/
Upsilon  Production in Heavy Upsilon  Production in Heavy

Upsilon Production in Heavy - PowerPoint Presentation

debby-jeon
debby-jeon . @debby-jeon
Follow
374 views
Uploaded On 2018-02-27

Upsilon Production in Heavy - PPT Presentation

Ions with STAR and CMS Manuel Calderón de la Barca Sánchez HIT Seminar Berkeley Lab September 18 2012 Outline Bottomonium in heavy ion collisions Upsilon measurements in STAR ID: 638049

barca seminar hit berkeley seminar barca berkeley hit manuel calder

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Upsilon Production in Heavy" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Upsilon Production inHeavy Ions with STAR and CMS

Manuel Calderón de la Barca Sánchez

HIT Seminar

Berkeley LabSeptember 18, 2012.Slide2

OutlineBottomonium in heavy ion collisionsUpsilon measurements in:STARCMS

Upsilon cross sections in p+pUpsilon nuclear modification factorsConclusions9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez

2Slide3

Quarkonium in the QGPHeavy quarkonia

: Heavy quark bound state are probes of the hot QCD medium Debye screening Matsui & Satz, PLB 178 416 (1986)Sequential Suppression

Digal et al., PRD 64 2001 094015Landau damping:

Im V. (e.g. Laine et al., JHEP 03 2007 054)9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez3

T

C

<

T

0<T

<T

C

T=0

ϒSlide4

4High T: the interaction between the

heavy quarks is modified.Charmonium suppression: longstanding QGP signatureOriginal idea: High T leads to screeningScreening prevents heavy quark bound states from forming.

J/y

suppression: Matsui and Satz, Phys. Lett. B 178 (1986) 416lattice calculations, indications of screeningNucl.Phys.Proc.Suppl.129:560-562,2004 Note: Calculations of internal energy or internal energyO. Kaczmarek, et al.,Nucl.Phys.Proc.Suppl.129:560-562,2004 9/18/12 HIT Seminar, Berkeley Lab

Manuel Calderón de la Barca SánchezSlide5

The heavy quark potential in QCDRecent news: Heavy quark potential from (quenched) Lattice QCDA.Rothkopf

, et al. PRL 108 (2012) 162001

Broadening due to collisions with medium (Im V)

possibly more important than screening (Re V).9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez5Slide6

6Measuring the Temperature

hep-ph/0110406

Dissociation temperatures of quarkonia states

Lattice QCD Calculations:

Quarkonia’s suppression pattern

QGP thermometer

For

 production at

RHIC and LHC

A cleaner probe compared to J/

y

co-mover absorption

negligible

recombination

negligible

d-Au: Cold Nuclear Matter Effects

Shadowing / Anti-shadowing at y~0

Challenge: low rate, rare probe

Large acceptance detector

Efficient trigger

Expectation:

(1S) no melting

(2S) likely to melt

(3S) melts

A .Mocsy

, 417th WE-Heraeus-Seminar,2008

9/18/12 HIT Seminar, Berkeley Lab

Manuel Calderón de la Barca SánchezSlide7

J/y Puzzles from SPS and RHIC

Similar J/y suppression at the SPS and RHIC!despite 10× higher √sNNSuppression does not increase with local energy densityRAA(forward)<RAA(mid)

Possible ingredientscold nuclear matter effectssequential meltingregeneration

What happens for bottomonium?79/18/12 HIT Seminar, Berkeley Lab

Manuel Calderón de la Barca SánchezSlide8

Charmonium vs Bottomonium

J/y suppressionHot nuclear matter effects: Suppression? Regeneration? Co-mover absorption? Energy loss? Flow? Bottomonium Expectations

Cleaner probe of screening, deconfinement.Regeneration?

Not a big role for bottomoniumOpen bottom: sbb ~ 1.34 – 1.84 mb.Open charm: scc ~ 551 – 1400 mb.Co-mover absorption?Expected to be small for bottomoniumCharmonium sabs ~ 3 – 4 mb.Bottmonium sabs ~ 1 mb. Lin & Ko, PLB 503 104 (2001) 9/18/12 HIT Seminar, Berkeley Lab

Manuel Calderón de la Barca Sánchez

8Slide9

Upsilons in STARUpsilons via Triggering, Calorimetry, Tracking, and matching of tracks to calorimeter towers.

9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez9Slide10

The CMS Detector9/18/12 HIT Seminar, Berkeley Lab

Manuel Calderón de la Barca Sánchez10

ϒ event in CMS.Slide11

 in p+p 200 GeV in STAR

9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez11

L dt = 7.9 ± 0.6 pb-1N(total)= 67±22(stat.)

Phys. Rev. D

82 (2010) 12004

L

dt

= 19.7

pb

-

1

N

(total

)=

145±26(

stat.)

2006

2009

STAR PreliminarySlide12

 Comparison to NLO pQCD

Comparison to NLOSTAR √s=200 GeV p+p ++→e+

e- cross section

consistent with pQCD Color Evaporation Model (CEM)9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez12CEM: R. Vogt, Phys. Rep. 462125, 2008CSM: J.P. Lansberg and S. Brodsky, PRD 81, 051502, 2010Slide13

Excellent resolution at midrapidity.Separation of 3 states.9/18/12 HIT Seminar, Berkeley Lab

Manuel Calderón de la Barca Sánchez13 in p+p

7 TeV

in CMSPRD 83, 112004 (2011)Slide14

 vs √s, World Data

9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez14

STAR

√s=200 GeV and CMS √s=7 TeV p+p ++→e+e- cross section consistent with pQCD and world data trend

STAR PreliminarySlide15

 in d+Au 200 GeV

9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez15

L dt = 32.6 nb-1N

+DY+bb(

total)= 172 ± 20(

stat.)

Signal has ~8σ significance

p

T

reaches ~ 5

GeV/c

STAR Preliminary

Final results on

RdAu

coming soon.

LHC

pPb

run in January/February.Slide16

 in Au+Au 200 GeV

9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez16

Raw yield of

e+e- with |y|<0.5 = 197 ± 36∫L dt ≈ 1400 µb-1Slide17

 in Au+Au 200 GeV, Centrality

9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez17

Peripheral

Central

STAR Preliminary

STAR Preliminary

STAR PreliminarySlide18

Bottomonia

at 2.76 TeV: 2010 data18

pp

PbPbPRL 107 (2011) 0523029/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca SánchezSlide19

Bottomonia: 2011 data

19pp

PbPb

Ratios not corrected for acceptance and efficiency9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca SánchezSlide20

 in Au+Au 200 GeV, R

AA9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez20

Models from M. Strickland and D.

Bazow, arXiv:1112.2761v4Indications of Suppression of Upsilon(1S+2S+3S) getting stronger with centrality.Reduced pp statistical uncertainties, increased statistics from 2009 data vs 2006 data.Slide21

ϒ(2S)/ϒ(1S) Double Ratio, CMS

Separated ϒ(2S) and ϒ(3S)

Measured ϒ(2S) double ratio vs. centrality

no strong centrality dependence219/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca SánchezSlide22

ϒ(1S) Nuclear Modification Factor: RAA

CMS PbPb at 2.76 TeVIn 2010: 7.28 µb−1

ϒ(1S) RAA, 3 centrality binsJHEP 1205 (2012) 063

In 2011: 150 µb−1ϒ(1S) RAA, 7 centrality binsFirst results on ϒ(2S) RAA Clear suppression of ϒ(2S)ϒ(1S) suppression Consistent with excited state suppression only ~50% feed down229/18/12 HIT Seminar, Berkeley Lab

Manuel Calderón de la Barca SánchezCMS Preliminary,

arXiv:1208.2826Slide23

Comparison: RHIC and LHC

STAR measured RAA of ϒ(1S+2S+3S) combinedarXiv:1109.3891min. bias value:CMS: separate RAA for

ϒ(1S) and ϒ(2S)

can calculate min. bias RAA of ϒ(1S+2S+3S):239/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca SánchezCMS Preliminary,arXiv:1208.2826Slide24

ϒ RAA Comparison to models I

Incorporating lattice-based potentials, including real and imaginary partsA: Free energy Disfavored, not shown. B: Internal energy Consistent with data vs. NpartIncludes sequential melting and feed-down

contributions~50% feed-down from c

b.Dynamical expansion, variations in initial conditions (T0, η/S)Data indicate: 428 < T0 < 442 MeV at RHIC552 < T0 < 580 MeV at LHC for 3 > 4pη/S > 1M. Strickland, PRL 107, 132301 (2011).9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez24Slide25

ϒ RAA Comparison to models II

Weak vs. Strong BindingNarrower spectral functions for “Strong” caseRatios of correlators compared to Lattice: favor “Strong” binding caseKinetic Theory ModelRate Equation: dissociation + regenerationFireball model: T evolution. T ~ 300 MeV9/18/12 HIT Seminar, Berkeley Lab

Manuel Calderón de la Barca Sánchez

25StrongBindingWeakBindingSlide26

ϒ RAA Comparison to models IIComparison to data for “Strong” binding:

Mostly consistent with dataLittle regeneration: Final result ~ Primordial suppressionLarge uncertainty in nuclear absorption. Need dAu, pPb.9/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez

26

Eur. Phys. J. A (2012) 48: 72Slide27

ϒ RAA pT and y dependence

Indications that suppression is largest at low pT. and mid rapidity. Need more statistics for firmer conclusions.9/18/12 HIT Seminar, Berkeley Lab

Manuel Calderón de la Barca Sánchez

27Slide28

The

bottom line...

STAR and CMS:ϒ

suppression vs. Npart.RAA consistent with suppression of feed down from excited states only (~50%)CMS: First measurement ofϒ(2S) suppressionRAA(ϒ(3S)) < 0.09 (95% C.L.)ϒ(1S) RAA consistent with suppression of feed down from excited states only (~50%)Need more pp statistics to pin down lower-pT double ratioPinning down the medium properties.Cold nuclear matter:coming soon!289/18/12 HIT Seminar, Berkeley Lab Manuel Calderón de la Barca Sánchez