/
StabbersoflinesegmentsintheplaneM.ClaverolyD.GarijozC.I.GrimaxA.Marq StabbersoflinesegmentsintheplaneM.ClaverolyD.GarijozC.I.GrimaxA.Marq

StabbersoflinesegmentsintheplaneM.ClaverolyD.GarijozC.I.GrimaxA.Marq - PDF document

debby-jeon
debby-jeon . @debby-jeon
Follow
360 views
Uploaded On 2015-10-31

StabbersoflinesegmentsintheplaneM.ClaverolyD.GarijozC.I.GrimaxA.Marq - PPT Presentation

abcde1221012012Figure1Stabbersfromatoelinewedgedoublewedge2leveltreezigzagAstandardgeometrictoolwhichwillbeusedthroughoutthis ID: 178170

(a)(b)(c)(d)(e)``1`2`2`1`0`1`2.........................................`0`1`2Figure1:Stabbersfrom(a)to(e):line wedge double-wedge 2-leveltree zigzag.Astandardgeometrictoolwhichwillbeusedthroughoutthis

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "StabbersoflinesegmentsintheplaneM.Clave..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

StabbersoflinesegmentsintheplaneM.ClaverolyD.GarijozC.I.GrimaxA.Marquez{C.SearakAbstractTheproblemofcomputingarepresentationofthestabbinglinesofasetSofnlinesegmentsintheplanewassolvedbyEdelsbrunneretal.withan(nlogn)timeandO(n)spacealgorithm.Wepresentastudyofdi erenttypesofstabberssuchaswedges,double-wedges,2-leveltrees,andzigzags;providingecientalgorithmswhosetimeandspacecomplexitiesdependonthenumberofcombinatoriallydi erentextremelineshSorcriticallinescS,andthenumberkSofdi erentslopesthatappearinS.1IntroductionLetS=fs1;:::;sngbeasetoflinesegments(orsegments)intheplane.Forconvenience,werequirethatifpandqareendpointsofasegment,thenp6=q,andconsequently,lines,rays,andpointsarenotconsideredtobesegments.Inordertoavoidtediouscaseanalysis,weassumethattheendpointsofthesegmentsareingeneralposition.Nevertheless,theresultspresentedinthepapercanbeextendedtoarbitrarilysegmentsets.Alineisatransversalof(orstabs)SifitintersectseachsegmentofS.Edelsbrunneretal.[7]presentedan(nlogn)timeandO(n)spacealgorithmforsolvingtheproblemofconstructingarepresentationofalltraversallinesorstabbinglinesofS.SeeEdelsbrunner[6]forananalysisofthisproblemfrombothacombinatorialandcomputationalpointofview.ThelowerboundfromEdelsbrunneretal.[7]doesnotapplytothedecisionproblem:determiningifthereexistsalinestabberforS.Avisetal.[2]presentedan\n(nlogn)timelowerboundinthe xedorderalgebraicdecisiontreemodeltodeterminetheexistenceofalinestabberforS.Forasetofnverticalsegments,astabbinglinecanbecomputedinO(n)time.Astabbingline`forSclassifytheendpointsofthesegmentsintwoclasses:endpointsabove`,sayredpoints;andendpointsbelow`,saybluepoints.Theendpointon`isclassi edaccordingtotheotherendpoint.Thus,wecanseetheproblemofstabbingSasaproblemofclassifyingtheendpointsofthesegmentsintodisjointmonochromaticredandblueregionsde nedbythestabber,i.e.,asaseparabilityproblem.SincewewantthatthestabbersforSclassifytheendpointsofthesegmentsinthatway,wecanconsidertheconditionthatthereisnosegmentstabbedbymorethanoneelementofthestabber.Wecallthisconditiontheseparabilitycondition.SowelookforstabbersforSsuchthatwecanassignredandbluecolorstotheendpointsofthesegmentsandsplittheplaneintodisjointmonochromaticregions,i.e.,obtainingared/blueclassi cationoftheendpointsofthesegments.Hurtadoetal.[11]classi edredandbluepointsintheplanewithseparatorswhicharesimilartoourstabbers.Followingthislineofresearch,wedealwiththeproblemof ndingdi erentkindsof\simple"stabberswhenthereexistsnostabbinglineforS.Concretely,weshallconsiderthestructuresshowninFigure1.ThegoalistodesignecientalgorithmsforcomputingthesestabbersforSwithorwithouttheseparabilitycondition.SupportedbyprojectsMECMTM2006-01267andDURSI2005SGR00692.yDept.deMatematicaAplicadaIV,UniversitatPolitecnicadeCatalunya,Spain,merce@ma4.upc.eduzDepto.deMatematicaAplicadaI,UniversidaddeSevilla,Sevilla,Spain,dgarijo@us.esxDepto.deMatematicaAplicadaI,UniversidaddeSevilla,Sevilla,Spain,grima@us.es{Depto.deMatematicaAplicadaI,UniversidaddeSevilla,Sevilla,Spain,almar@us.eskDept.deMatematicaAplicadaII,UniversitatPolitecnicadeCatalunya,Spain,carlos.seara@upc.edu (a)(b)(c)(d)(e)``1`2`2`1`0`1`2.........................................`0`1`2Figure1:Stabbersfrom(a)to(e):line,wedge,double-wedge,2-leveltree,zigzag.Astandardgeometrictoolwhichwillbeusedthroughoutthisworkisduality[7]:thegeometrictransformdenotedbyDwhichmapsapointintoanon-verticallineandviceversa.Givenapointp:=(a;b)andaline`:=y=cx+d,wehaveD(p):=y=ax+bandD(`):=(c;d).Asegmentsi2Sisdeterminedbyitsendpoints.TheendpointsaretransformedbyDintotwolines.Ifsiisnotvertical,D(si)isadouble-wedgewhichdoesnotcontainaverticallineinitsinterior.Thus,thedouble-wedgeisformedbytwoupperraysandtwolowerrays.Ifsiisaverticalsegment,D(si)isastrip.ThesetofendpointsofthesegmentsinSistransformedbyDintoanarrangementof2nlinesdenotedbyA(S).ThetransformDsatis esthefollowingproperties:(i)thetransformDmaintainstherelativeposition(above/below)ofpointsandlines;(ii)aline`intersectsasegmentsiifandonlyifthepointD(`)liesinthedouble-wedgeD(si);(iii)thestabbinglinesofSstandinone-to-onecorrespondencewiththeintersectionpointsoftheirdouble-wedges,i.e.,Tsi2SD(si).Relatedworks.Claverol[5]asapartofherPhDthesisinitiatedthestudyheredeveloped.Inthispaperweimprovethecomplexitiessheobtainedandsomeotherstabbingproblemsarealsoconsidered.AtallahandBajaj[1]presentedanO(n (n)logn)algorithmforlinestabbingnsimpleobjectsintheplane,where (n)istheinverseoftheAckerman'sfunction.AsimpleobjectisanobjectwhichhasanO(1)storedescriptionandforwhichcommontangentsandintersectionscanbecomputedinO(1)time.Edelsbrunner,GuibasandSharir[8]showedhowtoconstructarepresentationofthelinestabbersofconvexpolygonswithatotalofnverticesinO(n (n)logn)time.LaterimprovedtoO(nlogn)usinganO(nlogn)timealgorithmfromHershberger[10]for ndingthelowerenvelopeofasegmentsetintheplane.O'Rourke[14]presentedanalgorithmfor nding(ifitexists)astabbinglineofverticallinesegments.GoodrichandSnoeyink[9]presentedanaturalvariantconsideringanothertypeofstabbersdi erentfromthelinesbysolvingtheproblemofcomputingatransversalconvexpolygonforasetofparallelsegmentsinO(nlogn)time.Bhattacharyaetal.[3]workedontheproblemofcomputingtheshortesttransversalsegmentforasetoflinesintheplaneandalsoforasetofconvexpolygons.Lyonsetal.[12]studiedtheproblemofcomputingtheminimumperimeterconvexpolygonwhichstabsasetofisotheticlinesegments.Rappaport[15]consideredtheproblemofcomputingasimplepolygonwithminimumperimeterwhichstabsorcontainsasetoflinesegments.Bhattacharyaetal.[4]andMukhopadhyayetal.[13]consideredtheproblemofcomputingtheminimumareaconvexpolygonwhichstabsasetofparallellinesegments. 2IdeasandtoolsSomeideasandtoolsaresharedbymostofourresults.Inthissectionwepresenttheminauni edcontext.ThelinescontainingthesegmentsofScanhavedi erentslopes.Denotebymitheslopeof(thelinecontaining)thesegmentsi2S.Thecomplexityofmanyofthealgorithmsthatwepresentheredependsonthenumberofdi erentslopesofthelinescontainingthesegmentsofS,writtenaskS.Itisduetothefollowingfact:theendpointsofthesegmentsfallintotwoclassesdeterminedbyastabbingline`,endpointsabove`andendpointsbelow`,sayredandbluerespectively.Theendpointofasegmenton`isclassi edaccordingtoitsotherendpoint.Thus,foragivenslopeof`ourproblemofstabbingthesetScanbeviewedasared-blueseparabilityproblemofclassifyingtheendpointsofthesegmentsintodisjointmonochromaticregionsoftheplanedeterminedbythestabber.Infact,itisnotdiculttoshowthatthereexistasmanydi erentclassi cationsoftheendpointsofSaskS.Arelevantpropertyaboutourstabbersisthatnotallthelinescanbecandidatetode neoneofthesestructures.Forinstance,consideraray`whichispartofawedgethatstabsS,anditsextensiondenotedby`0.Wehavethatallthesegmentsthatarenotintersectedby`mustlieonthesamehalf-planede nedby`0.Thus,wesaythataline`0isanextremelineforSif`0stabsasubsetofsegmentsS1S,S16=;,andtheremainingsegmentsS2=SnS1areinonlyoneoftheopenhalf-planesde nedby`0.Otherwise,theline`0issaidtobeanon-extremelineforS.Thus,aswehavementionedbefore,ourinterestinextremelinescomesfromthefollowingfact:thelinecontaininganyrayofastabbingwedgeforSisextremelineforS.Inthispaper,extremelinesarestudiedfromtwodi erentpointsofview:computationalandcombinatorialview.ThereasonisthatouralgorithmsdependonthecomputationofthesetofextremelinesforS.Thus,wesaythattwonon-verticallines,`1and`2,arecombinatoriallydi erentwithrespecttoSifeither:(1)thesubsetofsegmentsS1Sstabbedby`1isdi erentfromthesubsetofsegmentsS2Sstabbedby`2;or(2)ifS1=S2theneither:(i)thesubsetofendpointsofsegmentsofSabove`1isdi erentfromthesubsetofendpointsofsegmentsofSabove`2,or(ii)thesubsetofendpointsofsegmentsofSbelow`1isdi erentfromthesubsetofendpointsofsegmentsofSbelow`2.IfhSisthenumberofcombinatoriallydi erentextremelinesofS,wecomputearepresentationofthecombinatoriallydi erentextremelinesforSinO(hS+nlogn)timeandO(hS+n)space.Observethatthenumberofcombinatoriallydi erentextremelinesforSisatmostO(n2),butdependingonthepropertiesofthestabbingproblem,wecanconsideronlyasubsetofthemnamedthecriticalextremelineswhichsizecSisatmostlinear.3StabbingwedgesOur rstaimistostudytheproblemofdecidingwhetherthesetScanbestabbedbyawedge,andcomputingthisstructureincaseofexistence.Obviously,itisassumedthatthesetSisnotstabbedbyaline.Wedistinguishtwocases:stabbingwedgesWsatisfyingtheseparabilitycondition(describedinSection1)orthosethatdonotsatisfysuchcondition.Inthe rstcase,weprovideanO(hSkSlogn+nlogn)timeandO(hS+n)spacealgorithm.TherangeforhSisfromO(1)toO(n2),andtherangeforkSisfromO(1)toO(n).Inthesecondcase,wedesignanO(cSkSlogn+nlogn)timeandO(n)spacealgorithm,withrangeforcSinbetweenO(1)andO(n).Wenowintroducesomeusefulnotationforourpurpose.Givenaline`andasegments,wecanclassifytheendpointsofswithrespectto`whenever`andthelinecontainingsarenotparallel.Itsucestodoaparallelsweepwith`untilitcrossess,leavingoneendpointin`+,andtheotheronein`.Theseendpointsaredenotedbye+ande,respectively.LetWbeastabbingwedgeforS.ThetworaysthatformWaredenotedby`1and`2,andWiswrittenasW=f`1;`2g.Thelinecontaining`ifori=1;2isdenotedby`0.Thehalf-planesde nedby`iarewrittenas`0+and`0i.Supposethat`1stabsasubsetofsegmentsS1(S,S16=;,andthesetS2=SnS1isstabbedby`2. 3.1StabbingwedgessatisfyingtheseparabilityconditionSincebyde nitionweconsiderWasaseparatorstructure,asegmentcannotbestabbedbybothrays.LetS+1(S1)bethesetofendpointsofthesegmentsofS1classi edase+(e)withrespectto`0.Analogously,S+2(S2)isthesetofendpointsofthesegmentsofS2classi edase+(e)withrespectto`0.Thus,S1andS+2arecontainedinsidethewedgeW,andS+1andS2arelocatedoutsideit.Noticethattheseassignmentsf+;gdependontherelativepositionofthelines`01and`02,i.e.,ontheslopeandtheapertureangleofthestabbingwedge.Weconcentrateinaparticularcasebuttheremainingconstantnumberofcasescanbehandleinasimilarway.Lemma3.1.IfW=f`1;`2gisastabbingwedgeforS,`01and`02areextremelinesforSandatleasthalfofthesegmentsofSarestabbedbyeither`1or`2.Thenextlemmaassumesthefollowingconditions:(i)let`01beanextremelineforSwhereS1(S,S16=;,isthesubsetofsegmentsstabbedby`0.LetS+1andS1betheclassi cationoftheendpointsofthesegmentsofS1givenby`0,andletS2=SnS1.(ii)Letmbea xedslopeandletS+2andS2betheclassi cationoftheendpointsofthesegmentsofS2bysweepingalinewithslopem.Lemma3.2.ThereexistsastabbingwedgeW=f`1;`2gforSwith`1containedin`01ifandonlyifS2islineseparablefromS1[S+2.ThelocusofapicesofthestabbingwedgesforSrespectingthisclassi cationofendpointsisa(possibleunboundedanddegenerate)convexquadrilateralQde nedbythefollowingfourlines:theinteriorsupportedlinesbetweenCH(S+1)andCH(S1[S+2)andtheinteriorsupportedlinesbetweenCH(S1[S+2)andCH(S2).Lemmas3.1and3.2arethekeytoolstodesignanalgorithmthatprovesthefollowingresult.Theorem3.3.Thesetofcombinatoriallydi erentstabbingwedgesforSwiththeseparabilitycondi-tion,togetherwitharepresentationofthemformedbythelocusofapicesofthestabbingwedgescanbecomputedinO(hSkSlogn+nlogn)timeandO(hS+n)space.3.2StabbingwedgesnotsatisfyingtheseparabilityconditionLetW=f`1;`2gbeastabbingwedgeforSnotverifyingtheseparabilitycondition.Apropertythatonlyholdsforthistypeofwedgesisthefollowing:therealwaysexistsastabbingwedgeWforS(notsatisfyingtheseparabilitycondition)formedbytworaysbothanchoredon xedpointsofS,i.e.,bothraysarecontainedincriticalextremelines.Thispropertyletusprovethefollowingresult.Theorem3.4.Thesetofcombinatoriallydi erentstabbingwedgesforSnotsatisfyingtheseparabilityconditioncanbecomputedinO(cSkSn+nlogn)timeandO(n)space.Nextweshowan\n(nlogn)lowerboundfortheproblemofdecidingifthereexistsastabbingwedgeforasetofarbitrarilysegments.Wereducethedecisionofthestabbingwedgeproblemtotheproblemofdecidingwhetherthereexistsastabbinglineforasegmentset,whichhasan\n(nlogn)timelowerboundinthe xedorderalgebraicdecisiontreemodel[2]).Theorem3.5.Decidingwhetherthereexistsastabbingwedgeforanarbitrarysegmentsetrequires\n(nlogn)timeinthe xedorderalgebraicdecisiontreemodel.4StabbingwedgesforparallelsegmentswithequallengthLetS=fs1;:::;sngbeasetofnparallelsegmentsintheplanewithequallengthwhicharenotstabbedbyaline.WenowconsidertheproblemofcomputingastabbingwedgeWforSsatisfyingtheseparabilitycondition.Uptosymmetrywithrespecttoeitherthex-axisorthey-axis,wedistinguishthreetypesofwedgesaccordingtotherelativepositionoftherays`1and`2ofthepossiblestabbingwedgeW=f`1;`2gforS.Let Wbetheapertureangleorintervaldirectionde nedbytherays`1and`2ofW.Thethreetypesarethefollowing:(a) Wcontainstheverticaldirection;(b) Wcontainsthehorizontaldirection;and(c)bothrays`1and`2ofWhavepositiveslope. ........................................................rbrrrrrrrbbbbbbb(a)(b)(c)Figure2:Thethreetypesofstabbingwedgesforaparallelsegmentset.4.1Type(a)When Wcontainstheverticaldirection,itispossibletodesignthefollowingO(nlogn)timealgorithmforcomputingastabbingwedgeforS.ItisbasedonanO(nlogn)timeandO(n)spacealgorithmfordecidingthewedgeseparabilityofared-bluepointsetintheplane[11].1.InO(n)time,classifytheendpointsofthesegmentsofSasfollows.Foreachsegments,colorredtheendpointofswithbiggery-coordinateandcolorbluetheotherendpoint.LetRandBbethesetsofredandblueendpoints.2.InO(nlogn)time,decidewhetherthereexistsaseparatingwedgeforRandB,andcomputeitincaseofexistence.Inthesametime,wecancomputethelocusofapicesofalltheseparatingwedgesformedbyconvexquadrilaterals.Theorem4.1.GiventhesetS,astabbingwedgeoftype(a)forScanbecomputedinO(nlogn)timeandO(n)space.Theassumptionthatthesegmentshaveequallengthisnotusedinthealgorithm.Iftheslopesoftheraysofthewedgeareknown,thereexistsanO(n)timealgorithmtocomputeastabbingwedgeforSusingthemedianofthex-coordinatesoftheendpointsofthesegments.4.2Type(b)WehavealsoobtainedanO(nlogn)timealgorithmforcomputingastabbingwedgeforSwhen Wcontainsthehorizontaldirection.Foreachsegmentsi2S,consideritsmidpointi.InO(nlogn)time,sortthesemidpointsbydecreasingy-coordinate,andletydenotethisorder.DenotebyS=fs;:::;sgthesetofsegmentsofSsortedbytheyorderoftheirmidpoints.Thekeytoolstodesignouralgorithmaregivenbythefollowinglemma.Lemma4.2.IfthereexistsastabbingwedgeforS,W=f`1;`2g,suchthat Wcontainsthehorizontaldirection,thenthemidpointsofthesegmentsstabbedby`1appearbeforeintheyorderthanthemidpointsofthesegmentsstabbedby`2.Let`0bealinewithpositiveslopethatstabsS1(S,S16=;,andlet`02bealinewithnegativeslopethatstabsS2=SnS1.Considertheclassi cationoftheendpointsofSprovidedby`01and`02.ThereexistsastabbingwedgeW=f`1;`2gforSifandonlyifbothS+1andS2arelineseparablefromS1[S+2.Theorem4.3.GiventhesetS,astabbingwedgeoftype(b)forScanbecomputedinO(nlogn)timeandO(n)space.4.3Type(c)Whenbothrays`1and`2ofWhavepositiveslope,themainproblemistoobtainaconsistentclassi cationofthemidpointsofthesegmentsaccordingtothepossiblestabbingwedgeoftype(c).DenotebydthelengthofthesegmentsofS,andrecallthatiisthemidpointofthesegmentsi2S. Assumethatthereexistsastabbingwedgeoftype(c)forS,denotedbyW=f`1;`2g.Supposealsothat Wisknown.Let`0fori=1;2,bethelinecontainingtheray`i.Denoteby`00thelinebelowandparallelto`0,suchthattheverticaldistancebetweenthetwolines`001and`01isexactlyd=2.Similarly,`00isthelineaboveandparallelto`02suchthattheverticaldistancebetween`002and`02isalsod=2.Let`bethebisectoroftheanglede nedby`01and`02oranylinewithslopebetweentheslopesof`0and`02(Figure3).Obviouslytheanglede nedby`001and`002is W.Let`bethebisectorlineof W.Infact,as`wecantakeanylinewithslopewithintheslopeintervalde nedby W.Considerthedouble-wedgeDWformedbythelines`00and`002,andthecorrespondingupperraysandlowerraysofDW.Byde nitionof`00and`002,allthemidpointsofthesegmentsofSstabbedby`1(`2)areabove(below)orovertheupperrays(lowerrays)ofDW.Let`betheorderofthemidpointsofthesegmentsofSaccordingtoasweepingbythebisectorline`of W.Thus,ifweknowthat W ,forsomegiven ,wecancomputeaconstantnumberd2 e=tofslopecandidatesforline`andcheckeachoneinO(nlogn)timeandO(n)space.Forstabbingwedgeswithverysmallapertureangle W,thevaluetcandominaten.......................................................................................`1...........................................................`2`d`00`00Figure3:Bothrays`1and`2ofastabbingwedgehavepositiveslope.Theorem4.4.GiventhesetSandapositivevalue ,astabbingwedgeoftype(c)forSwithapertureangle W canbecomputedinO(ntlogn)timeandO(n)space.5OtherstabbersTable1summarizestheobtainedresultsforthedecisionalproblemsofthestabberswehaveconsid-ered.By(sc)and(nsc)wedenotesatisfyingseparabilityconditionandnotsatisfyingtheseparabilitycondition,respectively.StabberTimeSpaceWedge(sc)O(hSkSlogn+nlogn)O(hS+n)Wedge(nsc)O(cSkSn+nlogn)O(n)Double-wedge(sc)minfO(n4);O(n3kSlogn)gO(n2)Double-wedge(nsc)O(n2kSlogn)O(n2)2-leveltree(nsc)O(n2kSlogn)O(n2)Zigzag(sc)O(n2kSlogn)O(n2)Zigzag(nsc)O(n3kS)O(n2)Table1:Summaryofresultsofdecisionproblem.Acknowledgements.WewanttogivespecialthankstoM.AbellanasandF.Hurtadofortheirhelpinthe rststudyofthestabbingproblemswhichwaspartoftheClaverol'sPhDthesis.E.ArkinandJ.S.B.Mitchellalsodeserveourthanksfortheircomments. ReferencesM.AtallahandC.Bajaj.Ecientalgorithmsforcommontransversal.Inform.Process.Lett.,25,(1987),87{91.[2]D.Avis,J.-M.Robert,andR.Wenger.Lowerboundsforlinestabbing.Inform.Process.Lett.,33,(1989),59{62.[3]B.K.Bhattacharya,J.Czyzowicz,P.Egyed,G.Toussaint,I.Stojmenovic,andJ.Urrutia.Com-putingshortesttransversalsofsets.Proc.7th.Ann.ACMSympos.Comput.Geom.,(1991),71{80.[4]B.Bhattacharya,C.Kumar,andA.Mukhopadhyay.Computinganarea-optimalconvexpolygonalstabberofasetofparallellinesegments.Proc.5th.Canad.Conf.Comput.Geometry,(1993),169{174.[5]M.Claverol.Problemasgeometricosenmorfologacomputacional.PhDThesis.UniversitatPolitecnicadeCatalunya,2004.[6]H.Edelsbrunner.Algorithmsincombinatorialgeometry.EATCSMonographsonTheoreticalCom-puterScience,Vol.10,Springer-Verlag,(1987).[7]H.Edelsbrunner,H.A.Maurer,F.P.Preparata,A.L.Rosenberg,E.Welzl,andD.Wood.Stabbinglinesegments.BIT,Vol.22,(1982)pp.274{281.[8]H.Edelsbrunner,L.J.Guibas,andM.Sharir.Theupperenvelopeofpiecewiselinearfunctions:algorithmsandapplications.ReportNo.UIUCDCS-R-87-1390,UniversityofIlinois,(1987).[9]M.T.GoodrichandJ.S.Snoeyink.Stabbingparallelsegmentswhitaconvexpolygon.Proc.1stWorkshopAlgorithmsDataStruct.LecturenotesComput.Sci.,382(1989),231{242,Springer-Verlag.[10]J.Hershberger.FindingtheupperenvelopofnlinesegmentsinO(nlogn)time.InformationProcessingLetters,33,1989,pp.169{174.[11]F.Hurtado,M.Noy,P.A.Ramos,andC.Seara.Separatingobjectsintheplanebywedgesandstrips.DiscreteAppliedMathematics,Vol.109,(2000),pp.109{138.[12]K.A.Lyons,HenkMeijer,andDavidRappaport.Minimumpolygonstabbersofisotheticlineseg-ments.DepartmentofComputingandInformationScience,Queen'sUniversity,Ontario,Canada,(1990).[13]A.Mukhopadhyay,C.Kumar,E.Green,andB.Bhattacharya.Onintersectingasetofparallellinesegmentswithaconvexpolygonofminimumarea.Inform.Process.Lett.,105,(2008),58{64.[14]J.O'Rourke.Anon-linealgorithmfor ttingstraigtlinesbetweendataranges.CACM,24,(1981),574{578.[15]D.Rappaport.Minimumpolygontransversalsoflinesegments.InternationalJournalofCompu-tationalGeometry&Applications,Vol.5,No.3,(1995),243{256.

Related Contents


Next Show more