity.PLoSOne.2011;6(4):e18469. 46.ParkSB,KoltzenburgM,LinCS,KiernanMC.Longitudinalassessmentof oxaliplatin-inducedneuropathy.Neurology.2012;78(2):152. 47.ParkSB,LinCS,KrishnanAV,GoldsteinD,FriedlanderML,KiernanMC. Oxaliplatin-inducedneurotoxicity:changesinaxonalexcitabilityprecede developmentofneuropathy.Brain.2009;132(Pt10):2712 – 23. 48.ParkSB,LinCS,KrishnanAV,GoldsteinD ,FriedlanderML,KiernanMC.Long-term neuropathyafteroxaliplatintreatment:challengingthedictumofreversibility. Oncologist.2011;16(5):708 – 16. 49.KuwabaraS,OgawaraK,HarroriT,SuzukiY,HashimotoN.Theacuteeffects ofglycemiccontrolonaxonalexcitabilityinhumandiabeticnerves.Intern Med.2002;41(5):360 – 5. 50.MisawaS,KuwabaraS,OgawaraK,KitanoY,YaguiK,HattoriT,etal. Hyperglycemiaaltersrefractoryperiodsinhumandiabeticneuropathy.Clin Neurophysiol.2004;115(11):2525 – 9. 51.KwaiN,ArnoldR,PoyntenAM,LinCS,KiernanMC,KrishnanAV.Continuous subcutaneousinsulininfusionpreservesaxonalfunctionintype1diabetes mellitus.Diabetes/MetabolResRev.2015;31(2):175 – 82. 52.ArnoldR,KwaiN,LinCS,PoyntenAM,KiernanMC,KrishnanAV.Axonal dysfunctionpriortoneuropathyonsetintype1diabetes.DiabetesMetab ResRev.2013;29(1):53 – 9. 53.SungJY,ParkSB,LiuYT,KwaiN,ArnoldR,KrishnanAV,etal.Progressive axonaldysfunctionprecedesdevelopmentofneuropathyintype2 diabetes.Diabetes.2012;61(6):1592 – 8. 54.ArnoldR,PussellBA,HowellsJ,GriniusV,KiernanMC,LinCS,etal.Evidence foracausalrelationshipbetweenhyperkalaemiaandaxonaldysfunctionin end-stagekidneydisease.ClinNeurophysiol.2014;125(1):179 – 85. 55.ArnoldR,PussellBA,PiantaTJ,GriniusV,LinCS,KiernanMC,etal.Effectsof hemodiafiltrationandhighfluxhemodialysisonnerveexcitabilityinend-stage kidneydisease.PLoSOne.2013;8(3):e59055. 56.ArnoldR,PussellBA,PiantaTJ,LinCS,KiernanMC,KrishnanAV.Association betweencalcineurininhibitortreatmentandperipheralnervedysfunctionin renaltransplantrecipients.AmJTransplant.2013;13(9):2426 – 32. HuynhandKiernan Cerebellum&Ataxias (2015) 2:4 Page5of5 EDITORIALOpenAccess Peripheralnerveaxonalexcitabilitystudies: expandingtheneurophysiologist ’ sarmamentarium WilliamHuynh * andMatthewCKiernan Abstract Nerveexcitabilitystudieshaveemergedasarecentnovelnon -invasivetechniquethatofferscomplementaryinformation tothatprovidedbymoreconventionalnerveconductionstudies,thelatterwhichprovideonlylimitedindicesof peripheralnervefunction.Suchnove ltoolsallowfortheassessmentofperipheralaxonalbiophysicalproperties thatincludeionchannels,energy-dependentpumpsandmem branepotentialinhealthanddisease.Withimprovements intechniqueanddevelopmentofprotocols,atypicalstudycanbecompletedinashortperiodoftimeandrapid measurementofmultipleexcitabilityindicescanbeachievedthatprovideinsightintodifferentaspectsofperipheral nervefunction.Theadventofautomatedprotocolsfortheassessmentofnerveexcitabilityhaspromotedtheirusein previousstudiesinvestigatingdiseasepathophysiologysuchasinmetabolic,toxicanddemyelinatingneuropathies, nerveexcitabilitystudieshaveadditionallyprovidedinsightsintothepathophysiologicalmechanismsunderlyingcerebellar disordersthatincludestrokeandfamilialcerebellarataxiassuchasepisodicataxiatypes1and2.Moreover,thistechnique mayhavediagnosticandtherapeuticimplicationsthatmaye ncompassabroaderrangeofneu rodegenerativecerebellar ataxiasinyearstocome.Intheforeseeablefuture,thistech niquemayeventuallybeincorporatedintoclinicalpractice expandingthecurrentlyavailablearmamentariumtotheneurophysiologist. Keywords: Nerveexcitability,Cerebellarataxia,Cerebellardisorders Conventionalnerveconductionstudies(NCS)remainan importanttoolandinmanyrespects,anextensionofthe clinicalassessmentinpatientswithneurologicaldisor- ders,particularlythosepertainingtotheperipheralner- voussystem[1].However,suchtechniquesthatemploy supramaximalstimulitomeasureamplitudeandvelocity ofcompoundsensoryormotoractionpotentials,provide informationononlythenumberofconductingfibresand conductionvelocityofthefastest,andhenceonlylimited indicesofperipheralnervefunction. Inmorerecentyears,anoveltechniqueofaxonalexcit- abilityhasemergedandprovidecomplementaryinforma- introductionofthresholdmeasurementstostudyhuman motoraxonsin1970[3]anditsfirstapplicationinaclinical settingondiabeticpatients[4],thetechniquehasunder- gonemodificationsandrefinementovertheyearswiththe developmentofprotocolstoallowtherapidmeasurement ofmultiplenerveexcitabilit yparametersinashortspaceof timeandhenceincreasingthetechnique ’ spracticalitywhen appliedinaclinicalenvironment[5]. Axonalexcitabilitytechniquesprovideinformationre- latedtoactivityofavarietyofionchannels,energy- dependentpumpsandionexchangeprocessesactivated duringimpulseconductioninperipheralaxons.While axonalmembranepotentialcannotbedirectlymeasured inintacthumanaxons,indirectevidencemaybeobtained throughassessmentofthechangesinaxonalexcitability measuredthroughalterationsincurrentrequiredtoelicit anactionpotentialofadefinedsize[6]. “ Threshold ” refers tothestimuluscurrentrequiredtoproduceapredeter- minedtargetcompoundmuscleactionpotential(CMAP) response(e.g.,40%ofmaximum)andcanbethatcanbe “ tracked ” ) duringdifferentmanoeuvers(e.g.,subthresholdcondi- tioning)tofollowchangesinnerveexcitability[7]. Measurementofthresholddependsonandthereforepro- videsanindirectmeasureofrestingmembranepotential. Furthermore,restingmembranepotentialisdetermined byacomplexnetworkofaxonalmembraneionchannels *Correspondence: w.huynh@neura.edu.au BrainandMindResearchInstitute,UniversityofSydney,Sydney,Australia ©2015HuynhandKiernan;licenseeBioMedCentral.ThisisanOpenAccessarticledistributedunderthetermsoftheCreative CommonsAttributionLicense(http://creativecommons.org/licenses/by/4.0)whichpermitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginalworkisproperlycredited.TheCreativeCommonsPublicDomain Dedicationwaiver(http://creativecommons.org/publicdomain/zero/1.0/)appliestothedatamadeavailableinthisarticle, unlessotherwisestated. HuynhandKiernan Cerebellum&Ataxias (2015) 2:4 DOI10.1186/s40673-015-0022-2

Related Contents


Next Show more