/
Chaoticinvasiveweedoptimizationalgorithmwithapplicationtoparameteresti Chaoticinvasiveweedoptimizationalgorithmwithapplicationtoparameteresti

Chaoticinvasiveweedoptimizationalgorithmwithapplicationtoparameteresti - PDF document

eleanor
eleanor . @eleanor
Follow
344 views
Uploaded On 2021-06-19

Chaoticinvasiveweedoptimizationalgorithmwithapplicationtoparameteresti - PPT Presentation

CorrespondingauthorAddressElectricalEngineeringDepartmentFacultyofEngineeringUniversityofGuilanPOBox3756RashtIranTel9813166902768fax981316690271EmailaddressesMAhmadiHMojallal ID: 845777

fig solitons chaos 1108 solitons fig 1108 chaos fractals45 2012 mojallali ahmadi 1120 ssystem parameteridenti tion 010 theidenti chaossolitonsfract

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Chaoticinvasiveweedoptimizationalgorithm..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 Chaoticinvasiveweedoptimizationalgorithm
ChaoticinvasiveweedoptimizationalgorithmwithapplicationtoparameterestimationofchaoticsystemsMohamadrezaAhmadi,HamedMojallaliElectricalEngineeringDepartment,FacultyofEngineering,UniversityofGuilan,Rasht,IranarticleinfoArticlehistory:Received12October2010Accepted27May2012Availableonline20July2012 Correspondingauthor.Address:ElectricalEngineeringDepartment,FacultyofEngineering,UniversityofGuilan,P.O.Box3756,Rasht,Iran.Tel.:+981316690276-8;fax:+981316690271.E-mailaddresses:(M.Ahmadi),(H.Mojallali). Chaos,Solitons&Fractals45(2012)1108…1120 ContentslistsavailableatSciVerseScienceDirectChaos,Solitons&FractalsNonlinearScience,andNonequilibriumandComplexPhenomenajournalhomepage:www.elsevier.com/loc variablesisatthecoreofchaoticoptimization.AccordingtothenumericalresultsgiveninRef.Ref.,thechaoticsearchcanescapefromlocaloptimamoreeasilycomparedwithotherstochasticsearchoptimizationalgorithms,andexposessuperiorhill-climbingability.However,COAhasanumberofproblemsinpractice.Chaoticsequencesareextremelysensitiveoninitialcondi-tionsandslowinlocatingtheoptimalareaasthesearchspaceextends.Thus,appropriateinitialvaluesshouldbetunedcarefullybeforehand,andthesolutionspaceshouldbecon“ned.Debatecontinuesaboutalternativeoptimizationstrate-giestoovercomethedetrimentsofCOA.Oneavenuethatresearchershavefollowedintheirattemptto“ndmorerobustalgorithmsisthroughintegratingmeta-heuristicalgorithmswithCOACOA.Inn,authorssuggestedahybridoptimizationalgorithmincorporatingchaosandtabusearch.Zilongetal.al.combinedsomecharacteristicsofsimulatedannealingwiththoseofchaoticoptimization.Xiangetal.al.createdanimprovedPSOalgorithmusingthepiece-wiselinearchaoticmapbringingforwardthecha-oticPSO(CPSO)algorithm.Yongetal.al.combinedtheGAwithCOAinordertobeexploitedinneuralnetworks.Theobjectiveofthispaperistoproposeanoveloptimiza-tionmethodbyincorporatingtheCOAandtheIWOalgo-rithm.Differentchaoticmapsareappliedtothealgorithm,andthemostcomputationalef“cientoneisselectedaccord-ingly.Afterwards,thealgorithmisassessedtooptimizebenchmarkfunctions.ItisshownthattheproposedCIWOmethodoutperformsothermethodslikeIWOandPSO

2 whichrelyonlyonrandomdistribution.Furthe
whichrelyonlyonrandomdistribution.Furthermore,theCIWOalgorithmisutilizedforparametricidenti“cationofchaoticsystems.Inordertofurnishabetterinsightintothecapabil-ityoftheCIWOalgorithm,theresultsobtainedfromothermethods,e.g.IWO,PSO,CPSO,GAandCOA,arealsoincluded.ThecorrespondingresultsverifytheCIWOandthecorre-spondingidenti“cationschemesaccurateness.Thebalanceofthispaperproceedsasfollows.Thesec-ondsectionofthispaperbrie”yreviewsthetraditionalIWOmethod.SectionconsiderstheproposedCIWOalgorithm.ThenumericalresultsestablishedupontheproposedschemearegiveninSection.AparameterestimationstrategyusingtheCIWOalgorithmisproposedandtestedinSection.Thepaperendswithconclusionsin2.Invasiveweedoptimization2.1.KeytermsPriortodescribingtheIWOalgorithm,thekeytermsareexplainedasfollows::eachunitinthecolonywhichencompassesavalueforeachvariableintheoptimizationproblembefore“tnessevaluation.:anyseedthatisevaluatedgrowstoaweedorplant.:avaluecorrespondingtothegoodnessofeachunitafterbeingevaluated.:thesearch/solutionspace.Maximumweedpopulation:aparameterpresetrepre-sentingthemaximumnumberofpossibleweedsinthe“eld.2.2.DescriptionoftraditionalIWOmethodTheprocess”owoftheIWOalgorithmisoutlined1.Randomlydistributetheinitialseedsisthenumberofselectedvariables,overthesearchspace.Consequently,eachseedcontainsrandomvaluesforeachvariableinthesolutionspace.2.The“tnessofeachindividualseediscalculatedaccord-ingtotheoptimizationproblem,andtheseedsgrowtoweedsabletoproducenewunits.3.Eachindividualisrankedbasedonits“tnesswithrespecttootherweeds.Subsequently,eachweedpro-ducesnewseedsdependingonitsrankinthepopula-tion.Theweedswhichhaveacquiredmoreresourceshaveabetterchanceofproducingseeds,andthosewhicharelessadaptedtothe“eldareunlikelytorepro-ducetherebycreatinglessseeds.Thatis,thenumberofseedstobecreatedbyeachweedalterslinearlyfromwhichcanbecomputedusingtheequationgivenbelowNumberofseeds Inwhichisthe“tnessofthweed.,andnotethebestandtheworst“tnessintheweedpopula-tion.Thisstepensuresthateachweedtakepartinthereproductionprocess.4.Thegeneratedseedsarenormallydistributedoverthe“eldwithzeromeanandavaryingstan

3 darddeviationdescribedby arethemaximumnu
darddeviationdescribedby arethemaximumnumberofiterationcyclesassignedbytheuser,andthecurrentiterationnumberrespectively.representthepre-de“nedinitialand“nalstandarddeviations.calledthenonlinearmodulationindex.Thisisarela-tivelycriticalparameterwhichcanin”uencethecon-vergenceperformanceoftheIWOalgorithm.Throughasetofsimulations,ithasbeendiscernedthatthemostappropriatevalueformodulationindexis3(seeFig.1whichportraysthedecreaseinnormalizedstandarddeviationfordifferentnonlinearmodulationindicesasthenumberofiterationcyclesaugment).Havingselectedthissuitablevaluefornonlinearmodulationindex,thealgorithmstartswitharelativelyhighdistri-butionvariancetoguaranteeacompletescanofthesolutionspace.AstheiterationnumberincreasesandM.Ahmadi,H.Mojallali/Chaos,Solitons&Fractals45(2012)1108…1120 thedispersionvariancedwindle,thesearchwouldberestrictedtotheneighborhoodsaroundthereproducingplantwhichhasattainedanaptlevelof“tnesstherebyincreasingtheestimationaccuracy.5.The“tnessofeachseediscalculatedalongwiththeirparentsandthewholepopulationisranked.Thoseweedswithless“tnessareeliminatedthroughcompe-titionandonlyanumberofweedsremainwhichareequaltoMaximumweedpopulation.6.Theprocedureisrepeatedatstep2untilthemaximumnumberofiterationsallowedbytheuserisreached.2.3.AdvantagesanddisadvantagesofimplementingIWOOntheonehand,TheIWOalgorithmcerti“esthatallpossiblecandidateswouldparticipateinthereproductionprocess.Incontrast,mostmeta-heuristicalgorithmswouldnotallowtheless-“ttedindividualstoproduceoffspringsuchastheGA.Besides,theIWOalgorithmisstraightfor-wardanditincludeslessdealofcomputationalburdenun-likeothermethods.Asagoodillustration,onecanconsiderthePSOalgorithm.PSOneedstoupdateboththepositionandvelocityofindividualsineachiterationroundwhichrequiresomeextracalculationsto“ndthebestpositionintheneighborhoodofeachparticleaswellasthewholewhole.Ontheotherhand,incaseofproblemswithanoutsizedsearchspace,onehastoapplyagreaternumberofseedstoeachplantsothatthesearchspacecanbecompletelyin-spected.Thiswouldaugmentthecomputationtimedra-matically,nottomentionthefactthattheproblembecomesevenmoresevereas

4 thenumberofvariablesto Fig.1.Evolutionof
thenumberofvariablesto Fig.1.Evolutionofthestandarddeviationcorrespondingtodifferentvaluesofthemodulationindex. Fig.2.TheFeigenbaumdiagramforlogisticmap.M.Ahmadi,H.Mojallali/Chaos,Solitons&Fractals45(2012)1108…1120 betunedincreases.Thisisbecausethesearchshouldbeperformedinabulkiermulti-dimensionalspace.Inaddi-tion,thegradualreductionofstandardvariancewhichplaysakey-roleintheIWOmethodcanbringaboutimma-tureconvergence,andsometimesitisratherdif“culttomakeanadequatetrade-offbetweenapproximationpre-cisenessandavoidingconvergencetolocaloptima.ForamorecomprehensivecomparisonbetweenIWOandpreviouslysuggestedmeta-heuristicalgorithmstheinterestedreaderisreferredtoRefs.Refs..3.TheChaoticinvasiveweedoptimizationalgorithmInordertoovercometheshortcomingsofIWO,chaoticsearchisintegratedintheIWOalgorithm.Itisworthnot-ingthatchaoticsearchmethodshaveagreaterabilitytoescapefromthelocalminimaminima;therefore,theCIWOalgorithmhasalesserchanceofpre-matureconvergencecomparedtoIWO.Besides,duetogreaterscanningandsearchcapabilities,theimplementationofthechaoticse-quencesprecludestheneedforincreasingthenumberofseedsinthesolutionspace,therebyrelativelyreducingthecomputationalcostoftheoverallalgorithm.Inthissection,“rstlythechaoticmapsutilizedintheCIWOalgorithmareexplained.Afterwards,theproposedCIWOschemeisdescribed.Formoreinformationregardingchaoticdynamicsrefertoto.3.1.Chaoticmaps3.1.1.LogisticmapOneofthesimplestandwell-knownchaoticmapswhichhasbeenutilizedinseveralstudies[20,21,23…26]isthelogisticmapintroducedbySirRobertMayin1976.Animplicationofthisisthepossibilitythatasimpledeter-ministicdynamicsystemcanexposecomplexchaoticbehaviordevoidofanystochasticdisruptions.Thelogisticmapisgivenby[0,4]isthecontrolparameterand[0,1]standsforthechaoticvariable.Bymanipulatingthecontrol Fig.3.Thebifurcationdiagramforsinusoidaliterator. Fig.4.ThepseudocoderepresentingtheCIWOalgorithm.M.Ahmadi,H.Mojallali/Chaos,Solitons&Fractals45(2012)1108…1120 parameteronecandeterminewhetherthesystemisinthechaoticstate,orinthestablestate.Thebifurcationdiagram(orFeigenbaumdiagram)forlogisticmap,whichshowsthedistributi

5 onofagainstdifferentvaluesof,isde-picted
onofagainstdifferentvaluesof,isde-pictedinFig.2.Thechaoticbehaviorofthesequenceisen-suredwhen=4,providedthattheinitialvalueforthechaoticvariable()isintherangeof(0,1)exceptforpoints={0.25,0.5,0.75}.3.1.2.SinusoidalmapThesinusoidalmaporthesinusoiditeratorisde“nedbywhichensureschaoticbehaviorinthespanof(0,1).Fig.3showsthevariationsofthechaoticvariableversuschangesinthecontrolparameter.Asitcanbeseen,theperfor-manceofthesystembecomeschaoticwhen=2.3.ItisapparentformFigs.2and3thatthelogisticmapandthesinusoidalmapareanalogous.3.1.3.TentmapThetentmapexhibitschaoticdynamics.Thismappinggenerateschaoticsequencesindatarange(0,1).Thefol-lowingequationde“nesthetentmap:3.2.ChaoticinvasiveweedoptimizationThegoaloftheoptimizationalgorithmistominimize...subjectto...ThestepsoftheproposedCIWOalgorithmproceedsas Fig.5.Thequadraticfunctionwithtwovariableandaglobalminimumat()=(1,1,0). Table1ParameterattributesoftheCIWOalgorithmforsolvingthequadraticfunctionoptimizationproblem.Maximumweed300.010.000015125 Table2Thenumericalresultsofquadraticfunctionoptimization.MeanMaxMinMedianSDLogisticmap1.00011.00040.99991.00011.6728e41.9545eSinusoidalmap1.00011.00020.99971.00002.1542e41.9053eTentmap1.05651.14560.99641.01650.07110.0362PSO0.99981.00020.99961.00002.7431e42.1116eCPSO1.00031.02100.97521.00316.7839e42.5033eIWO1.01041.12080.98740.99390.09230.0639GA1.05201.23370.75080.79340.17370.1141M.Ahmadi,H.Mojallali/Chaos,Solitons&Fractals45(2012)1108…1120 Fig.6.TheRosenbroksfunctionwithtwovariablesandaglobalminimumat()=(0,0,0). Table3ParametervaluesoftheCIWOalgorithmforsolvingtheRosenbrokfunctionminimizationproblem.Maximumweedpopulation300.0250.000015120 Table4ThenumericalresultsofRosenbrokfunctionoptimization.MeanMaxMinMedianSDLogisticmap63.0175e51.8445e42.702eSinusoidalmap000000Tentmap5.1627e47.4979e43.1353e44.7165e41.6140e42.8507ePSO0.00080.00030.99960.00016.0127e42.7846eCPSO2.8428e45.2628e43.638243.4529eIWO0.00890.07010.00570.01090.08420.0649GA0.03860.15920.00310.06230.12050.1641 Fig.7.TheRastriginsfunctionwithtwovariablesandaglobalminimumat()=(0,0,0).M.Ahmadi,H.Mojallali/Chaos,Solitons&Fr

6 actals45(2012)1108…1120 (1)Initially,set
actals45(2012)1108…1120 (1)Initially,setthemaximumandminimumvalueforeachvariableexploitedintheoptimizationof“tnessfunction.Chaoticallydistributethepioneeringseedsoverthe“eldusingthechaoticmapsdescribedin.Itisworthnotingthatthevariablesshouldbenormalizedtotherangeof(0,1)beforeapplyingachaoticmap.Thenormalizationproce-dureisdescribednext:I.Transformvariablecon“nedinthedatarange(0,1): II.Applythechaoticsequencetothetransformedproducinganewvalue.III.Translateintotherange((2)Evaluateeachweed,andrankthemaccordingtotheir“tnessinthepopulation.(3)ProducenewseedswithrespecttoeachweedsrankinginthepopulationusingEq..Thenewlycreatedseedsaredispersedrandomlyonthe“eldwiththestandarddeviationcomputedbyEq.(4)Thenewlygeneratedseedsarechaoticallydistrib-utedintheneighborhoodofthe”oweringweedusingoneofthechaoticmapsoutlinedinSection.Ifthecurrentchaoticallydistributedseedhasabetterestimationthanthepreviousseed,keepthenewone.Otherwise,thechaoticsequenceiscontin-ued.Bytakingadvantagesofthelocalsearchsuperi-oritiesofchaoticsearch,thealgorithmisguaranteedtoconvergemuchfaster.(5)Theseedsarerankedagain,andthosewithlower“t-nessareeliminatedtoreachthemaximumnumberofweedsallowedwhichispresetbytheuser.(6)Thealgorithmcontinuesatstep3untilmaximumnumberofiterationsisreachedorapredeterminedprecisenesscriterionissatis“ed.ThepseudocodeoftheoverallCIWOalgorithmisgivenFig.44.Numericalresults4.1.QuadraticfunctionThe“rst“tnessfunctionsuggestedisthesimplequa-draticfunctionwhichisquiteprevalentinnonlinearopti-mizationproblemsencounteredinengineering.Thequadraticfunctionisdescribedaswherethevariablesarerestrictedto(10,10).Itisobviousthattheminimaliesin0as=(1,1,,1).Fig.5illustratesa3-Dquadraticfunction.Forthepurposeofoptimization,theparametersoftheCIWOalgorithmaresetasillustratedinTable1.NumericalresultsbasedontheproposedCIWOmethodareprovidedinTable24.2.RosenbrokfunctionThe3-DRosenbrokfunction(alsoknownastheRosen-brokvalleyorbanana)isdepictedinFig.6.Thisnon-convexfunctionhasaspecialinteractionamongitsvariableswhichiswidelyusedforevaluatingoptimizationalgorithms.TheRosenbrokfunctionisgivenasfollowswh

7 erethevariablescanalterintherange(4,4).P
erethevariablescanalterintherange(4,4).Parame-terselectionoftheCIWOalgorithmisaddressedinTable3OptimizationresultsusingCIWOarepresentedinTable44.3.RastriginfunctionRastriginsfunctionisatypicalexampleofmulti-modalfunctionswhichisusedtotestthecapabilitiesofoptimiza-tionmethods.Fig.7showsthe3-DRastriginfunction.EquationbelowexpressestheRastriginfunctionasusedinthisstudy Table5ParameterattributesoftheCIWOalgorithmintheRastriginfunctionoptimizationproblem.Maximumweedpopulation300.010.0000013110 Table6ThesimulationresultsofRastriginfunctionminimization.MeanMaxMinMedianSDLogisticmap52.4195e52.2130e44.8126eSinusoidalmap000000Tentmap0.00120.005400.00338.9421e30.00202PSO0.00390.00810.00190.00560.05420.0112CPSO1.3327e51.5375e43.0027e49.3492eIWO0.03730.04940.00120.02180.09870.0555GA0.08080.01380.00560.03490.0110.0739M.Ahmadi,H.Mojallali/Chaos,Solitons&Fractals45(2012)1108…1120 10cosTheproblemvariablesarecon“nedto5,5).CIWOparametersaregiveninTable5,andthesimulationresultsareaddressedinTable64.4.GriewangkfunctionGriewangkfunctionisacontinuousnon-convexmulti-modalquadratictestfunctionwhichisportrayedinFig.8.Thefunctionisgivenbytheequationgivenbelow x2i4000Y10i¼1cos inwhichtheboundis600,600).Asitisobvious,theminimumofthefunctionoccursat.TheCIWOalgorithmistunedaccordingtotheparametersgivenTable7,andoptimizationresultsareshowninTable84.5.OptimizationproblemswithnonlinearconstraintsInordertofurtherillustratetheusefulnessofthepro-posedCIWOmethod,theperformanceoftheCIWOalgo-rithmistestedagainsttwooptimizationproblemswithnonlinearconstraintsfromRef.Ref..Notethatthesenon-linearconstrainedproblemscanbereadilydealtwithbyaddingastepwhichcheckswhethertheconstraintisfea-sibleforapossiblesolution.TheparameterselectionoftheCIWOalgorithmforbothproblemsprovidedinthissectionissimilartothosegiveninTable1The“rstproblemistominimizeÞ¼ð Subjectto=10and0(=1,2,,10).Theglobalmin-imumislocatedat0005.TheresultsofapplyingCIWOalongwithIWO,PSO,CPSO,andGAaregiveninTable9ThesecondproblemderivedfromfromistominimizeÞ¼ðSubjecttowherein00(=1,2,3)and=3,4,5.Thefeasi-bleregionofsearchspaceconsistsof4disjo

8 intspheres.TheoptimumsolutionisTable10sh
intspheres.TheoptimumsolutionisTable10showstheresultsobtainedutilizingtheCIWO Fig.8.TheGriewangksfunctionwithtwovariablesandaglobalminimumat()=(0,0,0)(a)withoutenlargement(b)mediumenlargement(c)highenlargement. Table7ParametervaluesoftheCIWOalgorithmintheGriewangkfunctionminimizationproblem.Maximumweedpopulation300.0010.000018210M.Ahmadi,H.Mojallali/Chaos,Solitons&Fractals45(2012)1108…1120 Havingassessedthesimulationresultsgiveninthissec-tion,weadoptthesinusoidalmapasthechaoticsequencegeneratorinCIWOmethodology.5.Parameteridenti“cationofchaoticsystemsusingCIWOalgorithm5.1.Theidenti“cationalgorithmTheparameteridenti“cationofchaoticsystemsisanactiveresearchsubjectsubject.Thusfar,severalinvalu-ableinvestigationshavebeenconductedbyresearcherssuggestingtheutilizationofevolutionaryalgorithms,suchasPSO,GA,COA,andetc.,foridenti“cationofchaoticsys-sys-.Considerachaoticdynamicalsystemde-“nedbydenotesthestatevector,representstheun-knownparametervector,and()isthederivativeoperator.Theidenti“cationmethodbasedonCIWOalgorithmisdis-cussednext.5.1.1.PreliminariesEachweedincludesastringofdifferentvaluesofunknownparameters.Thesuggested“tnessfunctionisgivenbelowþþðInwhichistheestimatedthstateattimestepthenumberofsamplesfromthesystemtobeimplementedforidenti“cation.denotesthenumberofstatevariables.Notethatincaseofdiscrete-timechaoticsystemsthe“tnessfunctionconvertstoþþðOncetheinformationaboutthestatesofachaoticsystemisavailable,theidenti“cationalgorithmcanbereadilyapplied.Inthisstudy,thesystemparametersaresetinadvance,andapre-de“nedlevelofnoiseisaddedtothe Table8ThesimulationresultsofGriewangkfunctionminimization.MeanMaxMinMedianSDLogisticmap62.4260e51.7569e62.1494e42.8834eSinusoidalmap000000Tentmap3.5468e40.001044.7771e46.8058e46.8313ePSO0.00010.00040.99980.00021.9984e43.1398e64.9250e53.2636e63.7428e44.8258eIWO0.12680.15440.08430.09970.08990.1392GA0.18350.33360.07310.05420.19810.4325 Table9Thenumericalresultsregardingtheoptimizationproblemde“nedbyEqs.(12)and(13)MeanMaxMinMedianSDLogisticmap0.31720.31850.30290.31630.0332Sinusoidalmap0.31620.31710.31580.31670.0002Tentmap0

9 .31830.32110.29870.30990.0013PSO0.31600.
.31830.32110.29870.30990.0013PSO0.31600.34370.29680.30030.0089CPSO0.31580.31990.30030.31350.0314IWO0.33260.35280.26430.19970.0979GA0.42110.57310.23740.21140.1109 Table10Thenumericalresultsregardingtheoptimizationproblemde“nedbyEqs.(14)and(15)MeanMaxMinMedianSDLogisticmap4.99815.02464.97774.99730.0012Sinusoidalmap4.99995.00234.98974.99860.0002Tentmap4.98735.06824.89854.99690.0231PSO4.93935.09994.89934.89760.0013CPSO4.99725.01844.91934.99850.0019IWO4.80015.10664.81854.95870.0837GA4.72735.38274.52924.95730.1042M.Ahmadi,H.Mojallali/Chaos,Solitons&Fractals45(2012)1108…1120 system.Then,thesystemissimulatedandstatevaluesarecalculatedforeachtimestep.5.1.2.ThealgorithmI.Tobegin,asetofinitialvaluesareassignedtoeachparameter.Afterwards,thesevaluesareencodedintoweeds.Thiscanbedoneasitisdescribedinthe“rststepoftheCIWOalgorithm.II.FollowingtheCIWOsteps,theranking,thechaoticsearchandtheexecutionstagesareperformedaccordingly.III.Whenadesiredlevelofprecision;i.e.,isverysmallnumberclosetozero,orthemaximumnumberofiterationcyclesisreachedthealgorithmIV.Theoptimumvaluesofparametersareextractedfromthebestweedwhichhasmostaptlyminimizedthe“tnessfunction.5.2.Examples5.2.1.Rösslerssystem(Rösslerattractor)In1976,OttoE.Rösslerintroducedasimplecontinuous-timedynamicalsystemwhichdisplayedchaoticperfor-mance.Thesystemisreportedlyveryhelpfulinmodelingtheequilibriumofchemicalprocessesprocesses.RösslerssystemofdifferentialequationsisTheparameters,anddeterminethesystemsevolu-tion.Originally,Rösslerstudiedthecaseinwhich=0.2,=0.2,and=5.7;however,inthisinvestigation=0.1,=0.1,and=14arechosen,sincethissetofvaluesaremorefrequentlyused.Thenoiselevelischosentobe0.01whichisde“nedbythenoisestandarddeviationratiodividedbystandarddeviationofthenoise-freesystem.ThephasediagramsofthesimulatedRösslersystemaregivenFig.9.Theidenti“cationalgorithmasdiscussedinsec-.isapplied.ThealgorithmsettingsandestimatedparametersareprovidedinTables11and12,respectively.5.2.2.Lorenzssystem(Lorenzattractor)TheLorenzssystemwasproposedbyEdwardLorenzin1963ashewasundertakingresearchonweatherpredic-tion.Thedifferentialequati

10 ons,actually,designatesamathematicalmode
ons,actually,designatesamathematicalmodelforthermalconvection.Themodel Fig.9.TrajectoriesofRosslerssystemin-plane.(b)Rosslersattractorin-plane.(c)Rosslerssystemin Table12Parameteridenti“cationresultsofRosslerssystem.abcJCIWO0.10020.099913.99983.7413eIWO0.11480.101514.108718.9478CPSO0.10720.104514.02163.2738ePSO0.10000.100313.99938.1234eCOA0.10880.100713.754241.3926GA0.39360.240112.995989.4827 Table11ParameterselectionoftheCIWOalgorithmforparameterestimationofRosslerssystem.Maximumweed500.010.0000015120M.Ahmadi,H.Mojallali/Chaos,Solitons&Fractals45(2012)1108…1120 involvesdescriptionsofheatdistribution,themotionofviscous”uids(atmosphere),andthedrivingforceofther-malconvectionconvection.TheLorenzssystemisexpressedasThevaluesforsystemparametersarelistedbelowwhichensureachaoticbehaviorBysettingthesystemparametersasgivenaboveandaddingthesamenoiselevelasinthepreviousexample,thesystemperformanceissimulated.Thesystemtrajecto-riesaregiveninFig.10TheCIWOalgorithmasdiscussedisapplied.Tables13and14providetheidenti“cationresultsandtheCIWOalgorithmsparameterselection.5.2.3.HenonsSystemTheHenonSystemisoneofthemostwellstudiedchaoticdiscrete-timedynamicsystemssystems.ThedynamicsofthesystemaregovernedbyHenonmappossesschaoticbehavioras=1.4and=0.3.ThesystemissimulatedandthephasespacediagramofHenonmapisdepictedinFig.11.Theidenti“cationresultsandexperimentattributesarelistedinTables15and166.ConclusionsInthispaper,anewstraightforwardhybridoptimiza-tionalgorithmisproposedcombiningtheCOAandtheIWO.Thecapabilitiesoftheoptimizationalgorithmareveri“edthroughsolvingaseriesofoptimizationproblemsusingmulti-dimensionalbenchmarkfunctions.Asigni“-cantapplicationputforwardinthisstudyisthatthepro-posedCIWOalgorithmcanbeimplementedforthepurposeofparameteridenti“cationofchaoticsystems.TheresultsbasedontheproposedschemearecomparedwiththoseoftheIWO,COA,PSO,CPSO,andGA,whereinallcasestheCIWOstrategycontributestosuperiorestima-tionperformance.Asuggestedtopicforfurtherresearchis Fig.10.TheplotoftrajectoryLorenzssystem-plane.(b)TheplotoftrajectoryLorenzssystem-plane.(c)TheplotoftrajectoryLore

11 nzs Table13ParameterselectionoftheCIWOa
nzs Table13ParameterselectionoftheCIWOalgorithmforparameterestimationofLorenzssystem.Maximumweed700.010.0000018135 Table14ParameterapproximationresultsofLorenzssystem.abcJCIWO10.000028.00022.66663.846eIWO10.488427.68262.878211.5623CPSO10.002028.01012.66763.3359ePSO10.000127.99822.66677.641eCOA11.413326.30163.1582284.6153GA9.596829.54272.0152344.1973M.Ahmadi,H.Mojallali/Chaos,Solitons&Fractals45(2012)1108…1120 toexploittheCIWOalgorithmtocopewiththechallengingoptimizationproblemsariseinengineeringapplications.[1]KulkarniRV,VenayagamoorthyGK.Bio-inspiredalgorithmsforautonomousdeploymentandlocalizationofsensornodes.IEEETransSystManCybernetC2010;99:1…13.[2]JatmikoW,SekiyamaK,FukudaT.APSO-basedmobilerobotforodorsourcelocalizationindynamicadvection…diffusionwithobstaclesenvironment:theory,simulation,andmeasurement.IEEEComputIntellMag2007;2(2):37…51.[3]LiBB,WangL,LiuB.AneffectivePSO-basedhybridalgorithmformultiobjectivepermutation”owshopscheduling.IEEETransSystManCybernetA2008;38(4):818…31.[4]DoringoM,BirattariM,StutzleT.Antcolonyoptimization.IEEEComputIntellMag2006;1(4):28…39.[5]MehrabianAR,LucasC.Anovelnumericaloptimizationalgorithminspiredfromweedcolonization.EcolInform2006;1:355…66.[6]KarimkashiS,KishkAA.Invasiveweedoptimizationanditsfeaturesinelectromagnetics.IEEETransAntennasPropag2010;58(4):1269…78.[7]MehrabianAR,Youse“-KomaA.Anoveltechniqueforoptimalplacementofpiezoelectricactuatorsonsmartstructures.JFranklinInst2009. [8]ZhangX,WangY,CuiG,NiuY,XuJ.ApplicationofanovelIWOtothedesignofencodingsequencesforDNAcomputing.ComputMathAppl2009;57:2001…8.[9]LorenzEN.Deterministicnonperiodic”ow.JAtmosSci[10]MuraliK,LakshmananM.Observationofmanybifurcationsequencesinadrivenpiecewise-linearcircuit.PhysLettA[11]MatsumotoT,ChuaLO,KomoroM.Birthanddeathofthedoublescroll.PhysicaD1987;24(1-3):97…124.[12]HaghighiHS,MarkaziAHD.ChaospredictionandcontrolinMEMSresonators.CommunNonlinearSciNumerSimul2010;15:[13]ZilongG,SunanW,JianZ.Anovelimmuneevolutionaryalgorithmincorporatingchaosoptimization.PatternRecognLett2006;27:[14]LuHJ,ZhangHM,MaLH.Anewoptimizationalgorithmbasedonchaos.J

12 ZhejiangUnivSciA2006;7(4):539…42.[15]Lin
ZhejiangUnivSciA2006;7(4):539…42.[15]LinJH,HuangLR.Chaoticbeeswarmoptimizationalgorithmforpathplanningofmobilerobots.In:Proceedingsofthe10thWSEASinternationalconferenceonevolutionarycomputing;2009.p.84…89.[16]ZuoXQ,FanYS.Achaossearchimmunealgorithmwithitsapplicationtoneuro-fuzzycontrollerdesign.ChaosSolitonsFract[17]HasegawaM,IkeguchiT,AiharaK,ItohK.Anovelchaoticsearchforquadraticassignmentproblems.EurJOperRes2002;139:543…56.[18]XiangT,LiaoX,WongK.Animprovedparticleswarmoptimizationalgorithmcombinedwithpiece-wiselinearchaoticmap.ApplMathComput2007;190:1637…45.[19]AlatasB,AkinE,OzerAB.Chaosembeddedparticleswarmoptimizationalgorithms.ChaosSolitonsFract2009;40:1715…34.[20]HeYY,ZhouJZ,XiangXQ,ChenH,QinH.Comparisonofdifferentchaoticmapsinparticleswarmoptimizationalgorithmforlong-termcascadedhydroelectricsystemscheduling.ChaosSolitonsFract[21]ChengCT,WangWC,XuDM,ChauKW.Optimizinghydropowerreservoiroperationusinghybridgeneticalgorithmandchaos.WaterResourManag2008;22(7):895…909.[22]AraujoE,CoelhoLS.ParticleswarmapproachesusingLozimapchaoticsequencestofuzzymodellingofanexperimentalthermal-vacuumsystem.ApplSoftComput2008;8:1354…64.[23]YangJ,ZhouJ,WuW,LiuF,ZhuC,CaoG.AchaosalgorithmbasedonprogressiveoptimalityandTabusearchalgorithm.In:Proceedingsofthe4thconferenceonmachinelearningandcybernetics,2005.p.[24]YongY,WanxingS,SunanW.Studyofchaosgeneticalgorithmsanditsapplicationinneuralnetworks.In:TENCON02,proceedingsofthe2002IEEEregion10conferenceoncomputers,communications,controlandpowerengineering,vol.1,2002.p.232…5.[25]PeitgenHO,JurgensH,SaupeD.Chaosandfractals:newfrontiersofscience.Seconded.NewYork:Springer;2004.[26]LiangJJ,RunarssonTP,Mezura-MontesE,ClercM,SuganthanPN,CoelloCoelloCA,DebK.Problemde“nitionsandevaluationcriteriafortheCEC2006.SpecialSessiononConstrainedReal-ParameterOptimization,TechnicalReport,NanyangTechnologicalUniversity,Singapore,2006.tp://web.mysites.ntu.edu.sg/epnsugan/PublicSite/SharedDocuments/Forms/AllItems.aspx&#xht11;&#x.300; Fig.11.PhasespacediagramofHenonssystem. Table15ParameterassortmentoftheCIWOalgorithmforparameteridenti“cationofHenon

13 ssystem.Maximumweed400.010.0000015115 Ta
ssystem.Maximumweed400.010.0000015115 Table16Parameteridenti“cationresultsofHenonssystem.abJCIWO1.39990.30001.4249eIWO1.35470.27895.6631CPSO1.39910.28937.220ePSO1.39890.30013.1376eCOA1.39780.30000.0129GA1.50830.119810.3647M.Ahmadi,H.Mojallali/Chaos,Solitons&Fractals45(2012)1108…1120 [27]PengB,LiuB,ZhangFY,WangL.Differentialevolutionalgorithmbasedparameterestimationforchaoticsystems.ChaosSolitonsFract2009;39:2110…8.[28]BezruchkoBP,SmirnovDA,SysoevIV.Identi“cationofchaoticsystemswithhiddenvariables(modi“edBocksalgorithm).ChaosSolitonsFract2006;29:82…90.[29]WuX,HuH,ZhangB.Parameterestimationonlyfromthesymbolicsequencesgeneratedbychaossystem.ChaosSolitonsFract[30]WangL,XuY,LiL.Parameteridenti“cationofchaoticsystemsbyhybridNelder…Meadsimplexsearchanddifferentialevolutionalgorithm.ExpertSystAppl2010. [31]HuM,XuZ,ZhangR,HuA.Parameteridenti“cationandadaptivefullstatehybridprojectivesynchronizationofchaotic(hyper-chaotic)systems.PhysLettA2007;361:231…7.[32]ChenS,LuJ.Parameteridenti“cationandsynchronizationofchaoticsystemsbaseduponadaptivecontrol.PhysLettA2002;299:353…8.[33]PanST,LaiCC.Identi“cationofchaoticsystemsbyneuralnetworkwithhybridlearningalgorithm.ChaosSolitonsFract2008;37:233…44.[34]SunJ,ZhaoJ,WuX,FangW,CaiY,XuW.Parameterestimationforchaoticsystemswithadriftparticleswarmoptimizationmethod.PhysLettA2010;374:2816…22.[35]TangY,GuanX.Parameterestimationfortime-delaychaoticsystembyparticleswarmoptimization.ChaosSolitonsFract[36]ModaresH,Ali“A,FatehM.Parameteridenti“cationofchaoticdynamicalsystemsthroughanimprovedparticleswarmoptimization.ExpertSystAppl2010;37:3714…20.[37]ChangJF,YangYS,LiauTL,YanJJ.Parameteridenti“cationofchaoticsystemsusingevolutionaryprogrammingapproach.ExpertSystAppl2008;35:2074…9.[38]ChangWD.Parameteridenti“cationofRosslerschaoticsystembyanevolutionaryalgorithm.ChaosSolitonsFract2006;29:1047…53.[39]RösslerOE.Anequationforcontinuouschaos.PhysLettA[40]RösslerOE.Anequationforhyperchaos.PhysLettA1979;71(2,3):[41]HénonM.Atwo-dimensionalmappingwithastrangeattractor.CommunMathPhys1976;50:69…77.M.Ahmadi,H.Mojallali/Chaos,Solitons&Fractals45(2012

Related Contents


Next Show more