/
GroupTheoryandtheRubiksCubeJanetChen GroupTheoryandtheRubiksCubeJanetChen

GroupTheoryandtheRubiksCubeJanetChen - PDF document

dorothy
dorothy . @dorothy
Follow
343 views
Uploaded On 2021-06-14

GroupTheoryandtheRubiksCubeJanetChen - PPT Presentation

ANotetotheReaderThesenotesarebasedona2weekcoursethatItaughtforhighschoolstudentsattheTexasStateHonorsSummerMathCampAllofthestudentsinmyclasshadtakenelementarynumbertheoryatthecampsoIhaveassumedinth ID: 841978

corner thatis guration scube thatis corner scube guration sgn mod2 proof mod3 edge gurationsoftherubik pxi provethat forexample similarly esp

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "GroupTheoryandtheRubiksCubeJanetChen" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 GroupTheoryandtheRubik'sCubeJanetChen AN
GroupTheoryandtheRubik'sCubeJanetChen ANotetotheReaderThesenotesarebasedona2-weekcoursethatItaughtforhighschoolstudentsattheTexasStateHonorsSummerMathCamp.Allofthestudentsinmyclasshadtakenelementarynumbertheoryatthecamp,soIhaveassumedinthesenotesthatreadersarefamiliarwiththeintegersmodnaswellastheunitsmodn.BecauseonegoalofthisclasswasacompleteunderstandingoftheRubik'scube,IhavetriedtousenotationthatmakesdiscussingtheRubik'scubeaseasyaspossible.Forexample,Ihavechosentouserightgroupactionsratherthanleftgroupactions.2 IntroductionHereissomenotationthatwillbeusedthroughout.Zthesetofintegers:::;�3;�2;�1;0;1;2;3;:::Nthesetofpositiveintegers1;2;3;:::Qthesetofrationalnumbers(fractions)RthesetofrealnumbersZ=nZthesetofintegersmodn(Z=nZ)thesetofunitsmodnThegoalofthesenotesistogiveanintroductiontothesubjectofgrouptheory,whichisabranchofthemathematicalareacalledalgebra(orsometimesabstractalgebra).Youprobablythinkofalgebraasaddition,multiplication,solvingquadraticequations,andsoon.Abstractalgebradealswithallofthisbut,asthenamesuggests,inamuchmoreabstractway!Ratherthanlookingataspeci coperation(likeaddition)onaspeci cset(likethesetofrealnumbers,orthesetofintegers),abstractalgebraisalgebradonewithoutreallyspecifyingwhattheoperationorsetis.Thismaybethe rstmathyou'veencounteredinwhichobjectsotherthannumbersarereallystudied!AsecondarygoalofthisclassistosolvetheRubik'scube.WewillbothdevelopmethodsforsolvingtheRubik'scubeandprove(usinggrouptheory!)thatourmethodsalwaysenableustosolvethecube.ReferencesDouglasHofstadterwroteanexcellentintroductiontotheRubik'scubeintheMarch1981issueofScienti cAmerican.ThereareseveralbooksabouttheRubik'scube;myfavoriteisInsideRubik'sCubeandBeyondbyChristophBandelow.DavidSingmaster,whodevelopedmuchoftheusualnotationfortheRubik'scube,alsohasabookcalledNotesonRubik's'MagicCube,'whichIhavenotseen.Foranintroductiontogrouptheory,IrecommendAbstractAlgebrabyI.N.Herstein.Thisisawonderfulbookwithwonderfulexercises(andif

2 youarenewtogrouptheory,youshoulddolotsof
youarenewtogrouptheory,youshoulddolotsoftheexercises).Ifyouhavesomefamiliaritywithgrouptheoryandwantagoodreferencebook,IrecommendAbstractAlgebrabyDavidS.DummitandRichardM.Foote.3 1.FunctionsTounderstandtheRubik'scubeproperly,we rstneedtotalkaboutsomedi erentpropertiesoffunctions.De nition1.1.A functionor mapffromadomainDtoarangeR(wewritef:D!R)isarulewhichassignstoeachelementx2Dauniqueelementy2R.Wewritef(x)=y.Wesaythatyisthe imageofxandthatxisa preimageofy.NotethatanelementinDhasexactlyoneimage,butanelementofRmayhave0,1,ormorethan1preimage.Example1.2.Wecande neafunctionf:R!Rbyf(x)=x2.Ifxisanyrealnumber,itsimageistherealnumberx2.Ontheotherhand,ifyisapositiverealnumber,ithastwopreimages,p yand�p y.Therealnumber0hasasinglepreimage,0;negativenumbershavenopreimages.vFunctionswillprovideimportantexamplesofgroupslateron;wewillalsousefunctionsto\translate"informationfromonegrouptoanother.De nition1.3.Afunctionf:D!Riscalled one-to-oneifx16=x2impliesf(x1)6=f(x2)forx1;x22D.Thatis,eachelementofRhasatmostonepreimage.Example1.4.Considerthefunctionf:Z!Rde nedbyf(x)=x+1.Thisfunctionisone-to-onesince,ifx16=x2,thenx1+16=x2+1.Ifx2Risaninteger,thenithasasinglepreimage(namely,x�1).Ifx2Risnotaninteger,thenithasnopreimage.Thefunctionf:Z!Zde nedbyf(x)=x2isnotone-to-one,sincef(1)=f(�1)but16=�1.Here,1hastwopreimages,1and�1.vDe nition1.5.Afunctionf:D!Riscalled ontoif,foreveryy2R,thereexistsx2Dsuchthatf(x)=y.Equivalently,everyelementofRhasatleastonepreimage.Example1.6.Thefunctionf:Z!Rde nedbyf(x)=x+1isnotontosincenon-integersdonothavepreimages.However,thefunctionf:Z!Zde nedbyf(x)=x+1isonto.Thefunctionf:Z!Zde nedbyf(x)=x2isnotontobecausethereisnox2Zsuchthatf(x)=2.vExercise1.7.Canyou nda...1....functionwhichisneitherone-to-onenoronto?2....functionwhichisone-to-onebutnotonto?3....functionwhichisontobutnotone-to-one?4....functionwhichisbothone-to-oneandonto?De nition1.8.Afunctionf:D!Riscalleda bijectionifitisboth

3 one-to-oneandonto.Equivalently,everyelem
one-to-oneandonto.Equivalently,everyelementofRhasexactlyonepreimage.Example1.9.Thefunctionf:Z!Zde nedbyf(x)=x+1isabijection.vExample1.10.IfSisanyset,thenwecande neamapf:S!Sbyf(x)=xforallx2S.Thismapiscalledthe identity map,anditisabijection.vDe nition1.11.Iff:S1!S2andg:S2!S3,thenwecande neanewfunctionfg:S1!S3by(fg)(x)=g(f(x)).Theoperationiscalled composition.Remark1.12.Oneusuallywrites(gf)(x)=g(f(x))ratherthan(fg)(x)=g(f(x)).However,aslongasweareconsistent,thechoicedoesnotmakeabigdi erence.WeareusingthisconventionbecauseitmatchestheconventionusuallyusedfortheRubik'scube.4 Exercises1.Whichofthefollowingfunctionsareone-to-one?Whichareonto?(a)f:Z!Zde nedbyf(x)=x2+1.(b)f:N!Nde nedbyf(x)=x2+1.(c)f:Z!Zde nedbyf(x)=3x+1.(d)f:R!Rde nedbyf(x)=3x+1.2.Supposef1:S1!S2andf2:S2!S3areone-to-one.Provethatf1f2isone-to-one.3.Supposef1:S1!S2andf2:S2!S3areonto.Provethatf1f2isonto.4.Letf1:S1!S2,f2:S2!S3,andf3:S3!S4.Provethatf1(f2f3)=(f1f2)f3.5.LetSbeaset.(a)Provethatthereexistsafunctione:S!Ssuchthatef=fandfe=fforallbijectionsf:S!S.Provethateisabijection.S.(b)Provethat,foreverybijectionf:S!S,thereexistsabijectiong:S!Ssuchthatfg=eandgf=e.6.Iff:D!RisabijectionandDisa nitesetwithnelements,provethatRisalsoa nitesetwithnelements.5 2.GroupsExample2.1.Togetanideaofwhatgroupsareallabout,let'sstartbylookingattwofamiliarsets.First,considertheintegersmod4.RememberthatZ=4Zisasetwith4elements:0,1,2,and3.Oneofthe rstthingsyoulearnedinmodulararithmeticwashowtoaddnumbersmodn.Let'swriteanadditiontableforZ=4Z.+ 0123 0 01231 12302 23013 3012Now,we'regoingtorewritetheadditiontableinawaythatmightseemprettypointless;we'rejustgoingtousethesymbolinsteadof+foraddition,andwe'llwritee=0,a=1,b=2,andc=3.Then,ouradditiontablelookslike eabc e eabca abceb bceac ceabLet'sdothesamethingfor(Z=5Z),thesetofunitsmod5.Theunitsmod5are1,2,3,and4.Ifyouaddtwounits,youdon'tnecess

4 arilygetanotherunit;forexample,1+4=0,and
arilygetanotherunit;forexample,1+4=0,and0isnotaunit.However,ifyoumultiplytwounits,youalwaysgetaunit.So,wecanwritedownamultiplicationtablefor(Z=5Z).Hereitis: 1243 1 12432 24314 43123 3124Again,we'regoingtorewritethisusingnewsymbols.Letmeanmultiplication,andlete=1,a=2,b=4,andc=3.Then,themultiplicationtablefor(Z=5Z)lookslike eabc e eabca abceb bceac ceabNoticethatthisisexactlythesameasthetableforadditiononZ=4Z!Whyisitinterestingthatwegetthesametablesinthesetwodi erentsituations?Well,thisenablesustotranslatealgebraicstatementsaboutadditionofelementsofZ=4Zintostatementsaboutmultiplicationofelementsof(Z=5Z).Forexample,theequationx+x=0inZ=4Zhastwosolutions,x=0andx=2.Withouralternatesetofsymbols,thisisthesameassayingthattheequationxx=ehassolutionsx=eandx=b.Ifwetranslatethisto(Z=5Z),thissaysthatthesolutionsofxx=1in(Z=5Z)arex=1andx=4.Thatis,1and4arethesquarerootsof1in(Z=5Z),whichisexactlyright!Inmathematicallanguage,wesaythatZ=4Zwithadditionand(Z=5Z)withmultiplicationare\isomorphicgroups."Theword\isomorphic"meansroughlythattheyhavethesamealgebraicstructure;we'llgetintothislater.Fornow,let'sjustseewhata\group"is.vDe nition2.2.A group(G;)consistsofasetGandanoperationsuchthat:6 1.Gisclosedunder.Thatis,ifa;b2G,thenab2G.Examples:Z=4Zisclosedunder+;afterall,wewrotedowntheadditiontable,whichtellsushowtoaddanytwoelementsofZ=4ZandgetanotherelementofZ=4Z.Similarly,(Z=5Z)isclosedundermultiplication.Zisclosedunder+:ifa;b2Z,thena+b2Z.Similarly,Zisalsoclosedunder�.Risclosedundermultiplication:ifwemultiplytworealnumbers,wegetarealnumber.Thesetofnegativenumbersisnotclosedundermultiplication:ifwemultiplytwonegativenum-bers,wegetapositivenumber.2.isassociative.Thatis,foranya;b;c2G,a(bc)=(ab)c.Examples:Additionandmultiplicationareassociative.Subtractionisnotassociativebecausea�(b�c)6=(a�b)�c.3.Thereisan\identityelement"e2Gwhichsatis

5 ;esg=eg=geforallg2G.Examples:
;esg=eg=geforallg2G.Examples:For(Z=4Z;+),0isanidentityelementbecauseg=0+g=g+0foranyg2Z=4Z.For((Z=5Z);),1isanidentityelementbecauseg=1g=g1foranyg2(Z=5Z).For(Z;+),0isanidentityelementbecauseg=0+g=g+0foranyg2Z.For(R;),1isanidentityelementbecauseg=1g=g1foranyg2R.4.Inversesexist;thatis,foranyg2G,thereexistsanelementh2Gsuchthatgh=hg=e.(hiscalledan inverseofg.)Examples:UsingtheadditiontableforZ=4Z,wecan ndinversesofalltheelementsofZ=4Z.Forinstance,wecanseefromthetablethat1+3=3+1=0,so3istheinverseof1.Similarly,sincethetablefor(Z=5Z)isidentical,allelementsof(Z=5Z)haveinverses.For(Z;+),theinverseofn2Zis�nbecausen+(�n)=(�n)+n=0.For(R;),noteveryelementhasaninverse|namely,0doesnothaveaninverse.However,ifx6=0,then1 xisaninverseofxbecausex1 x=1 xx=1.Example2.3.1.(Z=4Z;+)and((Z=5Z);)aregroups.Infact,aswesaidearlier,theseshouldbethoughtofasthe\same"group,butwewon'tgointothisuntillater.2.(Z;+)isagroup.However,(Z;�)isnotagroupbecausesubtractionisnotassociative.3.(R;)isnotagroupsince0doesnothaveaninverseundermultiplication.However,(R�f0g;)isagroup.4.Thesetofnegativenumbersisnotclosedundermultiplication,sothesetofnegativenumberswithmultiplicationisnotagroup.5.Wecanconstructagroup(G;)whereGisasetwithjustoneelement.SinceGmusthaveanidentityelement,wewillcallthissingleelemente.Tode nethegroupoperation,wejustneedtosaywhateeis.ThereisonlyonechoicesinceGhasonlyoneelement:eemustbee.Thisde nesagroupwhichiscalledthe trivial group.Asyoumightguess,thetrivialgroupisn'tveryinteresting.6.Soon,wewillseehowtomakethemovesofaRubik'scubeintoagroup!7 vTheexamplesofgroupswehaveseensofarallhaveanotherspecialproperty:foreveryg;h2G,gh=hg;thatis,theoperationiscommutative.Thisisnottrueofallgroups.Ifitistrueof(G;),wesay(G;)is abelian.Wewillsoonseeexamplesofnonabeliangroups.Now,wewillprovetwoimportantpropertiesofgroups.Le

6 mma2.4.Agrouphasexactlyoneidentityelemen
mma2.4.Agrouphasexactlyoneidentityelement.Proof.Let(G;)beagroup,andsupposeeande0areidentityelementsofG(weknowthatGhasatleastoneidentityelementbythede nitionofagroup).Then,ee0=esincee0isanidentityelement.Ontheotherhand,ee0=e0sinceeisanidentityelement.Therefore,e=e0becausebothareequaltoee0. Lemma2.5.If(G;)isagroup,theneachg2Ghasexactlyoneinverse.Proof.Letg2G,andsupposeg1;g2areinversesofG(weknowthereisatleastonebythede nitionofagroup);thatis,gg1=g1g=eandgg2=g2g=e.Byassociativity,(g1g)g2=g1(gg2).Sinceg1isaninverseofg,(g1g)g2=eg2=g2.Sinceg2isaninverseofg,g1(gg2)=g1e=g1.Therefore,g2=g1. Ingeneral,wewritetheuniqueinverseofgasg�1.However,ifweknowthatthegroupoperationisaddition,thenwewritetheinverseofgas�g.Exercises1.Whichofthefollowingaregroups?Proveyouranswer.(a)(f1g;)(b)(S;+),whereSisthesetofnon-negativeintegersf0;1;2;3;:::g(c)(2Z;+),where2Zisthesetofevenintegers(d)(Z;)(e)(Z;?)wherea?bisde nedtobea+b�1.(f)(Q�f0g;)(g)(R;H)whereaHbisde nedtobe(a�1)(b�1).(h)(G;)whereGisthesetofbijectionsfromsomesetStoitselfanddenotescompositionoffunctions.2.Let(G;)beagroupanda;b;c2G.Prove:(a)Ifab=ac,thenb=c.(b)Ifba=ca,thenb=c.Thatis,wecancancelingroups.3.If(G;)isagroupandg2G,provethat(g�1)�1=g.4.If(G;)isagroupandg;h2Gsuchthatgh=e,provethathg=e.(Thatis,ifgh=e,thenhistheinverseofgandgistheinverseofh.)5.If(G;)isagroupandg;h2Gsuchthatgh=h,provethatgistheidentityelementofG.6.Let(G;)bea nitegroup;thatis,(G;)isagroupandGhas nitelymanyelements.Letg2G.Provethatthereexistsapositiveintegernsuchthatgn=e(here,gnmeansgggwithncopiesofg).Thesmallestsuchintegerniscalledthe orderofg.8 7.Findtheorderof5in(Z=25Z;+).Findtheorderof2in((Z=17Z);).8.If(G;)isagroupinwhichgg=eforallg2G,showthat(G;)isabelian.9.If(G;)isagroupwhereGhas4elements,showtha

7 t(G;)isabelian.10.Let(G;)bea
t(G;)isabelian.10.Let(G;)bea nitegroup.Provethatthereisapositiveintegernsuchthatgn=eforallg2G.(Thisisdi erentfromProblem6inthatyouneedtoshowthatthesamenworksforallg2G.)11.LetGbeasetandbeanoperationonGsuchthatthefollowingfourpropertiesaresatis ed:(a)Gisclosedunder.(b)isassociative.(c)Thereexistse2Gsuchthatge=gforallg2G.(Wecallea\rightidentity.")(d)Foreachg2G,thereexistsh2Gsuchthatgh=e.(Wecallha\rightinverse"ofg.)Provethat(G;)isagroup.9 3.TheRubik'sCubeandSubgroups3.1.CubenotationTheRubik'scubeiscomposedof27smallcubes,whicharetypicallycalled\cubies."26ofthesecubiesarevisible(ifyoutakeyourcubeapart,you'll ndthatthe27thcubiedoesn'tactuallyexist).WhenworkingwiththeRubik'scube,it'shelpfultohaveasystematicwayofreferringtotheindividualcubies.Althoughitseemsnaturaltousethecolorsofacubie,itisactuallymoreusefultohavenameswhichdescribethelocationsofthecubies.Thecubiesinthecornersarecalled,appropriatelyenough,\cornercubies."Eachcornercubiehas3visiblefaces,andthereare8cornercubies.Thecubieswithtwovisiblefacesarecalled\edge"cubies;thereare12edgecubies.Finally,thecubieswithasinglevisiblefacearecalled\centercubies,"andthereare6centercubies.Now,let'snamethe6facesoftheRubik'scube.FollowingthenotationdevelopedbyDavidSingmaster,wewillcallthemright(r),left(l),up(u),down(d),front(f),andback(b).Theadvantageofthisnamingschemeisthateachfacecanbereferredtobyasingleletter.Tonameacornercubie,wesimplylistitsvisiblefacesinclockwiseorder.Forinstance,thecubieintheupper,right,frontcorneriswrittenurf.Ofcourse,wecouldalsocallthiscubierfuorfur.Sometimes,wewillcarewhichfaceislisted rst;inthesetimes,wewilltalkabout\orientedcubies."Thatis,theorientedcubiesurf,rfu,andfuraredi erent.Inothersituations,wewon'tcarewhichfaceislisted rst;inthesecases,wewilltalkabout\unorientedcubies."Thatis,theunorientedcubiesurf,rfu,andfurarethesame.Similarly,tonameedgeandcentercubies,wewilljustlistthevisiblefacesofthecubies.Forinstance,thecubieinth

8 ecenterofthefrontfaceisjustcalledf,becau
ecenterofthefrontfaceisjustcalledf,becauseitsonlyvisiblefaceliesonthefrontofthecube.Wewillalsofrequentlytalkabout\cubicles."Thesearelabeledthesamewayascubies,buttheydescribethespaceinwhichthecubielives.Thus,iftheRubik'scubeisinthestartcon guration(thatis,theRubik'scubeissolved),theneachcubielivesinthecubicleofthesamename(theurfcubielivesintheurfcubicle,thefcubielivesinthefcubicle,andsoon).IfyourotateafaceoftheRubik'scube,thecubiclesdon'tmove,butthecubiesdo.Notice,however,thatwhenyourotateafaceoftheRubik'scube,allcentercubiesstayintheircubicles.Finally,wewanttogivenamestosomemovesoftheRubik'scube.Themostbasicmoveonecandoistorotateasingleface.WewillletRdenoteaclockwiserotationoftherightface(lookingattherightface,turnit90clockwise).Similarly,wewillusethecapitallettersL,U,D,F,andBtodenoteclockwisetwistsofthecorrespondingfaces.Moregenerally,wewillcallanysequenceofthese6facetwistsa\move"oftheRubik'scube.Forinstance,rotatingtherightfacecounterclockwiseisamovewhichisthesameasdoingRthreetimes.Laterinthislecture,wewilldescribeanotationforthesemorecomplicatedmoves.Acoupleofthingsareimmediatelyclear.First,wealreadyobservedthatthe6basicmoveskeepthecentercubiesintheircubicles.Sinceanymoveisasequenceofthese6basicmoves,thatmeansthateverymoveoftheRubik'scubekeepsthecentercubiesintheircubicles(foraformalproof,seetheexampleafterProposition4.9).Also,anymoveoftheRubik'scubeputscornercubiesincornercubiclesandedgecubiesinedgecubicles;itisimpossibleforacornercubietoeverliveinanedgecubicleorforanedgecubietoliveinacornercubicle.Usingthesetwofacts,wecanstartto gureouthowmanypossiblecon gurationstheRubik'scubehas.Let'slook,forinstance,attheurfcubicle.Theoretically,anyofthe8cornercubiescouldresideinthiscubicle.Thatleaves7cornercubiesthatcouldresideintheurbcubicle,6forthenextcornercubicle,andsoon.Therefore,thereare87654321=8!possiblepositioningsofthecornercubies.Noticethatacornercubiecan tintoitscubiclein3di erentways.Forin

9 stance,ifared,white,andbluecubieliesinth
stance,ifared,white,andbluecubieliesintheurfcubicle,eitherthered,white,orbluefacecouldlieintheufaceofthecubicle(andthisdetermineswheretheother2faceslie).Sincethereare8cornercubiesandeachcanlieinitscubiclein3di erentways,thereare38di erentwaysthecornercubiescouldbeoriented.Therefore,thereare388!possiblecon gurationsofthecornercubies.Similarly,sincethereare12edgecubies,thereare12!positionsoftheedgecubies;eachedgecubiehas2possibleorientations,giving212possibleorientations.So,thereare10 21212!possiblecon gurationsoftheedgecubies,givingatotalof212388!12!possiblecon gurationsoftheRubik'scube.(Thisnumberisabout5:191020,or519quintillion!)Althoughthesecon gurationsaretheoreticallypossible,thatdoesn'tmeanthatthesecon gurationscouldreallyoccur.Wewillsaythatacon gurationoftheRubik'scubeis validifitcanbeachievedbyaseriesofmovesfromthestartingcon guration.Itturnsoutthatsomeofthetheoreticallypossiblecon gurationswehavecountedareactuallynotvalid.Therefore,wehavetwogoals:1.Demonstratethatsomecon gurationsarenotvalid.2.Findasetofmovesthatcantakeusfromanyvalidcon gurationbacktothestartcon guration.3.2.MakingtheRubik'sCubeintoaGroupWecanmakethesetofmovesoftheRubik'scubeintoagroup,whichwewilldenote(G;).TheelementsofGwillbeallpossiblemovesoftheRubik'scube(forexample,onepossiblemoveisaclockwiseturnofthetopfacefollowedbyacounterclockwiseturnoftherightface).Twomoveswillbeconsideredthesameiftheyresultinthesamecon gurationofthecube(forinstance,twistingafaceclockwiseby180isthesameastwistingthesamefacecounterclockwiseby180).Thegroupoperationwillbede nedlikethis:ifM1andM2aretwomoves,thenM1M2isthemovewhereyou rstdoM1andthendoM2.Whyisthisagroup?Wejustneedtoshowthe4propertiesin[PS2,#11].Giscertainlyclosedundersince,ifM1andM2aremoves,M1M2isamoveaswell.Ifweletebethe\empty"move(thatis,amovewhichdoesnotchangethecon gurationoftheRubik'scubeatall),thenMemeans\ rs

10 tdoM,thendonothing."Thisiscertainlythesa
tdoM,thendonothing."ThisiscertainlythesameasjustdoingM,soMe=M.So,(G;)hasarightidentity.IfMisamove,wecanreversethestepsofthemovetogetamoveM0.Then,themoveMM0means\ rstdoM,thenreverseallthestepsofM."Thisisthesameasdoingnothing,soMM0==e,soM0istheinverseofM.Therefore,everyelementofGhasarightinverse.Finally,wemustshowthatisassociative.Rememberthatamovecanbede nedbythechangeincon gurationitcauses.Inparticular,amoveisdeterminedbythepositionandorientationitputseachcubiein.IfCisanorientedcubie,wewillwriteM(C)fortheorientedcubiclethatCendsupinafterweapplythemoveM,withthefacesofM(C)writteninthesameorderasthefacesofC.Thatis,the rstfaceofCshouldendupinthe rstfaceofM(C),andsoon.Forexample,themoveRputstheurcubieinthebrcubicle,withtheufaceofthecubielyinginthebfaceofthecubicleandtherfaceofthecubielyingintherfaceofthecubicle.Thus,wewriteR(ur)=br.First,let'sinvestigatewhatasequenceoftwomovesdoestothecubie.IfM1andM2aretwomoves,thenM1M2isthemovewherewe rstdoM1andthendoM2.ThemoveM1movesCtothecubicleM1(C);themoveM2thenmovesittoM2(M1(C)).Therefore,(M1M2)(C)=M2(M1(C)).Toshowthatisassociative,weneedtoshowthat(M1M2)M3=M1(M2M3)foranymovesM1,M2,andM3.Thisisthesameasshowingthat(M1M2)M3andM1(M2M3)dothesamethingtoeverycubie.Thatis,wewanttoshowthat[(M1M2)M3](C)=[M1(M2M3)](C)foranycubieC.Weknowfromourabovecalculationthat[(M1M2)M3](C)=M3([M1M2](C))=M3(M2(M1(C))).Ontheotherhand,[M1(M2M3)](C)=(M2M3)(M1(C))=M3(M2(M1(C))).So,(M1M2)M3=M1(M2M3).Thus,isassociative.Therefore,(G;)isindeedagroup.11 3.3.SubgroupsWecalculatedthattherearearound519quintillionpossiblecon gurationsoftheRubik'scube(althoughthesearenotallvalid).Tryingtounderstandsuchalargenumberofcon gurationsisnoeasytask!Itishelpfultorestricttheproblem;forinstance,insteadoflookingatallpossiblemovesoftheRubik'scube,wemightstartoutbylookingatthemoveswhichonlyinvolvet

11 wistsofthedownandrightfaces.Thisisagener
wistsofthedownandrightfaces.Thisisageneralphilosophyingrouptheory:tounderstandagroupG,weshouldtrytounderstandsmallpiecesofit.De nition3.1.AnonemptysubsetHofagroup(G;)iscalleda subgroupofGif(H;)isagroup.Theadvantageofstudyingsubgroupsisthattheymaybemuchsmallerand,hence,simpler;however,theystillhavealgebraicstructure.Example3.2.Agroupisalwaysasubgroupofitself.Also,thetrivialgroupisasubgroupofanygroup.However,thesesubgroupsaren'ttoointeresting!vExample3.3.Thesetofevenintegersisasubgroupof(Z;+):afterall,theevenintegersarecertainlyasubsetofZ,andweknowfrom[PS2,#1c]that(2Z;+)isagroup.vThefollowinglemmaoftenmakesiteasiertocheckifasubsetisactuallyasubgroup.Lemma3.4.Let(G;)beagroup.AnonemptysubsetHofGisasubgroupof(G;)i ,foreverya;b2H,ab�12H.Proof.First,supposeHisasubgroup.Ifb2H,thenb�12Hsince(H;)isagroup.So,ifa2Haswell,thenab�12H.Conversely,supposethat,foreverya;b2H,ab�12H.First,noticethatisassociativesince(G;)isagroup.Leta2H.Then,e=aa�1,soe2H.Letb2H,Thenb�1=eb�12H,soinversesexistinH.Leta;b2H.Bythepreviousstep,b�12H,soa(b�1)�1=ab2H.Thus,Hisclosedunder.Therefore,(H;)isagroup,whichmeansthatHisasubgroupofG. 3.4.SimplifyingGroupNotationItiscommonpracticetowritegroupoperationsasmultiplication;thatis,wewriteghratherthangh,andwecallthisthe\product"ofgandh.Thestatement\letGbeagroup"reallymeansthatGisagroupundersomeoperationwhichwillbewrittenasmultiplication.WewillalsooftenwritetheidentityelementofGas1ratherthane.Finally,wewillusestandardexponentialnotation,sog2meansgg,g3meansggg,andsoon.Inparticular,wewilldothiswith(G;).Thatis,fromnowon,wewilljustcallthisgroupG,andwewillwritetheoperationasmultiplication.Forinstance,DRmeansthemoveDfollowedbythemoveR.Themovewhichtwiststherightfacecounterclockwiseby90isthesameasamovetwistingtherightfaceclockwisethreetimes,sowecanwritethismoveasR3.Exercises1.IfGisagroupandg;h2G,write(gh)�1intermsofg

12 �1andh�1.12 2.IfA;Baresubgroupsofa
�1andh�1.12 2.IfA;BaresubgroupsofagroupG,provethatA\BisasubgroupofG.3.LetGbeagroupandZ(G)=fz2G:zx=xzforallx2Gg.(ThisnotationmeansthatZ(G)isthesetofz2Gsuchthatzx=xzforallx2G.)ProvethatZ(G)isasubgroupofG.Z(G)iscalledthe centerofG.IfGisabelian,whatisZ(G)?4.RememberthatGisthegroupofmovesoftheRubik'scube.Provethatthisgroupisnotabelian.(Hint:picktwomovesM1andM2andlookattheir commutator[M1;M2],whichisde nedtobeM1M2M�11M�12.)5.LetC1andC2betwodi erentunorientedcornercubies,andletC01andC02betwodi erentunorientedcornercubicles.ProvethatthereisamoveoftheRubik'scubewhichsendsC1toC01andC2toC02.Sincewearetalkingaboutunorientedcubiesandcubicles,weonlycareaboutthepositionsofthecubies,nottheirorientations.(Forexample,ifC1=dbr,C2=urf,C01=dlb,andC02=urf,thenthemoveDsendsC1toC01andC2toC02.)6.LetGbeagroupandSbeasubsetofG.LetHbethesetofallelementsofGwhichcanbewrittenasa niteproductofelementsofSandtheirinverses;thatis,Hconsistsofallelementsoftheforms1snwhereeachsiiseitheranelementofSortheinverseofanelementofS.ProvethatHisasubgroupofG.WecallHthe subgroup of G generated by SandwriteH=hSi.ItisthesmallestsubgroupofGcontainingS(doyouseewhy?).7.IfGisanabeliangroup,showthatfa2:a2GgisasubgroupofG.WhichpartofyourprooffailswhenGisnotabelian?8.Findallsubgroupsof(Z;+).9.Let(G;)beagroupandHbeanonempty nitesubsetofGclosedunder.ProvethatHisasubgroupofG.IsthestatementstilltrueifHisnotrequiredtobe nite?10.TryscramblingyourRubik'scube.Howmanycubiescanyouputintherightposition?Therightorientation?11.BrainstormabitaboutwhatkindofstrategyyoushouldusetosolvetheRubik'scube.Whichcubiesshouldyoutrytosolve rst?Whatkindofmovesshouldyoulookfor?13 4.GeneratorsLetGbeagroupandSbeasubsetofG.In[PS3,#6],wede nedthesubgrouphSi.Now,wewillgivesomepropertiesofhSi.First,let'slookatthespecialcasewhenhSiisjustG.De nition4.1.LetGbeagroupandSbeasubsetofG.WesaythatS generatesGorthatSisasetof generatorsofGifG=hSi;thatis,everyelementofGcanbewrittena

13 sa niteproduct(underthegroupoperatio
sa niteproduct(underthegroupoperation)ofelementsofSandtheirinverses.Example4.2.EveryelementofZcanbewrittenasa nitesumof1'sor�1's,soZisgeneratedbyf1g.Thatis,Z=h1i.Forthesamereason,Z=h�1i.Ofcourse,it'salsotruethatZ=h1;2i.Ingeneral,therearemanypossiblesetsofgeneratorsofagroup.vExample4.3.EveryelementofZ=4Zcanbewrittenasa nitesumof1's,soZ=4Z=h1i.EventhoughZ=h1iandZ=4Z=h1i,ZandZ=4Zarenotequal!hSionlymakessenseinthecontextofagivengroup.vExample4.4.EveryelementofGcanbewrittenasa nitesequenceofturnsoftheRubik'scube,soG=hD;U;L;R;F;Bi.vYoumightthinkofgeneratorsasbeingthe\core"ofthegroup;sinceeveryelementofthegroupcanbewrittenintermsofthegenerators,knowledgeaboutthegeneratorscanoftenbetranslatedintoknowledgeaboutthewholegroup.Wewillmakethismoreprecisesoon.De nition4.5.AgroupGis cyclicifthereexistsg2GsuchthatG=hgi.Example4.6.ZandZ=4Zarecyclic.vFor nitegroups,wecanevenrelaxthede nitionofgeneratorsslightlybyleavingouttheinversesofS.Toprovethis,weneedalemma.Lemma4.7.LetGbea nitegroupandg2G.Then,g�1=gnforsomen2N.Proof.Ifg=e,thenthereisnothingtoshow.So,supposeg6=e.By[PS2,#6],thereexistsapositiveintegermsuchthatgm=e.Sinceg6=e,m6=1,som�1.Letn=m�12N.Then,ggn=gm=e,sognistheinverseofgby[PS2,#4]. Lemma4.8.LetGbea nitegroupandSbeasubsetofG.Then,G=hSii everyelementofGcanbewrittenasa niteproductofelementsofS.(Thatis,theinversesofSarenotnecessary.)Proof.IfeveryelementofGcanbewrittenasa niteproductofelementsofS,thenitisclearthatG=hSi.Conversely,supposeG=hSi.ThismeansthateveryelementofGcanbewrittenasa niteproducts1snwhereeachsiiseitherinSortheinverseofanelementofS.ThebasicpointoftheproofisthattheinverseofanelementofScanalsobewrittenasaproductofelementsofSbythepreviouslemma.Tomakethiscompletelyrigorous,wewilluseinductiononn.Supposen=1.Eithers12Sors�112S.Ifs12S,thens1iswrittenasaproductofasingleelementofS.Ifs�112S,thens1canbewrittenasa niteproductofelementsofSbyLemma4.7.So,thebasecasei

14 strue.Now,supposethestatementistrueforal
strue.Now,supposethestatementistrueforallnaturalnumberssmallerthann;wewanttoshowthats1sncanbewrittenasa niteproductofelementsofS.Bytheinductionhypothesis,s1:::;sn�1andsncanbothbewrittenas niteproductsofelementsofS.Therefore,theirproducts1sncertainlycanaswell. Now,wewillseehowtotranslatepropertiesofgeneratorstothewholegroup.14 Proposition4.9.LetGbea nitegroupandSbeasubsetofG.Supposethefollowingtwoconditionsaresatis ed.1.EveryelementofSsatis essomepropertyP.2.Ifg2Gandh2GbothsatisfythepropertyP,thenghsatis esthepropertyPaswell.Then,everyelementofhSisatis esP.Beforeweprovethis,let'sseehowitmightbeused.Example4.10.LetS=fD;U;L;R;F;BgG.Then,everyM2Ssatis estheproperty\Mkeepsallcentercubiesintheircubicles."IfM1;M22Garesuchthattheykeepallcentercubiesintheircubicles,thenM1M2certainlykeepsallcentercubiesintheircubicles.SinceG=hSi,thepropositionsaysthateveryelementofGkeepsthecentercubiesintheircubicles.ThispropositionisextremelyusefulfortheRubik'scubebecauseitmeanswefrequentlyonlyneedtounderstandpropertiesofthe6basicmovesratherthanall51020possiblemoves.vNow,let'sproveProposition4.9.Proof.ByLemma4.8,anyelementofhSicanbewrittenass1snwheren2NandeachsiisanelementofS.Wewillprovethepropositionbyinductiononn.Ifn=1,thens12Ssatis espropertyPbyhypothesis.Supposeinductivelythats1sn�1satis espropertyP.Then,theproduct(s1sn�1)snisaproductoftwoelementssatisfyingpropertyP,soitsatis espropertyPaswell. Exercises1.IfHisasubgroupofagroupG,provethathHi=H.2.IfAisasubsetofB,provethathAiisasubgroupofhBi.Istheconversetrue?3.LetGbeanontrivialgroup(rememberthatthetrivialgroupisthegroupwithonlyoneelement,soanontrivialgroupisagroupwithatleast2elements).SupposethattheonlysubgroupsofGareGandf1g.ProvethatGiscyclicand nite,andprovethatthenumberofelementsinGisaprimenumber.4.Provethatanysubgroupofacyclicgroupiscyclic.5.RememberthatGisthegroupofmovesoftheRubik'scube,D2G

15 isaclockwisetwistofthedownface,andR2Gisa
isaclockwisetwistofthedownface,andR2Gisaclockwisetwistoftherightface.FindtheorderofD,R,andDR(remember,DRisthemovewhereyou rstdoD,thenR;forthede nitionoforder,see[PS2,#6]).6.AgroupGis nitely generatedifthereexistsa nitesubsetSofGsuchthatG=hSi.(a)Provethatevery nitelygeneratedsubgroupof(Q;+)iscyclic.(b)Provethat(Q;+)isnot nitelygenerated.15 5.TheSymmetricGroupWhenwefoundthenumberofpossiblecon gurationsoftheRubik'scube,weusedthefactthatanymovesendscornercubiestocornercubiclestodeducethatthereare8!possiblewaystopositionthecornercubies.Inthissection,wewilllaydownthemathematicalfoundationneededtounderstandthesepossibilities.Ratherthanjustlookingatcon gurationsof8cubies,we'lllookatcon gurationsofanynobjects.We'llcalltheseobjects1;2;:::;n,althoughthesenamesarearbitrary.Wecanthinkofarrangingtheseobjectsasputtingthemintonslots.Ifwenumbertheslots1;2;:::;n,thenwecande neafunction:f1;2;:::;ng!f1;2;:::;ngbyletting(i)bethenumberputintosloti.Example5.1.Wecanputtheobjects1,2,3intheorder312.Here,3isinthe rstslot,1isinthesecondslot,and2isinthethirdslot.So,thisorderingcorrespondstothefunction:f1;2;3g!f1;2;3gde nedby(1)=3,(2)=1,and(3)=2.vWhatcanwesayabout?Lemma5.2.isabijection.Proof.Supposex6=y.Sinceanumbercannotbeinmorethanoneslot,ifx6=y,slotsxandymustcontaindi erentnumbers.Thatis,(x)6=(y).Therefore,isone-to-one.Anynumbery2f1;2;:::;ngmustlieinsomeslot,sayslotx.Then,(x)=y.So,isonto. Ontheotherhand,if:f1;:::;ng!f1;:::;ngisabijection,thende nesanarrangementofthenobjects:justputobject(i)insloti.So,thesetofpossiblearrangementsisreallythesameasthesetofbijectionsf1;:::;ng!f1;:::;ng.Therefore,insteadofstudyingpossiblearrangements,wecanstudythesebijections.De nition5.3.The symmetric group on n lettersisthesetofbijectionsfromf1;2;:::;ngtof1;2;:::;ng,withtheoperationofcomposition.WewritethisgroupasSn.NotethatSnisagroupby[PS2,#1h].Let'sdoa

16 nexampletomakesurethatthegroupoperationi
nexampletomakesurethatthegroupoperationisclear.Example5.4.Let;2S3bede nedby(1)=3,(2)=1,(3)=2,(1)=1,(2)=3,and(3)=2.Then,()(1)=(3)=2,()(2)=(1)=1,and()(3)=(2)=3.v5.1.DisjointCycleDecompositionThereisamorecompactwayofwritingelementsofthesymmetricgroup;thisisbestexplainedbyanexample.Example5.5.Consider2S12de nedby(1)=12(2)=4(3)=5(4)=2(5)=6(6)=9(7)=7(8)=3(9)=10(10)=1(11)=11(12)=8Wewillwrite"i7!j"(\imapstoj")tomean(i)=j.Then,17!12,127!8,87!3,37!5,57!6,67!9,97!10,107!127!4,47!277!7117!1116 Thisdatatellsuswhatdoestoeachnumber,soitde nes.Asshorthand,wewrite=(1128356910)(24)(7)(11):Here,(1128356910),(24),(7),and(10)arecalled cycles.Whenwritingthedisjointcyclede-composition,weleaveoutthecycleswithjustonenumber,sothedisjointcycledecompositionofis=(1128356910)(24).vNow,let'sactuallyde newhatacycleis.De nition5.6.The cycle(i1i2ik)istheelement2Snde nedby(i1)=i2;(i2)=i3;:::;(ik�1)=ik;(ik)=i1and(j)=jifj6=irforanyr.The lengthofthiscycleisk,andthe supportofthecycleisthesetfi1;:::;ikgofnumberswhichappearinthecycle.Thesupportisdenotedbysupp.Acycleoflengthkisalsocalleda k-cycle.De nition5.7.Twocyclesandare disjointiftheyhavenonumbersincommon;thatis,supp\supp=?.Lemma5.8.Let;2Snbecycles.Ifandaredisjoint,then=.Proof.Leti2f1;:::;ng.Sincesupp\supp=?,thereareonlytwopossibilities:i62suppandi62supp.Inthiscase,(i)=iand(i)=i,so()(i)=(i)=iand()(i)=(i)=i.Otherwise,iisinthesupportofexactlyoneofand.Wemaysupposewithoutlossofgeneralitythati62suppandi2supp.Then,(i)=i,so()(i)=(i).Ontheotherhand,()(i)=((i)).Now,since(i)2sup

17 pandsupp\supp=?,(i)6
pandsupp\supp=?,(i)62supp.Therefore,((i))=(i).So,weagainhave()(i)=()(i).Therefore,()(i)=()(i)=iforalli,whichshowsthat=. Any2Sncanbewrittenasaproduct(underthegroupoperation,whichiscomposition)ofdisjointcycles.Thisproductiscalledthe disjoint cycle decompositionof.Inourexample,wegaveamethodfor ndingthedisjointcycledecompositionofapermutation.Wewritetheidentitypermutationas1.Example5.9.S2consistsoftwopermutations,1and(12).vExample5.10.Let;2S6bede nedby(1)=3(2)=5(3)=4(4)=1(5)=2(6)=6(1)=5(2)=4(3)=3(4)=2(5)=1(6)=6Incyclenotation,=(134)(25)and=(15)(24).Then,=(132)(45)and=(12)(345).Wecanalsoeasilycompute2=(143)and2=1.vDe nition5.11.If2Snistheproductofdisjointcyclesoflengthsn1;:::;nr(includingits1-cycles),thentheintegersn1;:::;nrarecalledthe cycle typeof.5.2.Rubik'sCubeWecanwriteeachmoveoftheRubik'scubeusingaslightlymodi edcyclenotation.Wewanttodescribewhathappenstoeachorientedcubie;thatis,wewanttodescribewhereeachcubiemovesandwhereeachfaceofthecubiemoves.Forexample,ifweunfoldthecubeanddrawthedownface,itlookslike17 f f f l d d d r l d d d r l d d d r b b b Ifwerotatethisfaceclockwiseby90(thatis,weapplythemoveD),thenthedownfacelookslike l l l b d d d f b d d d f b d d d f r r r So,D(dlf)=dfrbecausethedlfcubienowlivesinthedfrcubicle(withthedfaceofthecubielyinginthedfaceofthecubicle,thelfaceofthecubielyingintheffaceofthecubicle,andtheffaceofthecubielyingintherfaceofthecubicle).Similarly,D(dfr)=drb,D(drb)=dbl,andD(dbl)=dlf.Ifwedothesamethingfortheedgecubies,we ndD=(dlfdfrdrbdbl)(dfdrdbdl).Example5.12.CheckthatthedisjointcycledecompositionofRis(rfurubrbdrdf)(rurbrdrf).vExercises1.Let;2S5bede nedasfollows.(1)=3(2)=4(3)=5(4)=2(5)=1(1)=5(2)=3(3)=2(4)=4

18 ;(5)=1Findthecycledecompositionsofeachof
;(5)=1Findthecycledecompositionsofeachofthefollowingpermutations:,,2,and2.2.Let=(1128104)(213)(5117)(69).Find2and3.Whatistheorderof?3.Supposeisapermutationwithcycletypen1;:::;nr.Whatistheorderof?4.Let=(12)and=(23).Findand.(a)Whatistheorderof(12)(23)?Doesthisagreewithyouranswerto[PS5,#3]?(b)ForwhatnisSnabelian?5.WritealltheelementsofS3,thesymmetricgroupon3elements,usingdisjointcyclenotation.6.FindallsubgroupsofS3.7.RememberthatD,U,L,R,F,andBarede nedtobeclockwisetwistsofthedown,up,left,right,front,andbackfaces,respectively.WeshowedinclassthatDhasdisjointcycledecomposition(dlfdfrdrbdbl)(dfdrdbdl)andthatRhasdisjointcycledecomposition(rfurubrbdrdf)(rurbrdrf).WriteU,L,F,andBasproductsofdisjointcycles.8.Leta1;:::;ambedistinctelementsoff1;:::;ng,andlet=(a1a2)(a1a3)(a1a4)(a1am).Findthedisjointcycledecompositionof.9.ShowthatSnisgeneratedbythesetof2-cyclesinSn.10.Let2Sn,andleta1;:::;ak)bedistinctelementsoff1;:::;ng.Provethat�1(a1a2ak)=((a1)(a2)(ak)).18 11.Let;02S6bede nedby=(132)(46)0=(254)(16)Find2S6suchthat0=�1.12.Let;02Sn.Provethatand0havethesamecycletypei 0=�1forsome2Sn.Note:Anyelementoftheform�1iscalleda conjugateof,sothissaysthattheconjugatesofareexactlytheelementsofSnwiththesamecycletypeas.13.LetHbethesubgroupofGgeneratedbyD2andR2;thatis,H=hD2;R2i.HowmanyelementsdoesHhave?WhichoftheseelementsmightbehelpfulforsolvingtheRubik'scube?14.Let;2Sn.Supposesupp\supp=fxg;thatis,xistheonlynumberinf1;:::;ngwhichappearsinthecycledecompositionofbothand.Wede nethe commutatorofandtobe�1�1,andwewritethisas[;].Showthatsupp[;]hasatmost3elements.19 6.Con gurationsoftheRubik'sCu

19 beAswesaidalready,acon gurationofthe
beAswesaidalready,acon gurationoftheRubik'scubeisdeterminedbyfourpiecesofdata:thepositionsofthecornercubiesthepositionsoftheedgecubiestheorientationsofthecornercubiestheorientationsoftheedgecubiesThe rstcanbedescribedbyanelementofS8(i.e.,theelementofS8whichmovesthecornercubiesfromtheirstartpositionstothenewpositions).ThesecondcanbedescribedbyanelementofS12.Now,wewillseehowtounderstandthethirdandfourth.Thebasicideaisto xa\startingorientation"andasystematicwayofwritingdownhowagivenorientationdi ersfromthisstartingorientation.Thsismostlyjustamatterofnotation.We'llstartwiththecornercubies.Eachcornercubiehas3possibleorientations,andwewillnumbertheseorientations0,1,and2.Let'sexplainwhatthesenumbersmean.ImaginethatyourRubik'scubeisinthestartcon guration.Wearegoingtowriteanumberononefaceofeachcornercubicle,asfollows.Write:1ontheufaceoftheu cubicle2ontheufaceoftheurfcubicle3ontheufaceoftheubrcubicle4ontheufaceoftheulbcubicle5onthedfaceofthedblcubicle6onthedfaceofthedlfcubicle7onthedfaceofthedfrcubicle8onthedfaceofthedrbcubicleSo,eachcornercubiclenowhasexactlyonenumberedface.Eachcornercubiethushasonefacelyinginanumberedcubicleface.Labelthiscubieface0.Goingaroundthecubieclockwise,labelthenextface1,andthenlabelthe nalface2.Example6.1.Ifwelookstraightatthedownfaceandunfoldthecube,thecubiefaceslooklikethis. f f f l d d d r l d d d r l d d d r b b b So,thecubiclenumberingsthatwecanseelooklikethis: 6 7 5 8 Therefore,thecubielabelslooklike 2 1 1 0 0 2 2 0 0 1 1 2 20 vNow,eachfaceofeachcornercubiehasanumberonit.IftheRubik'scubeisinanycon guration,wewilldescribetheorientationsofthecornercubieslikethis:foranyibetween1and8, ndthecubiclefacelabeledi;letxibethenumberofthecubiefacelivinginthiscubicleface.Wewritexfortheordered8-tuple(x1;:::;x8).Noticethatwecanthinkofeachxiascountingthenumberofclockwisetwiststhecubieiisawayfromhavingits0faceinthenumberedfaceofthecubicle.Butacubiethatis3twistsawayisorientedthesa

20 mewayasacubiethatis0twistsaway.Thus,wesh
mewayasacubiethatis0twistsaway.Thus,weshouldthinkofthexiasbeingelementsofZ=3Z.So,xisan8-tupleofelementsofZ=3Z;wewritex2(Z=3Z)8.Example6.2.IftheRubik'scubeisinthestartcon guration,eachxiis0.Wealsowritex=0tomeanthateachxiis0.vExample6.3.Let'sseewhatthexiareafterweapplythemoveRtoacubeinthestartcon guration.Inthestartcon guration,therighthandfacelookslikethis: u u u f r r r b f r r r b f r r r b d d d Thecubiclenumbersonthisfaceare 2 3 7 8 Therefore,thelabelingofthecornercubieslookslikethis: 0 0 2 1 2 1 1 2 1 2 0 0 Ifwerotatetherightfaceofthecubeby90,thenthecubiefaceslooklike 1 2 0 2 1 0 0 1 2 0 2 1 Thecubiesontheleftfaceareuna ectedbyR,sox1=0,x4=0,x5=0,andx6=0.Now,wecanseefromourdiagramsthatx2=1,x3=2,x7=2,andx8=1.So,x=(0;1;2;0;0;0;2;1).vWecandothesamethingfortheedgecubies.First,welabeltheedgecubiclesasfollows.Write:21 1ontheufaceoftheubcubicle2ontheufaceoftheurcubicle3ontheufaceoftheufcubicle4ontheufaceoftheulcubicle5onthebfaceofthelbcubicle6onthebfaceoftherbcubicle7ontheffaceoftherfcubicle8ontheffaceofthelfcubicle9onthedfaceofthedbcubicle10onthedfaceofthedrcubicle11onthedfaceofthedfcubicle12onthedfaceofthedlcubicleEachedgecubienowhasafacelyinginanumberedcubicleface;labelthiscubieface0,andlabeltheotherfaceofthecubie1.Then,letyibethenumberofthecubiefaceinthecubiclefacenumberedi.Thisde nesy2(Z=2Z)12.Thus,anycon gurationoftheRubik'scubecanbedescribedby2S8,2S12,x2(Z=3Z)8,andy2(Z=2Z)12.So,wewillwritecon gurationsoftheRubik'scubeasordered4-tuples(;;x;y).Example6.4.Thestartcon gurationis(1,1,0,0).vExample6.5.Pretendthatyourcubeisinthestartcon guration.Let(;;x;y)bethecon gurationofthecubeafterwedothemove[D;R],whichisde nedtobeDRD�1R�1.Wewillwritedown,,x,andy.WeshowedinclassthatD=(dlfdfrdrbdbl)(dfdrdbdl)andR=(rfurubrbdrdf)(rurbrdrf).Therefore,D�1=(dbldrbdfrdlf)(dldbdrdf)andR�1=(rdfrbdrubrfu)(rfrdrbru).So,[D;R]=(dlfdfrlfdfrdfdlrdf)(drbbrubdrubrrbdrub)(dfdrbr)(

21 6.1)(Whenwritingthisdown,beverycarefulwi
6.1)(Whenwritingthisdown,beverycarefulwiththeorientations.)RememberthatisanelementofS12;wethinkofitasabijectionfromthesetof12unorientededgecubiestothesetof12edgecubicles.Itisde nedlikethis:ifCisanunorientededgecubieinthestartcon guration,then(C)istheunorientededgecubiclewhereCislivinginthecurrentcon guration.LikeanyelementofS12,canbewrittenindisjointcyclenotation.Inthisparticularexample,[D;R]movescubiedftocubicledr,cubiedrtocubiclebr,andcubiebrtocubicledf.Therefore,=(dfdrbr).Similarly,wethinkofasabijectionfromthesetof8unorientedcornercubiestothesetof8unorientedcornercubicles.To nd,wemust gureoutwhat[D;R]doestothepositionsofthecornercubies.Observethat[D;R]switchesthepositionsofthecubiesd anddfr,anditalsoswitchesthepositionsofdrbandbru.Therefore,=(drbbru)(d dfr).Recallthatwede nedxasfollows.Whenthecubewasinthestartcon guration,wenumbered8cubiclefaceslikethis:1ontheufaceoftheu cubicle2ontheufaceoftheurfcubicle3ontheufaceoftheubrcubicle4ontheufaceoftheulbcubicle5onthedfaceofthedblcubicle6onthedfaceofthedlfcubicle7onthedfaceofthedfrcubicle8onthedfaceofthedrbcubicleWenumberedeachofthecorrespondingcubiefaces0.Startingfrom0onacornercubie,wewentclockwise22 andlabeledtheothertwofaces1and2.(Forexample,theufaceoftheu cubieislabeled0,sotheffaceis1andthelfaceis2.)Nowthatthecubeisnolongerinthestartcon guration,wede nexitobethecubiefacenumberincubiclefacei.Inthestartposition,allofthenumberedcubiclefaceshavecubiefacesnumbered0.Sincethemove[D;R]doesnota ectcubiesu ,urf,ulb,ordbl,x1,x2,x4,andx5mustbe0.To ndx3,wewanttoseewhichcubiefaceisintheufaceoftheubrcubicle.Wecanseefrom(6.1)that[D;R]putsthebfaceofthedrbcubiethere;byournumberingscheme,thebfaceofthedrbcubieisnumbered2;therefore,x3=2.Similarly,x6=2,x7=0,andx8=2.Therefore,theordered8-tuplexis(0;0;2;0;0;2;0;2).Similarly,tode ney,we rstnumbered12edgecubiclefaces(whenthecubewasinthestartcon guration):1ontheufaceoftheubcubicle2on

22 theufaceoftheurcubicle3ontheufaceoftheuf
theufaceoftheurcubicle3ontheufaceoftheufcubicle4ontheufaceoftheulcubicle5onthebfaceofthelbcubicle6onthebfaceoftherbcubicle7ontheffaceoftherfcubicle8ontheffaceofthelfcubicle9onthedfaceofthedbcubicle10onthedfaceofthedrcubicle11onthedfaceofthedfcubicle12onthedfaceofthedlcubicleThen,welabeledthecorrespondingcubiefaces0andtheotheredgecubiefaces1.Finally,wede nedytobethe12-tuple(y1;:::;y12)whereyiisthenumberinedgecubiclefacei.Since[D;R]onlya ectstheedgecubiesdf,dr,andbr,weknowrightawaythaty11,y10,andy6aretheonlyyithatmaybenonzero.Since[D;R]putsthebfaceofthebrcubicleinthedfaceofthedfcubicle,y11=0.Similarly,y10andy6areboth0.So,y=(0;0;0;0;0;0;0;0;0;0;0;0).Youmightwonderwhywebothertode necon gurationsoftheRubik'scubethisway,sinceitseemsmucheasiertogettheinformationdirectlyfrom(6.1).Themainreasonisthatwriting,,x,andyseparatelyallowsustorecognizepatternsmoreeasily(andprovethem!).vExercises1.SupposeyourRubik'scubeisinthecon guration(;;x;y).IfyouapplythemoveDtothecube,itendsupinanewcon guration(0;0;x0;y0).Writex0andy0intermsofxandy.DothesameforthemovesU,L,R,F,andB.Doyounoticeanypatterns?2.Writethecommutator[D;R]indisjointcyclenotation(becarefultokeeptrackoftheorientationsofthecubies).Whatistheorderof[D;R]?Canyou nd...(a)...amovewhich xesthepositions(butnotnecessarilyorientations)ofthebackcornercubiesandonefrontcornercubie?(b)...amovewhichleaves6cornercubies xedandswitchestheother2?Tryusingthesemovestoputallthecornercubiesintherightpositions(butnotnecessarilyorienta-tions).Whatotherusefulmovescanyougetfrom[D;R]?3.(a)InthesubgrouphD;RiofG, ndamovewhichchangestheorientations(butnotpositions)oftwocornercubieswithouta ectinganyothercornercubies.Yourmovemaydoanythingtoedge23 cubies.(Hint:computeafewelementsofhD;Riandthinkaboutwhichpowersoftheseelementsaresimplest.Thentrytoputsomeofthesesimplethingstogether.)(b)Findamovewhichchangestheorientationsofthecubiesdbrandu butdoesnota ectanyotherco

23 rnercubies.24 7.GroupHomomorphismsInExam
rnercubies.24 7.GroupHomomorphismsInExample2.1,wesaidthatZ=4Zand(Z=5Z)shouldbethoughtofasthesamegroup.Afterall,theybothhave4elements,andadditioninZ=4Zbehavesexactlythesamewayasmultiplicationin(Z=5Z).Inordertounderstandthis,wereallyneedawaytotranslatebehaviorfromonegrouptoanother.Let'stakeanotherlookatExample2.1.WeobservedinthatexamplethattheadditiontableforZ=4Zandthemultiplicationtablefor(Z=5Z)werereallythesame.Essentially,ifwereplaced0,1,2,and3intheadditiontableforZ=4Zby1,2,4,3(respectively),thenwegotthethemultiplicationtablefor(Z=5Z).Anotherwayofthinkingaboutthisisthatwereallyde nedafunctionf:Z=4Z!(Z=5Z)byf(0)=1,f(1)=2,f(2)=4,andf(3)=3.Thisfunctionhadaspecialproperty,though,whichwasthatittranslatedtheadditiontableforZ=4Ztothemultiplicationtablefor(Z=5Z).Howcanweexpressthis?Well,theideaisthat,foreverya;b2Z=4Z,theterma+bintheadditiontableforZ=4Zshouldcorrespondtothetermf(a)f(b)inthemultiplicationtablefor(Z=5Z).Thatis,f(a+b)=f(a)f(b)foralla;b2Z=4Z.Thisconditionexpressesthefactthatf\translates"theadditiontableforZ=4Ztothemultiplicationtablefor(Z=5Z).Wecangeneralizethisconditiontoanypairofgroups.De nition7.1.Let(G;)and(H;H)betwogroups.A homomorphismfromGtoHisamap:G!Hsuchthat(ab)=(a)H(b)foralla;b2G.Example7.2.Wecande neamap:Z=4Z!(Z=5Z)bytaking(0)=1,(1)=2,(2)=4,and(3)=3.UsingtheadditiontableforZ=4Zandthemultiplicationtablefor(Z=5Z),wecancheckthat(a+b)=(a)(b)foralla;b2Z=4Z.Alternatively,observethat(x)=2xforallx,so(a+b)=2a+b=2a2b=(a)(b).vExample7.3.Wecande neamapcorner:G!S8asfollows.AnymoveinGcertainlyrearrangesthecornercubiessomehow;thus,itde nesapermutationofthe8unorientedcornercubies.Thatis,anyM2Gde nessomepermtuation2S8.Letcorner(M)=.Thatis,corner(M)istheelementofS8whichdescribeswhatMdoestotheunorientedcornercubies.Forexample,weknowthat[D;R]hasdisjointcycledecomposition(dlfdf

24 rlfdfrdfdlrdf)(drbbrubdrubrrbdrub)(dfdrb
rlfdfrdfdlrdf)(drbbrubdrubrrbdrub)(dfdrbr).Therefore,corner(M)=(dlfdfr)(drbbru).Similarly,wecande neahomomorphismedge:G!S12bylettingedge(M)betheelementofS12whichdescribeswhatMdoestothe12unorientededgecubies.Forexample,edge([D;R])=(dfdrbr).Finally,wecande nea\cube"homomorphismcube:G!S20,whichdescribespermutationsofthe20unorientededgeandcornercubies.Forexample,corner([D;R])=(dlfdfr)(drbbru)(dfdrbr).vExercises1.Let2S5bede nedby(1)=2,(2)=4,(3)=1,(4)=5,and(5)=3.Writeasaproductof2-cyclesinatleast3di erentways(thisispossibleby[PS5,#9]).Doyounoticeanypatternsinthewaysyouhavewritten?Howmany2-cyclesdidyouuse?2.Let:(Z;+)!(R�f0g;)bede nedby(x)=2x.Provethatisahomomorphism.3.Findallhomomorphisms:(Z=4Z;+)!((Z=5Z);).4.(a)FindamoveM2Gwhichswitchesthepositionsoftheurfandbdlcubieswithouta ectinganyothercornercubies.Whatiscorner(M)?Hint:Startwiththemoveyoufoundin[PS6,#2b].25 (b)LetC1andC2beanytwodistinctunorientedcornercubies.ProvethatthereissomemoveM2GwhichswitchesthepositionsofC1andC2withouta ectinganyothercornercubies.(Evenifyoudidn't ndthemovein[PS7,#4a],assumethatsuchamoveexists,andyoushouldbeabletodothisproof!)Whatiscorner(M)?5.Let:(G;)!(H;H)beahomomorphism.(a)Let1GbetheidentityelementofGand1HbetheidentityelementofH.Provethat(1G)=1H.(b)Provethat(g�1)=(g)�1forallg2G.(Firstmakesureyouunderstandexactlywhatthismeans!)6.Let:(G;)!(H;H)beahomomorphism.The imageofisde nedtobethesetim=f(g):g2Gg.ProvethatimisasubgroupofH.26 8.TheSignHomomorphismBy[PS5,#9],Snisgeneratedbythe2-cyclesinSn.Thatis,anypermutationinSncanbewrittenasa niteproductof2-cycles.However,anygivenpermutationofSncanbewrittenasa niteproductof2-cyclesinin nitelymanyways,soitseemslikethereisnotmuchwecansayaboutthisproduct.SomepermutationsinSncanbewrittenasaproductofanevennumberof2-cycles;w

25 ecallthese even permutations.Otherpermut
ecallthese even permutations.OtherpermutationsinSncanbewrittenasaproductofanoddnumberof2-cycles;wecallthese odd permutations.Sofar,thereseemstobenoreasonthatapermutationcouldnotbebothevenandodd.However,itisinfacttruethatapermutationiseitherevenorodd,butnotboth.Unfortunately,adirectproofofthisfactisrathermessy;instead,wewillgiveaproofwhichisrelativelysimplebutusesanindirecttrick.Fixn,andletp(x1;:::;xn)beapolynomialinthenvariablesx1;:::;xn.Example8.1.Ifn=1,p(x1)isapolynomialinthevariablex1;thatis,p(x1)lookslikeamxm1+am�1xm�11++a0.So,p(x1)isasumoftermsthatlooklikeaxi1.Ifn=2,thenp(x1;x2)isasumoftermsthatlooklikeaxi1xj2.Ingeneral,p(x1;:::;xn)isasumoftermsthatlooklikeaxi11xi22xinn.vIf2Sn,letpbethepolynomialde nedby(p)(x1;:::;xn)=p(x(1);:::;x(n)).Thatis,wesimplyreplacexibyx(i).Example8.2.Supposen=4,p(x1;x2;x3;x4)=x31+x2x3+x1x4,and2S4hascycledecomposition=(123).Then,(p)(x1;x2;x3;x4)=x3(1)+x(2)x(3)+x(1)x(4)=x32+x3x1+x2x4.vLemma8.3.Forany;2Sn,(p)=p.Thisstatementiseasytomisinterpret,sobeforewegiveaproof,let'sdoanexample.Example8.4.Asinthepreviousexample,letn=4,p(x1;x2;x3;x4)=x31+x2x3+x1x4,and=(123).Let=(13)(24).Weknowthatp=x32+x3x1+x2x4,so(p)=x3(2)+x(3)x(1)+x(2)x(4)=x34+x1x3+x4x2.Ontheotherhand,=(142),sop=x3()(1)+x()(2)x()(3)+x()(1)x()(4)=x34+x1x3+x4x2.vNow,wewillproveLemma8.3.Proof.Byde nition,(p)(x1;:::;xn)=p(x(1);:::;x(n)),so[(p)](x1;:::;xn)=p(x((1));:::;x((n))).Now,((i))=()(i),so[(p)](x1;:::;xn)=p(x()(1);:::;x()(n))=(p)(x1;:::;xn). Toproveourassertionaboutevenandoddpermutations,wewillapplyLemma8.3toaspeci cpolynomial,namely=Y1in(xi�xj):Example8.5.Ifn=3,=(x1�x2)(x1�x3

26 )(x2�x3).vLemma8.6.Forany2Sn,
)(x2�x3).vLemma8.6.Forany2Sn,=.Example8.7.If=(132),then=(x3�x1)(x3�x2)(x1�x2)=(x1�x2)(x1�x3)(x2�x3)=.Ontheotherhand,if=(12),then=(x2�x1)(x2�x3)(x1�x3)=�.vNow,wewillproveLemma8.6.Asyoumightguessfromtheexamples,theideaistomatchtermsofwithtermsof.Thatis,foreachtermxi�xjoftheproductfor,eitherxi�xjoritsnegativeappearsintheproductfor.27 Proof.Byde nition,=Y1in(xi�xj);so=Y1in(x(i)�x(j)):Inordertoshow=,wemustshowtwothings.First,foreachiandjwith1ijn,wemustshowthateitherx(i)�x(j)oritsnegativeappearsin;thatis,eitherx(i)�x(j)oritsnegativehastheformxk�x`with1kln.Secondly,wemustshowthat,foreachiandjwith1ijn,eitherxi�xjoritsnegativeappearsin.Sinceandhavethesamenumberofterms,thesetwostatementstogetherprovethatthetermsofandmatchup.Toprovethe rststatement,allweneedtoshowisthateither(i)(j)or(j)(i);equivalently,weneedtoshowthat(i)6=(j)if1ijn.Thisistruebecauseisone-to-oneandi6=j.Toprovethesecondstatement,weneedtoshowthateitherxi�xjoritsnegativecanbewrittenasx(k)�x(`)with1k`n.Since2Sn,�12Sn;inparticular,�1isalsoabijection.Sincei6=j,�1(i)6=�1(j).Letkbethesmallerof�1(i)and�1(j),andlet`bethelarger.Then,1k`n,andxi�xjiseitherx(k)�x(`)oritsnegative. ByLemma8.6,wecande neamap:Sn!f1gby=().ByLemma8.3,=()=[()]=()=()().Therefore,()=()().So,isahomomorphism.Wecallitthe sign homomorphism.Weclaimedatthebeginningthat()hadsomethingtodowiththenumberof2-cyclesinaproductdecom

27 positionof.Now,we'llprovethis.Theor
positionof.Now,we'llprovethis.Theorem8.8.Ifisa2-cycle,then()=�1.Proof.First,let=(12).Wecanwrite=Y1in(xi�xj):Now,let'swritethetermswherei=1ori=2separately.Then,=Y1n(x1�xj)Y2n(x2�xj)Y3in(xi�xj)=(x1�x2)Y2n(x1�xj)Y2n(x2�xj)Y3in(xi�xj)Therefore,=(x(1)�x(2))Y2n(x(1)�x(j))Y2n(x(2)�x(j))Y3in(x(i)�x(j))=(x2�x1)Y2n(x2�xj)Y2n(x1�xj)Y3in(xi�xj)=�Thus,wehaveprovedthestatementfor=(12).Wecouldgeneralizetheaboveargumenttoany2-cycle,butthereisaneasierway!Letbeany2-cycle.By[PS5,#12],isconjugateto(12).Thatis,=(12)�1forsome2Sn.Sinceisahomomorphism,()=()(12)()�1=(12)=�1. Sinceismultiplicative,if()=1,thenmustbeaproductofanevennumberof2-cycles.Similarly,if()=�1,thenmustbeaproductofanoddnumberof2-cycles.So,iseveni ()=1,andisoddi ()=�1.28 Exercises1.Let:(G;)!(H;H)beahomomorphism.IfSisasubsetofim,provethathSiisasubgroupofim.2.Provethatthehomomorphismcorner:G!S8isonto(equivalently,imcornerisS8).Whatdoesthistellyouaboutthepossiblepositionsofthecornercubies?3.SupposeyourRubik'scubeisinthecon guration(;;x;y).IfyouapplythemoveM2GtotheRubik'scube,itendsupinanewcon guration(0;0;x0;y0).Provethat0=corner(M)and0=edge(M).4.Let(;;x;y)beacon gurationoftheRubik'scube.ProvethatthereisamoveM2Gwhichputsallofthecornercubiesinthecorrectpositions.5.Let:G!HbeahomomorphismandG0beasubgroupofG.De neamap0:G0!Hby0(g)=(g).Provethat0isahomomorphism.Wecallthishomomorphismthe restriction of  to G0andwrite0=jG0.6.Findallhomomorphisms:Z!Z.Whichofthesehomomorphismsar

28 eisomorphisms?7.LetGbeagroupandleta2G.De
eisomorphisms?7.LetGbeagroupandleta2G.De neamap:G!Gby(g)=a�1ga.Isahomomorphism?Isanisomorphism?8.WriteDR�1andD�1Rindisjointcyclenotation.Canyouusetheseto ndamovewhichchangestheorientationsoftwocornercubieswithouta ectinganyothercornercubies?9.Sofar,wehaveonlyusedtwistsofthe6facesD,U,L,R,F,andB.LetMRbeaclockwisetwist(lookingattherightface)ofthefacebetweentheleftandrightfaces.WriteMR,MRU,MRU�1,MRU2,andMR�1U2indisjointcyclenotation.Usetheseto...(a)... ndamoveinGwhichcycles3edgecubieswithouta ectinganyothercubies.(b)... ndamoveinGwhichchangestheorientationsof2edgecubieswithouta ectinganyothercubies.Note:Rememberthatwede nedGtobethemovescomposedofsequencesofD;U;L;R;F;B;thatis,G=hD;U;L;R;F;Bi.Therefore,MRisnotanelementofG,soyouwillhavetorewriteyourmovestomakethemelementsofG.10.IsitpossiblefortheRubik'scubetobeinacon gurationwhereexactlytwocubiesareinthewrongpositions?29 9.TheAlternatingGroupIntheprevioussection,wede nedwhatitmeantforanelementofSntobeevenorodd.Recallthat2Snisde nedtobeevenifitcanbewrittenasaproductofanevennumberof2-cycles,anditisde nedtobeoddifitcanbewrittenasaproductofanoddnumberof2-cycles.Example9.1.(12)(13)isevensinceitisaproductoftwo2-cycles.(12)isoddsinceitisaproductofone2-cycle.vWethenprovedthatanelementofSniseitherevenorodd,butnotboth.Thetoolweusedforthiswasthesignhomomorphism.Rememberthatthiswasahomomorphism:Sn!f1gsuchthat()=�1forany2-cycle.Sincethe2-cyclesgenerateSn,thispropertycharacterizesthehomomorphism.Infact,thewaywasactuallyde nedisnolongerimportant!Sinceisahomomorphism,()=�1ifisodd,and()=1ifiseven.Example9.2.((12)(13))=1and((12))=�1.vExample9.3.(16342)=1because(16342)=(16)(13)(14)(12)iseven.vExample9.4.Ifisak-cycle,then()=(�1)k�1.Afterall,ifisak-cycle,thenwecanwrite=(a1a2:::ak)=(a1a2)(a1a3)(a1ak).vThep

29 roductofanevenpermutationandanoddpermuta
roductofanevenpermutationandanoddpermutationisodd.Theproductoftwoevenpermutationsortwooddpermutationsiseven.Theinverseofanevenpermutationiseven,andtheinverseofanoddpermutationisodd.Therefore,wecande neasubgroupofSnconsistingofalltheevenpermutations.Thisgroupiscalledthe alternating groupandisdenotedAn.Example9.5.IfM2Gisafacetwist(oneofD;U;L;R;F;B),thencube(M)isaproductoftwo4-cycles.A4-cycleisodd,soaproductoftwo4-cyclesiseven.Therefore,cube(M)iseven.SincethefacetwistsgenerateallofG,thismeansthatcube(M)isevenforallM2G.Thatis,cube(M)2A20forallM2G.Anotherwayofwritingthisistosaythatimcube(M)2A20.Now,cube(M)=corner(M)edge(M),soeithercorner(M)andedge(M)arebotheven,ortheyarebothodd.Thatis,corner(M)andedge(M)havethesamesign.Supposeyourcubeisinthestartcon gurationandyoudothemoveMtoit.Then,itendsupinacon ugration(;;x;y)where=corner(M)and=edge(M).Therefore,wehaveprovedthat,if(;;x;y)isavalidcon guration,thenandhavethesamesign.vSinceAnconsistsofalloftheevenelementsofSn,Ancanalsobedescribedasf2Sn:()=1g.Thisde nitioncanbegeneralizedtoanyhomomorphism.De nition9.6.The kernelofahomomorphism:G!Hisde nedtobefg2G:(g)=1Hg,anditisdenotedbyker.Thatis,keristhepreimageof1HinG.Example9.7.Thekernelofthehomomorphismcube:G!S20consistsofallmovesoftheRubik'scubewhichdonotchangethepositionsofanyofthecubies.Thatis,kercubeconsistsofallmoveswhichonlya ecttheorientations,notthepositions,ofcubies.Asyoucanimagine,thisisausefulsettounderstand:ifyouhaveputallthecubiesintherightpositions,youwantto ndmovesthatonlya ecttheorientationsofthecubies.vTheorem9.8.IfGandHaregroupsand:G!Hisahomomorphism,thenkerisasubgroupofG.30 Proof.ByLemma3.4,itsucestoshowthat,ifg;h2ker,thengh�12ker.So,letg;h2ker.Then,(gh�1)=(g)(h�1)sinceisahomomorphism=(g)

30 0;(h)�1by[PS7,#5b]=1H1�1Hsinceg;h2
0;(h)�1by[PS7,#5b]=1H1�1Hsinceg;h2ker=1HTherefore,gh�12ker. Example9.9.ThealternatinggroupAnisthekernelof:Sn!f1g.vExercises1.Let2S10bede nedby=(13)(2469)(149).Whatis()?Isevenorodd?2.If2Sn,provethat22An.3.If2Snhascycletypen1;:::;nr,whatis()?4.ProvethatAnisgeneratedbythesetof3-cyclesinSn.5.ProvethatSnisgeneratedby(12);(23);(34);:::;(n�1n).6.FindamoveM2Gwhichchangestheorientationsofthecubiesdfrandulbwithouta ectinganyothercornercubies.Whatiscorner(M)?Whatisastrategyfor xingtheorientationsofallcornercubies?31 10.GroupActionsIftheRubik'scubeissomecon gurationC=(;;x;y),thendoingamoveM2GputstheRubik'scubeinsomenewcon guration.Let'swritethisnewcon gurationasCM.SupposetheRubik'scubestartsinthecon gurationC.IfwedothemoveM1,thecon gurationofthecubebecomesCM1.IfwethendoanothermoveM2,thecon gurationbecomes(CM1)M2.Ontheotherhand,whatwehavereallydoneisstartedwiththecon gurationCandappliedthemoveM1M2,soanotherwaytowritethenewcon gurationisC(M1M2).Thatis,wehavejustshownthat(CM1)M2=C(M1M2)forallcon gurationsCandallmovesM1;M22G.Ifwedotheemptymove(theidentityelementeofG),thenthecon gurationdoesnotchangeatall,soCe=C.Thisisanexampleofamathematicalobjectcalleda\groupaction."Elementsofagroup(here,theelementsaremovesoftheRubik'scube)a ectelementsofsomeset(thesetofcon gurationsoftheRubik'scube).Wehaveactuallyusedgroupactionsalready;forinstance,tounderstandSn,westudiedhowelementsofSna ectedtheintegers1;:::;n.Togiveaformalde nition,we rstneedsomenotation.IfS1andS2aretwosets,thenS1S2isthesetoforderedpairs(s1;s2)withs12S1ands22S2.De nition10.1.A (right) group actionofagroup(G;)ona(non-empty)setAisamapAG!A(thatis,givena2Aandg2G,wecanproduceanotherelementofA,whichwewriteag)satisfyingthefollowingtwoproperties:1.(ag1)g2=a(g1g2)forallg1;g22Ganda

31 2A.2.ae=afora2A(here,eistheidentitye
2A.2.ae=afora2A(here,eistheidentityelementofG).Thisisarightactionratherthanaleftactionbecauseweputtheelementsofthegroupontheright.Inthe rstcondition,ag12A,so(ag1)g2makessense.Ontheotherhand,g1g22G,soa(g1g2)alsomakessense.WhenwehaveagroupactionofGonasetA,wejustsay\GactsonA."Example10.2.ThegroupGactsonthesetofcon gurations(;;x;y)oftheRubik'scube(weallowbothvalidandinvalidcon gurations).vExample10.3.Snactsonthesetf1;:::;ng.Thegroupactionisde nedasfollows:giveni2f1;:::;ngand2Sn,leti=(i).Tocheckthatthisreallyisagroupaction,observethati()=()(i)=((i))=(i)=(i)andi1=1(i)=i.vExample10.4.Snactsonthesetofpolynomialsinthevariablesx1;:::;xn;infact,weusedthisactiontoprovetheexistenceofthesignhomomorphism.Namely,ifp(x1;:::;xn)wasapolynomial,wede nedanewpolynomialpbyp(x1;:::;xn)=p(x(1);:::;x(n)).Thiswasagainapolynomialinthevariablesx1;:::;xn.Weprovedthat(p)=p,anditisclearthatp1=p.Thus,ifwede nep=p,wehaveagroupaction.vExample10.5.Thegroup(Z;+)actsonthesetRbyag=g+aforg2Zanda2R.Afterall,(ag1)g2=(ag1)+g2=(a+g1)+g2=a+(g1+g2)=a(g1+g2)forallg1;g22Zanda2R.Moreover,a0=0+a=0foralla2R.vExample10.6.Often,weareinterestedinthecasewhenthesetAisthegroupitself.Inthiscase,wesay32 thatthegroupactsonitself.Forinstance,wecande neagroupactionasfollows:forg2Ganda2G,de neag=ag,thenormalgroupmultiplicationofaandg(checkthatthisde nesagroupaction).WecallthistheactionofGonitselfbyrightmultiplication.vDe nition10.7.IfGactsonasetA,thenthe orbitofa2A(underthisaction)isthesetfag:g2Gg.Example10.8.Gactsonthesetofcon gurationsoftheRubik'scube.Theorbitofthestartcon gurationunderthisactionisexactlythesetofvalidcon gurationsoftheRubik'scube.vExample10.9.InExample10.5,wesaidthat(Z;+)actsonthesetRbyag=g+1forallg2Zanda2R.Thus,theorbitofaisthesetfa

32 +g:g2Zg,orthesetf:::;a�2;a�1;a;a+1
+g:g2Zg,orthesetf:::;a�2;a�1;a;a+1;a+2;:::g.Inparticular,a;a+1;a�1;:::allhavethesameorbit.Thereisadistinctorbitforeacha2[0;1).Therefore,wecanthinkofthesetoforbitsastheinterval[0;1).However,sincetheorbitof0isthesameastheorbitof1,wecouldalsothinkofthesetoforbitsas[0;1]with0and1viewedasthesamepoint.Onewaytovisualizethisistoimaginebendingtheinterval[0;1]aroundsothat0and1join|thisformsacircle!Thus,itisnaturaltothinkofthesetoforbitsofthisactionasformingacircle.vDe nition10.10.Ifagroupactionhasonlyoneorbit,wesaythattheactionis transitive(orthatthegroupactstransitively).Example10.11.Gactsonthesetoforderedpairs(C1;C2)ofdi erentunorientedcornercubies.Afterall,ifC1andC2aretwodi erentunorientedcornercubies,applyingamoveM2Gsendsthesecornercubiestotwodi erentcornercubiclesC01andC02.Then,wecande nethegroupactionby(C1;C2)M=(C01;C02).(Checkthatthisisagroupaction.)By[PS3,#5],thisactionistransitive.Inthesameway,Gactsonthesetoforderedtriples(C1;C2;C3)ofdi erentunorientededgecubies.vWeoftenwanttoprovesomethingaboutallelementsofanorbit(forexample,wemightwanttoproveastatementaboutallvalidcon gurationsoftheRubik'scube).Thefollowinglemmacanbeusefulinthesesituations.Lemma10.12.Supposea nitegroupGactsonasetA,andletSbeasetofgeneratorsofG.LetPbeapropertysuchthatthefollowingistrue:Whenevera2Asatis esPands2S,asalsosatis esP.Then,ifa02Asatis esP,everyelementintheorbitofa0alsosatis esP.Proof.Let'sde neanewpropertyQasfollows:sayg2Gsatis espropertyQwhenthefollowingistrue:Whenevera2Asatis esP,agalsosatis esP.Itsucestoshowthateveryg2Gsatis espropertyQ.Afterall,thatwouldmeanthat,ifa02Asatis esP,thena0gsatis esPforallg2G,whichisexactlywhatwewanttoshow.Byhypothesis,everyelementofSsatis espropertyQ.ByProposition4.9,allweneedtoshowisthat,ifg;h2GbothsatisfypropertyQ,thenghsatis espropertyQ.So,supposeg;h2GbothsatisfypropertyQ.Toshowthatghalsosatis espropertyQ,wewanttoshowth

33 at,ifa2Asatis esP,thenaghalsosat
at,ifa2Asatis esP,thenaghalsosatis esP.Supposea2Asatis esP.Sincegsatis espropertyQ,agsatis espropertyP.Sincehsatis espropertyQ,(ag)hsatis espropertyP.However,bythede nitionofagroupaction,(ag)h=agh.So,wehaveprovedthat,ifa2Asatis esP,thenaghsatis esP.Thatmeansthatghsatis espropertyQ,which nishesourproof. InthecaseoftheRubik'scube,wewilloftentrytoapplytheabovelemmatotheactionofthegroupGonthesetAofcon gurations.Inparticular,ifweletS=fD;U;L;R;F;Bganda0bethestartcon guration,thenwecanusethelemmatoprovethingsaboutallvalidcon gurationsoftheRubik'scube.33 Exercises1.Provethatthegroup(nZ;+)actsonZbyag=a+gforallg2nZanda2A.Whataretheorbitsofthisaction?Howmanydi erentorbitsarethere?Doesthesetoforbitsremindyouofanythinginnumbertheory?2.LetGbeagroup.ProvethatGactsonGbyag=g�1agforallg2Ganda2G.Wesaythat\Gactsonitselfbyconjugation."3.By[PS10,#2],SnactsonSnby=�1forall2Snand2Sn.Whataretheorbitsofthisaction?(Youmightwantto rsttrytowriteouttheorbitsexplicitlyforn=3.)4.LetR2betheusualxy-plane,whichconsistsoforderedpairs(x;y)wherex;y2R.Provethatthegroup(R;+)actsonR2by(x;y)r=(x+r;y)for(x;y)2R2andr2R.If(x;y)2R2, ndtheorbitof(x;y).Canyoudescribethesetoforbitsgeometrically?5.LetZ2bethesetoforderedpairs(z1;z2)wherez1;z22Z.Weaddtwoorderedpairsasfollows:(z1;z2)+(z3;z4)isde nedtobe(z1+z3;z2+z4).Provethat(Z2;+)isagroup,andprovethatthisgroupactsonR2by(x;y)(z1;z2)=(x+z1;y+z2)forall(x;y)2R2and(z1;z2)2Z2.Canyoudescribethesetoforbitsgeometrically?6.LetAbethesetoforderedtriples(C1;C2;C3)whereC1,C2,andC3aredi erentunorientededgecubies.Inclass,weexplainedhowGactsonA.Whatdoesitmean(intermsoftheRubik'scube)tosaythatthisactionhasonlyoneorbit?Convinceyourselfthattheactionreallyhasjustoneorbit.7.IfC1,C2,andC3areanythreedi erentunorientededgecubies,provethatthereisamoveM2GsuchthatMdoesnota ectanycornercubiesand

34 ;edge(M)=(C1C2C3).8.SupposeyourRubik'scu
;edge(M)=(C1C2C3).8.SupposeyourRubik'scubeisinavalidcon guration(e;;x;y)(thatis,allofthecornercubiesareintherightpositions).ProvethatisevenandthatthereisamoveM2Gwhichputsalloftheedgecubiesintherightpositions(withouta ectingthecornercubies).34 11.ValidCon gurationsoftheRubik'sCubeNow,wewillputeverythingwehavelearnedtogethertogiveacharacterizationofthevalidcon gurationsoftheRubik'scube.Theorem11.1.Acon guration(;;x;y)isvalidi sgn=sgn,Pxi0(mod3),andPyi0(mod2).Therestofthissectionwillbedevotedtoprovingthistheorem.First,wewillshowthat,if(;;x;y)isvalid,thensgn=sgn,Pxi0(mod3),andPyi0(mod2).Intheprocess,wewillprovesomeslightlymoregeneralfactsthatwillbeusefulforprovingtheconverse.RecallthatGactsonthesetofcon gurationsoftheRubik'scube.Thevalidcon gurationsformasingleorbitofthisaction.So,itmakessensethatstatementswemakeaboutvalidcon gurationscanbegeneralizedtootherorbits.Lemma11.2.If(;;x;y)and(0;0;x0;y0)areinthesameorbit,then(sgn)(sgn)=(sgn0)(sgn0).Proof.ByLemma10.12,itsucestoshowthat,if(0;0;x0;y0)=(;;x;y)MwhereMisoneofthe6basicmoves,then(sgn)(sgn)=(sgn0)(sgn0).By[PS8,#3],0=corner(M)and0=edge(M).Therefore,(sgn0)(sgn0)=(sgn)(sgncorner(M))(sgn)(sgnedge(M)).IfMisoneofthe6basicmoves,thencorner(M)andedge(M)areboth4-cycles,sotheybothhavesign�1.Thus,(sgn0)(sgn0)=(sgn)(sgn). Corollary11.3.If(;;x;y)isavalidcon guration,thensgn=sgn.Proof.ThisisadirectconsequenceofLemma11.2sinceanyvalidcon gurationisintheorbitofthestartcon guration(1;1;0;0). Lemma11.4.If(0;0;x0;y0)isinthesameorbitas(;;x;y),thenPx0iPxi(mod3)andPy0iPyi(mod2).Proof.InlightofProposition10.12,itsucestoshowthat,if(0;0;x0;y0)=(;;x;y)Mwh

35 ereMisoneofthe6basicmoves,thenPx0iP
ereMisoneofthe6basicmoves,thenPx0iPxi(mod3)andPy0iPyi(mod2).Youshouldhavedonethisin[PS6,#1].Hereisatableshowingwhatx0andy0areif(0;0;x0;y0)=(;;x;y)MandMisoneofthe6basicmoves.Ineachcase,itiseasytocheckthatPx0iPxi(mod3)andPy0iPyi(mod2).M x0andy0 D (x1;x2;x3;x4;x8;x5;x6;x7) (y1;y2;y3;y4;y5;y6;y7;y8;y10;y11;y12;y9)U (x2;x3;x4;x1;x5;x6;x7;x8) (y4;y1;y2;y3;y5;y6;y7;y8;y9;y10;y11;y12)R (x1;x7+1;x2+2;x4;x5;x6;x8+2;x3+1) (y1;y7;y3;y4;y5;y2;y10;y8;y9;y6;y11;y12)L (x4+2;x2;x3;x5+1;x6+2;x1+1;x7;x8) (y1;y2;y3;y5;y12;y6;y7;y4;y9;y10;y11;y8)F (x6+1;x1+2;x3;x4;x5;x7+2;x2+1;x8) (y1;y2;y8+1;y4;y5;y6;y3+1;y11+1;y9;y10;y7+1;y12)B (x1;x2;x8+1;x3+2;x4+1;x6;x7;x5+2) (y6+1;y2;y3;y4;y1+1;y9+1;y7;y8;y5+1;y10;y11;y12)Asanexample,we'llseehowto ndx0whenMisthemoveR.Thecubiclesoftherighthandfacelooklikethis:35 u u u f r r r b f r r r b f r r r b d d d Thecubiclesarelabeledlikethis: 2 3 7 8 Therefore,iftheRubik'scubeisinthecon guration(;;x;y),thecubiesontherightfacearelabeledlikethis: x2 x3 x2+2 x2+1 x3+2 x3+1 x7+1 x7+2 x8+1 x8+2 x7 x8 Ifwerotatethisfaceby90clockwise,thenthecubieslooklike: x7+1 x2+2 x7 x7+2 x2+1 x2 x8 x8+1 x3+2 x3 x8+2 x3+1 Thus,x0=(x1;x7+1;x2+2;x4;x5;x6;x8+2;x3+1).So,Px0i=Pxi+6Pxi(mod3). Corollary11.5.If(;;x;y)isavalidcon guration,thenPxi0(mod3)andPyi0(mod2).Proof.ThisisadirectconsequenceofLemma11.4sinceanyvalidcon gurationisintheorbitofthestartcon guration(1;1;0;0). Thus,wehaveprovedonedirectonofTheorem11.1.Now,wewillprovetheconverse.Supposesgn=sgn,Pxi0(mod3),andPyi0(mod2).Wewanttoshowthatthereisaseriesofmoveswhich,whenappliedto(;;x;y),givesthestartcon guration;thatis,iftheRubik'scubeisinthecon guration(;;x;y),itcanbesolved.TheideaoftheproofisbasicallytowritedownthestepsrequiredtosolvetheRubik'scube.Thus,wewillprovethesefourfacts:1.If(;;x;y)isacon gurationsuchthatsgn=sgn,Pxi0(mod3),

36 andPyi0(mod2),thenthereisamoveM2Gsu
andPyi0(mod2),thenthereisamoveM2Gsuchthat(;;x;y)Mhastheform(1;0;x0;y0)withsgn0=1,Px0i0(mod3),andPy0i0(mod2).Thatis,wecanputallthecornercubiesintherightpositions.2.If(1;;x;y)isacon gurationwithsgn=1,Pxi0(mod3),andPyi0(mod2),thenthereisamoveM2Gsuchthat(1;;x;y)Mhastheform(1;0;0;y0)withsgn0=1andPy0i0(mod2).Thatis,wecanputallthecornercubiesintherightorientations(andpositions).3.If(1;;0;y)isacon gurationwithsgn=1andPyi0(mod2),thenthereisamoveM2Gsuchthat(1;;0;y)Mhastheform(1;1;0;y0)withPy0i0(mod2).Thatis,wecanputalltheedgecubiesintherightpositions(withoutdisturbingthecornercubies).4.If(1;1;0;y)isacon gurationwithPyi0(mod2),thenthereisamoveM2Gsuchthat(1;1;0;y)M=(1;1;0;0).Thatis,wecansolvethecube!36 Beforeprovingthese,let'spointoutausefulfact.Supposethat(;;x;y)satis essgn=sgn,Pxi0(mod3),andPyi0(mod2).Then,Lemma11.2and11.4showthat,forany(0;0;x0;y0)inthesameorbitas(;;x;y),sgn0=sgn0,Px0i0(mod3),andPy0i0(mod2).Thus,forexample,inthe rststatementabove,ifwecanprovethatthereisamoveM2Gsuchthat(;;x;y)Mhastheform(1;0;x0;y0),itisautomaticthatsgn0=1,Px0i0(mod3),andPy0i0(mod2).Therefore,to nishtheproofofTheorem11.1,itsucestoprovethefollowingfourpropositions.Proposition11.6.If(;;x;y)isacon gurationsuchthatsgn=sgn,Pxi0(mod3),andPyi0(mod2),thentheorbitof(;;x;y)containssomecon gurationoftheform(1;0;x0;y0).Proposition11.7.If(1;;x;y)isacon gurationwithsgn=1,Pxi0(mod3),andPyi0(mod2),thentheorbitof(1;;x;y)containssomecon gurationoftheform(1;0;0;y0).Proposition11.8.If(1;;0;y)isacon gurationwithsgn=1andPyi0(mod2),thentheorbitof(1;;0;y)containssomecon gurationoftheform(1;1;0;y).Proposition11.9.If(1;1;0;y)isacon

37 2;gurationwithPyi0(mod2),thentheorb
2;gurationwithPyi0(mod2),thentheorbitof(1;1;0;y)con-tainsthestartcon guration(1;1;0;0).Wewillprovetheseinorder.So,wewantto rstshowthatwecanputallthecornercubiesintherightpositions.Lemma11.10.Thehomomorphismcorner:G!S8isonto.Proof.By[PS5,#9],S8isgeneratedbythesetSof2-cyclesinS8.ItsucestoshowthatSimcorner.Afterall,ifSimcorner,thenS8=hSihimcorneriby[PS4,#2].By[PS7,#6],imcornerisagroup,sohimcorneri=imcornerby[PS4,#1].So,wewanttoshowthatevery2-cycleinS8isintheimageofcorner.In[PS6,#2b],youshouldhavefoundamovewhichswitchesjust2cornercubiesandleavestheothercornercubies xed.OnesuchmoveisM0=([D;R]F)3,whichhasdisjointcycledecomposition(dbrurb)(druf)(brrf)(dflf).Then,corner(M0)=(dbrurb).So,weatleastknowthat(dbrurb)liesintheimageofcorner.LetC1andC2beanypairofcornercubies.By[PS3,#5],thereexistsamoveM2GwhichsendsdbrtoC1andurbtoC2.Let=corner(M).Then,(dbr)=C1and(urb)=C2.Sincecornerisahomomorphism,corner(M�1M0M)=corner(M)�1corner(M0)corner(M)=�1(dbrurb)=((dbr)(urb))by[PS5,#10]=(C1C2)Therefore,(C1C2)2imcorner,which nishestheproof. ProofofProposition11.6.ByLemma11.10,thereexistsamoveM2Gsuchthatcorner(M)=�1.By[PS8,#3],(;;x;y)M=(1;0;x0;y0)forsome02S12,x02(Z=3Z)8,andy02(Z=2Z)12. Next,wewillproveProposition11.7.Thebasicideafororientingallofthecornercubiescorrectlywastousemoveswhichchangetheorientationsofjust2cubies.First,wemustshowthatsuchmovesexist.Lemma11.11.IfC1andC2areanytwocornercubies,thereisamoveM2Gwhichchangestheorientations(butnotpositions)ofC1andC2andwhichdoesnota ecttheothercornercubiesatall.Moreover,thereissuchamoveMwhichrotatesC1clockwiseandrotatesC2counterclockwise.Proof.AsintheproofofLemma11.10,thepointisto rst ndasinglemoveM0whichchangestheorientationsof2cubiesandthenconjugateM0to ndothermovesthatchangetheorientationsof2cubies.In[PS6,#

38 3],youshouldhavefoundsuchamove;onepossib
3],youshouldhavefoundsuchamove;onepossibilityisM0=(DR�1)3(D�1R)3,whichhasdisjointcycledecomposition(dfrrdffrd)(drbrbdbdr)(dfdrfrurbrdbdl).Then,corner(M0)=1and corner(M0)=(dbrrdbbrd)(drfrfdfdr).So,ifC1=dbrandC2=drf,thelemmaistrue.37 Now,wewillconjugatethismove.By[PS3,#5],thereexistsM2GwhichsendsdbrtoC1anddrftoC2.LetM0=M�1M0M.Byapplying[PS5,#10]to nd corner(M0),weseethatM0changestheorientationsofC1andC2anddoesnota ecttheothercornercubies.Speci cally,M0rotatesC1clockwiseandrotatesC2counterclockwise. ProofofProposition11.7.SupposethattheRubik'scubeisinacon gurationwhereatleasttwocornercubiesC1andC2havethewrongorientation.ByLemma11.11,thereisamovewhichrotatesC1clockwise,rotatesC2counterclockwise,anddoesnota ecttheothercornercubies.Byapplyingthismoveonceortwice,wecanensurethatC1hasthecorrectorientation.Sincethismovedoesnota ectanycornercubiesbesidesC1andC2,theRubik'scubenowhasonefewercornercubiewithanincorrectorientation.Doingthisrepeatedly,weendupwithacon guration(1;0;x0;y0)wherethereisatmostonecornercubiewiththeincorrectorientation.Thatis,atleast7ofthex0iare0.ByLemma11.4,Px0iPxi0(mod3),soitmustbethecasethatthelastx0iisalso0,sothecon gurationoftheRubik'scubeis(1;0;0;y0). Next,wewanttoproveProposition11.9;thatis,wewantto xthepositionsoftheedgecubies.TheideaoftheproofisverysimilartotheoneweusedtoproveProposition11.7.Recallthat,inthatcase,we rstprovedthatcorner:G!S8isonto.Inthiscase,weonlywanttousemovesthatdon'ta ectthecornercubies,sincewehavealreadydonealotofworktogetthecornercubiesintherightpositionsandorientations.Therefore,insteadoflookingdirectlyatedge,wewilllookattherestrictionofedgetoker corner(see[PS8,#5]).Lemma11.12.Theimageofedgejker corner:ker corner!S12containsA12.Proof.By[PS9,#4],A12isgeneratedbythesetof3-cyclesinA12.BythesameargumentasintheproofofLemma11.10,itsucestoshowthatevery3-cycleisintheimageofedgejker corner.AsintheproofofLemma

39 11.10,thestrategyistouseconjugatesofasin
11.10,thestrategyistouseconjugatesofasinglemovetoprovethis.Youshoudlhavefoundamovein[PS8,#9a]thatdoesnota ectanycornercubiesbutcycles3edgecubies.OnesuchmoveisM0=LR�1U2L�1RB2,whichhasdisjointcycledecomposition(ubufdb).Then,M02ker corner,andedge(M0)=(ubufdb).By[PS10,#6],ifC1,C2,andC3areany3cornercubies,thereisamoveMoftheRubik'scubewhichsendsubtoC1,uftoC2,anddbtoC3.Then,by[PS5,#10],M0=M�1M0Mhasdisjointcycledecomposition(C1C2C3),soM02ker cornerandedge(M0)=(C1C2C3).Therefore,(C1C2C3)2imedgejker corner,whichcompletestheproof. Remark11.13.Infact,theimageofedgejker corner:ker corner!S12isexactlyA12,whichyoucanproveusingCorollary11.3.Now,Proposition11.8followsdirectlyfromLemma11.12.(TheproofisexactlythesameideaastheproofofProposition11.6.)Finally,wemustproveProposition11.9.ThisisquitesimilartoProposition11.7; rst,weneedananalogofLemma11.11.Lemma11.14.IfC1andC2areanytwoedgecubies,thereisamoveM2Gwhichchangestheorientations(butnotpositions)ofC1andC2andwhichdoesnota ecttheothercubiesatall.Proof.In[PS8,#9b],youshouldhavefoundamovewhichswitchestheorientationsof2edgecubieswithouta ectinganyothercubies.OnesuchmoveisLR�1FLR�1DLR�1BLR�1ULR�1F�1LR�1D�1LR�1B�1LR�1U�1(thismoveisdescribedmoreeasilyas(MRU)4(MRU�1)4).CallthismoveM0;ithasdisjointcycledecom-position(fuuf)(buub).By[PS10,#6],Gactstransitivelyonthesetoforderedtriples(C1;C2;C3)whereC1,C2,andC3aredi erentedgecubies.Inparticular,ifC1andC2areanytwodi erentedgecubies,thereexistsM2GsendinguftoC1andubtoC2.By[PS5,#10],MM0M�1changestheorientationsofC1andC2anddoesnota ecttheothercubiesatall. 38 Now,theargumentweusedtoproveProposition11.7provesProposition11.9aswell.ThiscompletestheproofofTheorem11.1.Remark11.15.Earlier,wecalculatedthattherewere212388!12!possiblecon gurationsoftheRubik'scube;now,Theorem11.1tellsusthatonly1 12ofthosearevalid.Ofcourse,thismeanstherearestillmorethan41019validcon gurations,nosmallnu

Related Contents


Next Show more