/
COMMUN.ATH.SCI.c\r2011InternationalPressVol.9,No.2,pp.413{457UNCONDITI COMMUN.ATH.SCI.c\r2011InternationalPressVol.9,No.2,pp.413{457UNCONDITI

COMMUN.ATH.SCI.c\r2011InternationalPressVol.9,No.2,pp.413{457UNCONDITI - PDF document

ellena-manuel
ellena-manuel . @ellena-manuel
Follow
400 views
Uploaded On 2015-11-23

COMMUN.ATH.SCI.c\r2011InternationalPressVol.9,No.2,pp.413{457UNCONDITI - PPT Presentation

ReceivedSeptember82009acceptedinrevisedversionSeptember72010CommunicatedbyMartinBurgeryInstituteforNumericalandAppliedMathematicsGeorgAugustUniversityofGottingenLotzestr1618D37083Go ID: 203173

Received:September8 2009;accepted(inrevisedversion):September7 2010.CommunicatedbyMartinBurger.yInstituteforNumericalandAppliedMathematics Georg-AugustUniversityofGottingen Lotzestr.16-18 D-37083Go

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "COMMUN.ATH.SCI.c\r2011InternationalPress..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

COMMUN.ATH.SCI.c\r2011InternationalPressVol.9,No.2,pp.413{457UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGCAROLA-BIBIANESCHONLIEByANDANDREABERTOZZIzAbstract.Higherorderequations,whenappliedtoimageinpainting,havecertainadvantagesoversecondorderequations,suchascontinuationofbothedgeandintensityinformationoverlargerdistances.Discretizingafourthorderevolutionequationwithabruteforcemethodmayrestrictthetimestepstoasizeuptoorderx4wherexdenotesthestepsizeofthespatialgrid.Inthisworkwepresentecientsemi-implicitschemesthatareguaranteedtobeunconditionallystable.WeexplainthemainideaoftheseschemesandpresentapplicationsinimageprocessingforinpaintingwiththeCahn-Hilliardequation,TV-H1inpainting,andinpaintingwithLCIS(lowcurvatureimagesimpli ers).Keywords.Imageinpainting,higherorderequations,numericalschemes.AMSsubjectclassi cations.35G25;34K28.1.IntroductionAnimportanttaskinimageprocessingistheprocessof llinginmissingpartsofdamagedimagesbasedontheinformationgleanedfromthesurroundingareas.Itisessentiallyatypeofinterpolationandiscalledinpainting.Therebyonecouldrestoreimageswithdamagedpartsdueto,forinstance,intentionalscratching,aging,orweather.Oronecanrecoverobjectswhichareoccludedbyotherobjects,wherewithinthiscontexttheprocessiscalleddisocclusion.Infacttheapplicationsofimageinpaintingarecountless.Fromtherestorationofancientfrescoes[3],tothemedicalneedsofreducingartifactsinMRI-,CT-orPETimagingreconstructions[47],digitalimageinpaintingisubiquitousinourmoderncomputerizedsociety.Sincethe rstworksonimageinpaintingbyMumford,NitzbergandShiota[57],MasnouandMorel[52],Caselles,Morel,SbertandGillette[21],andBertalmioetal[10],muche orthasgoneintodevelopingdigitalalgorithms.Thesemethodsincludethetexturesynthesisandexemplar-basedapproach(see,e.g.,[20,29,32,72])andanumberofvariational-andPDE-basedapproaches.Thispaperfocusesonthelatter.Inmathematicalterms,imageinpaintingcanbedescribedinthefollowingway:letfbethegivenimagede nedonanimagedomain\n.TheproblemistoreconstructtheoriginalimageuinthedamageddomainD\n,calledtheinpaintingdomain.Moreprecisely,let\nR2beanopenandboundeddomainwithLipschitzboundary,B1;B2twoBanachspacesandf2B1bethegivenimage.Ageneralvariationalapproachininpaintingcanbewrittenasmin2B2nE(u)=R(u)+k(fu)k2B1o;(1.1)whereR:B2Rand(x)=(0\nnD0D;(1.2) Received:September8,2009;accepted(inrevisedversion):September7,2010.CommunicatedbyMartinBurger.yInstituteforNumericalandAppliedMathematics,Georg-AugustUniversityofGottingen,Lotzestr.16-18,D-37083Gottingen,Germany(c.schoenlieb@math.uni-goettingen.de).zDepartmentofMathematics,UCLA(UniversityofCaliforniaLosAngeles),520PortolaPlaza,LosAngeles,CA90095-1555,USA(bertozzi@math.ucla.edu).413 414UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGisthecharacteristicfunctionof\nnDmultipliedbyaconstant01.R(u)denotestheregularizingtermandk(fu)kB1thesocalled delitytermoftheinpaintingapproach.B2B1ingeneral,signifyingthesmoothinge ectoftheregularizingtermontheminimizeru2B2.DependingonthechoiceoftheregularizingtermRandtheBanachspacesB1,B2,variousinpaintingapproacheshavebeendeveloped.Themostfamousmodelisthetotalvariation(TV)model,whereR(u)=R\njrujdxdenotesthetotalvariationofu,B1=L2(\n)andB2=BV(\n)thespaceoffunctionsofboundedvariation;cf.[23,25,61,60].AvariationalmodelwitharegularizingtermcontaininghigherorderderivativesistheEulerselasticamodel[26,27,52]whereR(u)=R\n(a+b2)jrujdxwithpositiveweightsaandb,andcurvature=r(ru=jruj).Otherexamplestobementionedfor(1.1)aretheactivecontourmodelbasedonMumfordandShahssegmentation[68],theinpaintingschemebasedontheMumford-Shah-Eulerimagemodel[35],inpaintingwiththeNavier-Stokesequation[11],andwavelet-basedinpainting[28,30],onlytogivearoughoverview.ForamorecompleteintroductiontoimageinpaintingusingPDEswereferto[26,18,63].1.1.Second-versushigher-orderinpaintingapproaches.Secondordervariationalinpaintingmethods(wheretheorderofthemethodisdeterminedbythederivativesofhighestorderinthecorrespondingEuler-Lagrangeequation),likeTVinpainting,havedrawbacksasintheconnectionofedgesoverlargedistances(Con-nectivityPrinciple,cf.Figure1.1)andthesmoothpropagationoflevellines(setsofimagepointswithconstantgrayvalue)intothedamageddomain(CurvaturePreser-vation,cf.Figure1.2).Thisisduetothepenalizationofthelengthofthelevellineswithintheminimizingprocesswithasecondorderregularizer,connectinglevellinesfromtheboundaryoftheinpaintingdomainviatheshortestdistance(linearinterpo-lation).TheregularizingtermR(u)=R\njrujdxintheTVinpaintingapproach,forexample,canbeinterpretedviathecoareaformula,whichgivesminZ\njrujdx()minZ11length()d;where=fx2\n:u(x)=gisthelevellineforthegrayvalue.IfweconsiderontheotherhandtheregularizingtermintheEulerselasticainpaintingapproachthecoareaformulareadsminZ\n(a+b2)jrujdx()minZ11alength()+bcurvature2()d:(1.3)Thusnotonlythelengthofthelevellinesbutalsotheircurvatureispenalized(wherethepenalizationofeachdependsontheratiob=a).Thisresultsinasmoothcon-tinuationoflevellinesovertheinpaintingdomainalsooverlargedistances;compareFigures1.1and1.2.Theperformanceofhigherorderinpaintingmethodscanalsobeinterpretedviathesecondboundarycondition,whichisnecessaryforthewell-posednessofthecorrespondingEuler-Lagrangeequationoffourthorder.Notonlyarethegrayvaluesoftheimagespeci edontheboundaryoftheinpaintingdomain,butalsothegradientoftheimagefunction,namelythedirectionofthelevellines,isgiven.Inanattempttosolveboththeconnectivityprincipleandthestaircasinge ectresultingfromsecondorderimagedi usions,anumberofthirdandfourthorderdi usionshavebeensuggestedforimageinpainting.The rstworkconnectingimageinpaintingtoathirdorderPDE(partialdi erentialequation)isthetransportprocess C.B.SCHONLIEBANDA.BERTOZZI415 Fig.1.1.TwoexamplesofcurvaturebasedinpaintingcomparedwithTVinpaintingfrom[26].InthecaseoflargeaspectratiostheTVinpaintingfailstocomplytotheConnectivityPrinciple. Fig.1.2.AnexampleofelasticainpaintingcomparedwithTVinpaintingfrom[27].Despitethepresenceofhighcurvature,TVinpaintingtruncatesthecircleinsidetheinpaintingdomain(linearinterpolationoflevellines,i.e.,CurvaturePreservation).DependingontheweightsaandbEulerselasticainpaintingreturnsasmoothlyrestoredobject,takingthecurvatureofthecircleintoaccount.ofBertalmioetal[10].Theimageinformation,modeledbyu,istransportedintotheinpaintingdomainalongthelevellinesoftheimage.TheresultingschemeisadiscretemodelbasedonthenonlinearPDEu=r?uru;andissolvedinsidetheinpaintingdomainDusingtheimageinformationfromasmallstripearoundtheboundaryofD.Theoperatorr?denotestheperpendiculargradient(@y;@x).Duetothelackofcommunicationamongthelevellines,thetransportationmayresultinkinksorcontradictionsinsidetheinpaintingdomain.Thusin[10]theequationaboveisimplementedwithintermediatestepsofanisotropicdi usion.In[11]theauthorsdevelopatheoryfortheproperboundaryconditionsin[10]bymakingaconnectiontotheNavier-Stokesequations.Thetwoconditionsonthe\boundary"oftheinpaintingdomaincorrespondtothenoslipconditionforNavier-Stokes.AvariationalthirdorderapproachtoimageinpaintingisCDD(CurvatureDrivenDi usion)[24].Tosolvetheproblemofconnectinglevellinesalsooverlarge 416UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGdistances(connectivityprinciple),thelevellinesarestillinterpolatedlinearly.Thedrawbacksofthethird-orderinpaintingmodels[10]and[24]havedrivenChan,KangandShen[27]toareinvestigationoftheearlierproposalofMasnouandMorel[52]onimageinterpolationbasedonEulerselasticaenergy(1.3).ThefourthorderelasticainpaintingPDEcombinesCDD[24]andthetransportprocessofBertalmioetal[10],andisabletosolveboththeconnectivityprincipleandthestaircasinge ect.OtherrecentlyproposedhigherorderinpaintingalgorithmsareinpaintingwiththeCahn-Hilliardequation[13,14],TV-H1inpainting[19,64]andcombinationsofsecondandhigherordermethods,e.g.[51].Inthispaperweareespeciallyinterestedinthree,rathernew,fourth-orderin-paintingschemes.Namely,weshalldiscussCahn-Hilliardinpainting,TV-H1inpaint-ing,andinpaintingwithLCIS(lowcurvatureimagesimpli ers).Westartthediscus-sionwiththeinpaintingofbinaryimagesusingtheCahn-Hilliardequation[13,14].Theinpaintedversionuoff2L2(\n)isconstructedbyfollowingtheevolutionofu=u+1 F0(u)+(fu);(1.4)whereF(u)isasocalleddouble-wellpotential,e.g.,F(u)=u2(u1)2.Theapplica-bilityoftheCahn-HilliardequationfortheinpaintingofbinaryimagesisduetothedoublewellpotentialF(u)intheequation.Thetwowellscorrespondtovaluesofuthataretakenbymostofthegrayscalevalues.Choosingapotentialwithwellsatthevalues0(black)and1(white),Equation(1.4)thereforeprovidesasimplemodelfortheinpaintingofbinaryimages.Theparameterdeterminesthesteepnessofthetransitionbetween0and1.Further,thefourthorderregularizingtermintheequa-tionprovidestheadvantagesofhigherorderinpaintingapproacheswhichhavebeendiscussedbefore,suchastheabilitytoconnectlevellinesalsooverlargedistances(cf.(1.3)).ThesecondmethodofinterestinthispaperisageneralizationoftheCahn-Hilliardinpaintingapproachtograyvalueimageswhichhasbeenrecentlyproposedin[19,64]andiscalledTV-H1inpainting.Thereintheinpaintedimageuoff2L2(\n)shallevolveviau=p+(fu);p2@TV(u);(1.5)withTV(u)=(R\njrujdx;ifju(x)j1a.e.in\n;+;otherwise;where@TV(u)denotesthesubdi erentialofthefunctionalTV(u).TobuildtheconnectiontoCahn-Hilliardinpaintingtheauthorsin[19]showthatsolutionsofanappropriatetime-discreteCahn-Hilliardinpaintingapproach-converge,as0,tosolutionsofanoptimizationproblemregularizedwiththeTVnorm.Asimilarformofthisapproachappearsinthecontextofdecompositionandrestorationofgrayvalueimages;seeforexample[49,58,70].Further,inBertalmioetal[12],anapplicationofthemodelfrom[70]toimageinpaintingisproposed.Incontrasttotheinpaintingapproach(1.5)theauthorsin[12]useamoregeneralformoftheTV-H1approachforadecompositionoftheimageintocartoonandtexturepriortotheinpaintingprocess.Thelatterisaccomplishedwiththemethodpresentedin[10].Moreover,we C.B.SCHONLIEBANDA.BERTOZZI417wouldliketomentionthatin[45]theauthorsconsideracomplexGinzburg-Landauenergyforinpaintingofgrayscale-andcolorimages.ThethirdinpaintingmodelwearegoingtodiscussisinpaintingwithLCIS(LowCurvatureImageSimpli er).ThishigherorderinpaintingmodelismotivatedbytwofamoussecondordernonlinearPDEsinimageprocessing|theworksofRudin,OsherandFatemi[60]andPeronaMalik[59].Thesemethodsarebasedonanonlinearversionoftheheatequationu=r(g(jruj)ru);inwhichgissmallinregionsofsharpgradients.LCISrepresentafourthorderrelativeofthesenonlinearsecondorderapproaches.Theyareproposedin[69]andlaterusedbyBertozziandGreerin[15]forthedenoisingofpiecewiselinearsignals.InthispaperweconsiderLCISforimageinpainting.Withf2L2(\n)ourinpaintedimageuevolvesintimeasu=r(g(u)ru)+(fu);withthresholdingfunctiong(s)=1 1+s2.Notethatwithg(u)ru=r(arctan(u))theaboveequationcanberewrittenasu=(arctan(u))+(fu):(1.6)1.2.Numericalsolutionofhigher-orderinpaintingequations.Onemainchallengeininpaintingwithhigherorder\rowsistheire ectivenumeri-calimplementation.Discretizingafourthorderevolutionequationwithabrute-forcemethodmayrestrictthetimestepstoasizeuptoorderx4wherexdenotesthestepsizeofthespatialgrid.Suchabrute-forcemethodiscomputationallyprohibitiveandhenceitisessentiallyneverdone;see,e.g.,[65].Thenumericalsolutionofhigher-orderequations,likethin lms,phase eldmod-els,surfacedi usionequations,andmanymore,occupiedabigpartofresearchinnumericalanalysisinthelastdecades.In[31]theauthorsproposeasemiimplicit -nitedi erenceschemeforthesolutionofsecondorderparabolicequations.Adi usiontermisaddedimplicitlyandsubtractedexplicitlyintimetothenumericalschemeinordertosuppressunstablemodes.Smerekausesthisideatosolvethefourth-ordersurfacedi usionequation;cf.[65].ThesameideaisappliedbyGlasnertoaphase eldapproachfortheHele-Shawinterfacemodel;cf.[40].Besidesthe nitedi er-enceapproximations,therealsoexistmany niteelementalgorithmsforfourth-orderequations.Barrett,Blowey,andGarckepublishedaseriesofpapersonthesolutionofvariousCahn-Hilliardequations;cf.[5,6,7].ForthesharpinterfacelimitofCahn-Hilliard,i.e.,theHele-Shawmodel,FengandProhlanalyze niteelementmethodsin[37,38].Finiteelementmethodsforthin lmequationsarestudied,forinstance,in[8,46].Forimageinpainting,ecientnumericalschemesforhigher-ordermethodsisanactiveareaofresearch.Asdiscussedin[26]oneofthemostinterestingopenproblemsindigitalinpaintingis,infact,thefastandexactdigitalrealization.InthecaseofCahn-Hilliardinpainting,in[13]theauthorsproposeasemi-implicitschemewhichconstitutesthecommonnumericalmethoddiscussedinthispaper.Theyverifyitscomputationalsuperioritycomparedwithcurrentlyusednumericalmethodsforthreecurvaturedrivenapproaches.ItturnsoutthatCahn-Hilliardinpaintingperformsatleastoneorderofmagnitudefasterthanthecurvaturemethods.In[33,34]Elliott 418UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGandSmithemanproposea niteelementmethodforTV-H1minimizationinthecontextofimagedenoisingandcartoon/texturedecomposition.Theyalsoproverig-orousresultsabouttheapproximationandconvergencepropertiesoftheirscheme.AnextensionoftheirapproachtoTV-H1inpaintingwouldbeinteresting.Notethat,however,thedi erenceoftheinpaintingapproachfromdenoisinganddecom-positionisthattheformerdoesnotfollowavariationalprincipleandthe delitytermislocallydependentonthespatialposition.AnotheralgorithmforTV-H1inpaintingisproposedbyoneoftheauthorsin[62].ThisworkgeneralizesthedualapproachofChambolle[22]andBectetal.[9]fromanL2 delitytermtoanH1 delityandextendsitsapplicationfromTV-H1denoising[1,2]toimageinpainting.Themainmotivationfortheworkin[62]isthatwiththeproposedalgorithmthedomaindecompositionapproachdevelopedin[39]canbeappliedtothehigher-ordertotalvariationcase.BeingabletoapplydomaindecompositionmethodstoTV-H1inpaintingcanresultinatremendousaccelerationofcomputationalspeedduetotheabilitytoparallelizethecomputation.Anotherveryrecentapproachinthisdirectionis[18],wheretheauthorsproposeamultigridapproachforinpaintingwithCDD.InthispaperwediscussanecientsemiimplicitapproachbasedonanumericalmethodpresentedinEyre[36](alsocf.[71])calledconvexitysplitting.Convexitysplittingwasoriginallyproposedtosolveenergyminimizingequations.Weconsiderthefollowingproblem:LetE2C2(RN;R)beasmoothfunctionalfromRNintoR,whereNisthedimensionofthedataspace.Let\nbethespatialdomainofthedataspace.Findu2RNsuchthat(u=rE(u);in\n;u(:;t=0)=u0;in\n;(1.7)withinitialconditionu02RN.ThebasicideaofconvexitysplittingistosplitthefunctionalEintoaconvexandaconcavepart.Inthesemiimplicitscheme,thecon-vexpartistreatedimplicitlyandtheconcaveoneexplicitlyintime.Underadditionalassumptionson(1.7),thisdiscretizationapproachisunconditionallystable,consis-tent,andrelativelyeasytoapplytoalargerangeofvariationalproblems.Moreoverweshallseethattheideaofconvexitysplittingcanbeappliedtomoregeneralevo-lutionequations,andinparticulartothosethatdonotfollowavariationalprinciple,especiallytotheinpaintingEquations(1.4)and(1.5).Convexitysplittingmethods,althoughpossiblynotunderthesamename,alreadyhavealongtraditioninseveralpartsofnumericalanalysis.In niteelementapprox-imationsforPDEs,examplesforsuchnumericalschemescanbefoundintheworksofBarrett,Blowley,andGarcke;cf.[4]Equation(3.42)foranapplicationtoamodelforphaseseparation.In[35]a nitedi erenceschemeforsecond-orderparabolicequationsispresentedwhichalsousestheconvexitysplittingidea;cf.Equation(5.4)in[35].Furtherconvexitysplittingisalsodiscussedinamoregeneraloptimizationcontext;cf.[73]Chaptertwoforanoverviewonthistopic.Themainpartofthepaperillustratestheapplicationoftheconvexitysplittingideatothethreefourth-orderinpaintingapproaches(1.4),(1.5),and(1.6).Moti-vatedbytheanalysisin[17],weshowthatwiththisnumericalapproachweareableto(approximately)computestrongsolutionsofthecontinuousproblemwithanunconditionallystable nitedi erencescheme.Thenumericalschemeissaidtobeunconditionallystableifallsolutionsofthedi erenceequationareboundedindepen-dentlyfromthetimestepsize;cf.De nition2.2.Moreover,weproveconsistencyoftheseschemesandconvergencetotheexactsolution.Further,wepresentnu- C.B.SCHONLIEBANDA.BERTOZZI419mericalresultsdemonstratingthee ectofthehigherorderregularizingtermintheapproaches.InthecaseofTV-H1inpaintingandinpaintingwithLCISwedirectlycomparethevisualresultswiththesecondorderTVinpaintingmethod.Organizationofthepaper.InSection2theideaofconvexitysplittingispre-sented.AfteranintroductiontogradientsystemswestateandproveEyre'stheoremabouttheunconditionalstabilityoftheconvexitysplittingscheme.Sections3-5arededicatedtotheapplicationofconvexitysplittingtoCahn-Hilliardinpainting(1.4),TV-H1inpainting(1.5),andinpaintingwithLCIS(1.6).InthecaseofCahn-HilliardandTV-H1inpaintingthecorrespondingEquations(1.4)and(1.5)arenotstrictlygradient\rows,buttheirevolutionisthesumofthegradientsoftwodi erentener-gies.Here,convexitysplittingisappliedtoeachoftheseenergiesandresultsinasemi-implicitschemeforthewholeevolution.Rigorousproofsfortheconsistencyofthenumericalscheme,theboundednessofnumericalsolutionsandtheirconvergencetotheexactsolutionaregiven.Foreachoftheseinpaintingalgorithmsnumericalresultsarepresented.Intheconclusionofthepaperopenproblemsarediscussed.Notation.Inthispaperwediscussthenumericalsolutionofevolutionarydif-ferentialequations.ThereforewehavetodistinguishbetweentheexactsolutionuofthecontinuousequationandtheapproximativesolutionUofthecorrespondingtimediscretenumericalscheme.WewritecapitalUkforthekthsolutionofthediscreteequationandsmalluk=u(kt)forasolutionofthecontinuousinpaintingequationattimektwithtimestepsizet.Letekdenotethetemporaldiscretizationerrorgivenbyek=ukUk.Insubsectiontwo,uandUarevectorsinRN,whereNdenotesthedimensionofthedata.InallotherpartsofthispaperuandUareassumedtobeelementsinL2(\n).LetE2C2(H;R)denoteafunctionalfromasuitableHilbertspaceHtoR,andrE(u)its rstvariationwithrespecttou.Inthediscreteset-tingH=RN.ThroughoutthispaperkkdenotesthenorminL2(\n)(ortheEuclideannorminthediscretesetting),andh;itheinnerproductinL2(\n)(orinRNinthedis-cretesetting).Finally,sinceweposeallthreeinpaintingapproaches(1.4)-(1.6)withNeumannboundaryconditions,wehavetode nethenon-standardspaceH1(\n)asH1(\n)=nF2H1(\n)jhF;1i(H1);H1=0o;withnormkk1:=\r\rr1\r\rL2(\n).Therebytheoperator1denotesthein-verseofwithNeumannboundaryconditions.Inmoredetail,letH1(\n):= 2H1(\n):R\n dx=0 .Thenu=1F2H1(\n)istheuniqueweaksolutionofthefollowingproblem:uF=0;in\n;ru=0;on@\n:Foramoreelaboratederivationoftheabovespacewereferto[19],AppendixA.2.TheconvexitysplittingideaAsalreadydiscussedintheIntroduction,convexitysplittingmethodsareusedinawiderangeofoptimizationproblems;cf.Section1.2forrelevantreferences.Orig-inallydesignedtosolvegradientsystems,weshallseeinthispaperthatconvexitysplittingschemesarerelevantformoregeneralproblems,i.e.,forevolutionequationswhichdonotfollowavariationalprinciple.SeeSections3-5forourthreeinpainting 420UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGapproaches(1.4)-(1.6).Firstweintroducethenotionofgradient\rowsandtheapplicationofconvexitysplit-tingmethodsinthiscontext.TodosowefollowtheexplanationsandnotationsinEyre'swork[36].WeconsiderEquation(1.7).IfEful llsthefollowingconditions;(i)E(u)0;8u2RN;(ii)E(u)!1askuk!1;(iii)hJ(rE)(u)u;ui8u2RN;(2.1)thenEquation(1.7)iscalledagradientsystemanditssolutionsarecalledgradient\rows.TherebyJ(rE)(u)istheJacobianofrEinu,2Randh:;:idenotestheinnerproductonRNwithcorrespondingnormkuk2=hu;ui.Allgradientsystemssatisfythedissipationproperty,i.e.,dE(u) dt=krE(u)k2;andthereforeE(u(t))E(u0)forallt0.IfE(u)isstrictlyconvex,i.e.,incondition(2.1)(iii)ispositive,thenonlyasingleequilibriumforthegradientsystemexists.Unconditionallystableanduniquelysolvablenumericalschemesexistfortheseequations(cf.[66]).IfE(u)isnotstrictlyconvex,i.e.,0,multipleminimizersmayexistandthegradient\rowcanpossiblyexpandinu(t).Thestabilityofanexplicitgradientdescentalgorithm,i.e.,Uk+1=UktrE(Uk),inthiscasemayrequireextremelysmalltimesteps,dependingofcourseonthefunctionalE.Forfourthorderinpaintingapproaches,forinstance,E(Uk)containssecondorderderivativesresultinginarestrictionoftuptoorder(x)4(wherexdenotesthestepsizeofthespatialdiscretization).Thereforethedevelopmentofstableandecientdiscretizationsfornon-convexfunctionalsEishighlydesirable.ThebasicideaofconvexitysplittingistowritethefunctionalEasE(u)=Ec(u)E(u);(2.2)whereEo2C2(RN;R)andEo(u)isstrictlyconvexforallu2RN;o2fc;eg:(2.3)Thesemi-implicitdiscretizationof(1.7)isthengivenbyUk+1Uk=t(rEc(Uk+1)rE(Uk));(2.4)whereU0=u0.Remark2.1.WewanttoanticipatethatthesettingofEyre,andhencethesubsequentpresentationofconvexitysplitting,isapurelydiscreteone.Neverthelessitactuallyholdsinamoregeneralframework,i.e.,formoregeneralgradient\rows.InthecaseofanL2gradient\rowforexample,theJacobianJofthediscretefunctionalEjusthastobereplacedbythesecondvariationofthecontinuousfunctionalEinL2(\n).Inthefollowingweshowthatconvexitysplittingcanbeappliedtotheinpaintingapproaches(1.4),(1.5),and(1.6),andproducesunconditionallygradientstableorunconditionallystablenumericalschemes. C.B.SCHONLIEBANDA.BERTOZZI421Definition2.1.[36]Aone-stepnumericalintegrationschemeisunconditionallygradientstableifthereexistsafunctionE(:):RNRsuchthat,forallt�0andforallinitialdata:(i)E(U)0forallU2RN,(ii)E(U)!1askUk!1,(iii)E(Uk+1)E(Uk)forallUk2RN,(iv)IfE(Uk)=E(U0)forallk0thenU0isazeroofrEfor(1.7)and(2.1).NotethatCahn-Hilliardinpainting(1.4)andTV-H1inpainting(1.5)arenotgivenbygradient\rows.Hence,inthecontextoftheseinpaintingmodelsthemeaningofunconditionalstabilityhastoberede ned.Namely,inthecaseofanevolutionequationwhichdoesnotfollowagradient\row,acorrespondingdiscretetimesteppingschemeissaidtobeunconditionallystableifsolutionsofthedi erenceequationareboundedwithina nitetimeinterval,independentlyofthestepsizet.Definition2.2.LetubeanelementofasuitablefunctionspaceHde nedon\n[0;T],with\nR2openandbounded,andT�0.LetfurtherGbearealvaluedfunctionandu=G(u;Du)beapartialdi erentialequationwithspacederivativesDu, =1;:::;4.AcorrespondingdiscretetimesteppingmethodUk+1=Uk+tGk(Uk;Uk+1;DUk;DUk+1);(2.5)whereGkisasuitableapproximationofGinUkandUk+1isunconditionallystable,ifallsolutionsof(2.5)areboundedforallt�0andallksuchthatktT.consistentiflim!0k(t)=0;wherek(t)isthelocaltruncationerroroftheschemeandde nedask(t)=uk+1uk tGk(uk;uk+1;Duk;Duk+1);(2.6)anduk=u(kt)istheexactsolutionattimet=kt.Inwhatfollowsweabbreviatekfork(t).Moreover,wede netheglobaltruncationerrortobe(t)=maxkkk(t)kH:Anumericalschemeissaidtobeoforderpintimeif(t)=O(tp)fort0:WestartwithatheoremofEyre[36].Theproofpresentedbelowfollowsthesameargumentsasin[36]withadditionaldetails.Theorem2.3([36]Theorem1).LetEsatisfy(2.1),andEcandEsatisfy(2.2)-(2.3).IfE(u)additionallysatis eshJ(rE)(u)u;ui(2.7) 422UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGwhen0in(2.1)(iii),thenforanyinitialconditionthenumericalscheme(2.4)isconsistentwith(1.7),gradientstableforallt&#x-0.8;أ倀0,andpossessesauniquesolutionforeachtimestep.Thelocaltruncationerrorforeachstepisk=t 2(J(rEc(^u))+J(rE(^u)))rE(u());forsome2(kt;(k+1)t)andforsome^uintheparallelopipedwithoppositeverticesatUkandUk+1.Remark2.2.Condition(2.7)inTheorem2.3isequivalenttotherequirementthatalltheeigenvaluesofJ(rE)dominatethelargesteigenvalueofJ(rE),i.e.,hJ(rE)(u)u;ui(2.7)(2.1)hJ(rE)(u)u;uiforallu2RN,or^jj;foralleigenvalues^�0ofE:(2.8)Proof.(Eyre[36]).Theunconditionalgradientstabilityof(2.4)inthesenseofDe nition2.1isestablished rst.Byourassumptionsin(2.1)properties(i)and(ii)inDe nition2.1immediatelyfollow.Property(iv)followsfromthegeneralbehaviorofgradientsystems,i.e.,ifE(Uk)=E(U0)forallk0thenU0isan!-limitpointof(1.7)and(2.1)andhenceU0isazeroofrE(cf.[48]).Themainpartoftheproofconsistsoftheveri cationofproperty(iii).NamelywehavetoshowthatE(Uk+1)E(Uk);8Uk2RN:Todosoweconsiderthedi erenceE(Uk+1)E(Uk).TheproofisbyrepeatedapplicationofTaylor'stheorem.WestartwithanexactexpansionofEaboutUk+1uptosecondorderandobtainE(Uk)=E(Uk+1)hrE(Uk+1);Uk+1Uki+1 2hJ(rE(Uk+1 (Uk+1Uk)))Uk+1Uk;Uk+1Ukiforsome 2(0;1).Thenbyassumption(iii)in(2.1)wegetE(Uk+1)E(Uk)hrE(Uk+1);Uk+1Uki+jjkUk+1Ukk2:By(2.2)and(2.4)thisisthesameasE(Uk+1)E(Uk)hrEc(Uk+1)rE(Uk+1);Uk+1Uki+jjkUk+1Ukk21 t(Uk+1Uk)+rEc(Uk+1)rE(Uk);Uk+1Uk=hrE(Uk+1)rE(Uk);Uk+1Uki+jj1 tkUk+1Ukk2:(2.9)Similarly,weTaylorexpandEaboutUk+1andUk,respectively,asE(Uk)=E(Uk+1)hrE(Uk+1);Uk+1Uki+1 2hJ(rE(Uk+1 1(Uk+1Uk)))Uk+1Uk;Uk+1Uki; C.B.SCHONLIEBANDA.BERTOZZI423andE(Uk+1)=E(Uk)+hrE(Uk);Uk+1Uki+1 2hJ(rE(Uk 2(Uk+1Uk)))Uk+1Uk;Uk+1Uki;forsome 1and 2in(0;1).SinceEisconvex,thenJ(rE)ispositivede niteanditseigenvaluesarepositive.ByboundingtheeigenvaluesofJ(rE)by^�0andaddingtheaboveexpressionswegethrE(Uk+1)rE(Uk);Uk+1Uki^kUk+1Ukk2:Substitutingthisin(2.9),weobtainE(Uk+1)E(Uk)^jj+1 tkUk+1Ukk2:Byapplyingcondition(2.7)(i.e.,(2.8))theresultfollowsforallt0.Hencethemethodisunconditionallygradientstable.Toprovetheuniquesolvabilityof(2.4)weconsiderthenonlinearequationsUk+1+trEc(Uk+1)=Rk;whichmustbesolvedateachstepforagivenRk.SinceEcisstrictlyconvex,1 2kUk+1k2+tEc(Uk+1)hUk+1;RkihasauniqueminimuminUk+1forallt,and(2.4)hasauniquesolutionforallt0.Theconsistencyandthelocaltruncationerrorof(2.4)canbeestablishedbysimilarTaylorexpansionsastheoneswedidabovetoprovetheunconditionalstabilityofthescheme.MorepreciselyitconsistsofexpandingUk+1andUkaround(k+1=2)t,andrEc(Uk+1)andrE(Uk)aroundUk+1=2.This nishestheproofofTheorem2.3. Inthefollowingweapplytheideaofconvexitysplittingtoourthreeinpaintingmodels(1.4),(1.5),and(1.6).Forthiswechangefromthediscretesettingtothecontinuoussetting,i.e.,consideringfunctionsuinasuitableHilbertspaceinsteadofvectorsuinRN.Althoughthe rsttwooftheseinpaintingapproaches,i.e.,Cahn-HilliardinpaintingandTV-H1inpainting,arenotgivenbygradient\rows,weshowthattheresultingnumericalschemesarestillunconditionallystable(inthesenseofDe nition2.2)andthereforesuitabletosolvethemaccuratelyandreasonablyfast.ForinpaintingwithLCIS(1.6)theresultsofEyrecanbedirectlyapplied,eveninthecontinuoussetting;cf.Remark2.1.Nevertheless,alsoforthiscase,weadditionallypresentarigorousanalysis,similartotheonedoneforCahn-HilliardandTV-H1inpainting.3.Cahn-HilliardinpaintingInthissectionweshowtheapplicationofconvexitysplittingtoCahn-Hilliardinpainting(1.4).Recallthattheinpaintedversionu(x)off(x)isconstructedbyfollowingtheevolutionequationu=u+1 F0(u)+(fu) 424UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGtosteadystate.Thismodi edCahn-Hilliardequationisintroducedin[13]fortheinpaintingofbinaryimages.Thelatter,mainlynumericalpaper,wasfollowedbyaverycarefulanalysisof(1.4)in[14].Tostartwith,theauthorsproveglobalex-istenceofauniqueweaksolutionoftheevolutionEquation(1.4).MorepreciselythesolutionuisproventobeanelementinC([0;T];L2(\n))\L2(0;T;V),whereV=2H2(\n)j@=@=0on@\n ,andistheoutwardpointingnormalon@\n.Underadditionalconditionsonthegivenimagef,theyalsoderivesomeveryin-terestingresultsconcerningthecontinuationofthegradientoftheimageintotheinpaintingdomain.Infact,in[14]theauthorsprovethatinthelimit0!1astationarysolutionof(1.4)solvesu1 F0(u)=0;inD;u=f;on@D;ru=rf;on@D;(3.1)forfregularenough(f2C2).Theexistenceofastationarysolutionof(1.4)isassuredin[19].Additionally,in[14]theauthorspresentnumericalexampleswhichshowthattheconnectivityprincipleisful lled,andcomputeabifurcationdiagramforstationarysolutionsof(1.4).Thissupportstheclaimthatfourth-ordermethodsaresuperiortosecond-ordermethodswithrespecttoasmoothcontinuationoftheimagecontentsintothemissingdomain.Theideatoapplyconvexitysplittinginordertosolve(1.4)numericallywasbornin[13].Thenumericalresultspresentedthereillustratetheusefulnessofthisscheme.Althoughtheauthorsdonotanalyzetheschemerigorously,basedontheirnumericalresultstheyconjectureunconditionalstability.Inthefollowingweshallpresentthisnumericalschemeandderivesomeadditionalpropertiesbasedonarigorousanalysisofthelatter.TheoriginalCahn-Hilliardequationisagradient\rowinH1fortheenergyE1(u)=Z\n 2jruj2+1 F(u)dx;whilethe ttingtermin(1.4)canbederivedfromagradient\rowinL2fortheenergyE2(u)=1 2Z\n(fu)2dx:However,notethatEquation(1.4)asawholeisnolongeragradientsystem.Hence,forthediscretizationintime,weapplytheconvexitysplittingdiscussedinSection2tobothfunctionalsE1andE2separately.Namely,wesplitE1asE1=E1cE1,withE1c(u)=Z\n 2jruj2+C1 2juj2dx;E1(u)=Z\n1 F(u)+C1 2juj2dx:ApossiblesplittingforE2isE2=E2cE2withE2c(u)=1 2Z\nC2juj2dx;E2(u)=1 2Z\n(fu)2+C2juj2dx:TomakesurethatE1c;E1andE2c;E2arestrictlyconvex,theconstantsC1andC2havetobechosensuchthatC1�1 ,C2�0;see[14]. C.B.SCHONLIEBANDA.BERTOZZI425Thentheresultingdiscretetime-steppingschemeforaninitialconditionU0=u0isgivenbyUk+1Uk t=rH1(E1c(Uk+1)E1(Uk))rL2(E2c(Uk+1)E2(Uk));whererH1andrL2representgradientdescentwithrespecttotheH1innerprod-uctandtheL2innerproductrespectively.ThistranslatestoanumericalschemeoftheformUk+1Uk t+Uk+1C1Uk+1+C2Uk+1=1 F0(Uk)C1Uk+(fUk)+C2Uk;in\n:(3.2)WeenforceNeumannboundaryconditionson@\n,i.e.,rUk+1~n=rUk+1~n=0;on@\n;(3.3)where~nistheoutwardpointingnormalon@\n,andcomputeUk+1in(3.2)inthespectraldomainusingthediscretecosinetransform(DCT).TheideatousespectralmethodsforequationsinvolvingLaplacianoperatorsisclassicalandisbasedonthefactthattheLaplacematrixisdiagonalizedinthespectraldomain.Hence,solvingtheseequationsinthespectraldomaincanbedonemuchfastersincematrixmul-tiplicationisreplacedbyscalarmultiplication(multiplyingwiththeelementsinthemaindiagonal).Sinceadditionallytherealsoexistfastnumericalmethodstocom-putethediscreteFourier/Cosinetransform(suchasthefastFouriertransform(FFT))thismethodhasanoverallcomputationaladvantage.Let^UbetheDCTofUwitheigenvalues.ThenEquation(3.2)in^Ureads^Uk+1(i;j)=(1C1t(1 x2+1 y2j)+C2t)^Uk(i;j)+ \F0(Uk)(i;j)+t\(fUk) 1+C2t+t(1 x2+1 y2j)2C1t(1 x2+1 y2j):3.1.RigorousEstimatesfortheScheme.FromTheorem2.3weknowthat(atleastinthespatiallydiscreteframework)theconvexitysplittingscheme(2.2)-(2.4)isunconditionallystable,i.e.,separatenumericalschemesforthegradient\rowsoftheenergiesE1(u)andE2(u)arenon{increasingforallt�0.Butthisdoesnotguaranteethatthenumericalscheme(3.2)isunconditionallystable,sinceitcombinesthe\rowsoftwoenergies.Inthissectionweshallanalyzetheschemeinmoredetailandderivesomerigorousestimatesforitssolutions.Inparticularweshowthatthescheme(3.2)isunconditionallystableinthesenseofDe nition2.2.Ourresultsaresummarizedinthefollowingtheorem.Theorem3.1.Letubetheexactsolutionof(1.4)anduk=u(kt)theexactsolutionattimekt,foratimestept�0andk2N.LetUkbethekthiterateof(3.2)withconstantsC1�1=,C2�0.Thenthefollowingstatementsaretrue:(i)Undertheassumptionthatkuk1andkruk2arebounded,thenumericalscheme(3.2)isconsistentwiththecontinuousEquation(1.4)andoforderoneintime. 426UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGUndertheadditionalassumptionthatF00(Uk1)K(3.4)foranonnegativeconstantK,wefurtherhave(ii)ThesolutionsequenceUkisboundedona nitetimeinterval[0;T],forallt�0.InparticularforktT,T�0 xed,wehaveforeveryt�0krUkk22+tK1kUkk22eK2TkrU0k22+tK1kU0k22+tTC(\n;D;0;f);(3.5)forsuitableconstantsK1andK2,andconstantCdependingon\n;D;0;fonly.(iii)Thediscretizationerrorek,givenbyek=ukUk,convergestozeroast0.Inparticular,wehaveforktT,T�0 xed,thatkrekk22+tC1 ~Ckekk22T ~CeK1TC(t)2;(3.6)forsuitableconstantsC;~C;K1.Remark3.1.NotethatourassumptionsfortheconsistencyofthenumericalschemeonlyholdifthetimederivativeofthesolutionofthecontinuousEquation(1.4)isuniformlybounded.Thisistrueforsmoothandboundedsolutionsoftheequation.Further,sinceweareinterestedinboundedsolutionsUkofthediscreteEquation(3.2),itisnaturaltoassume(3.4),i.e.,thatthenonlinearityF00intheprevioustimestep(k1)tisbounded.AlsonotethattheconstantKin(3.4)canbechosenarbitrarilylarge.TheproofofTheorem3.1isorganizedinPropositions3.2-3.4.Proposition3.2(Consistency(i)).UnderthesameassumptionsasinTheorem3.1,andinparticularundertheassumptionthatkuk1andkruk2arebounded,thenumericalscheme(3.2)isconsistentwiththecontinuousEquation(1.4)withkkk1=O(t)ast0,wherekisthelocaltruncationerrorasde nedinEquation(2.6)above.Proof.Letkbethelocaltruncationerrorde nedasin(2.6).Thenk=1k+2k;with1k=uk+1uk tu(kt)2k=(uk+1uk)C1(uk+1uk)+C2(uk+1uk)=t2uk+1uk tC1tuk+1uk t+C2tuk+1uk t;i.e.,k=uk+1uk t+2uk+11 F0(uk)(fuk)C1(uk+1uk)+C2(uk+1uk):(3.7) C.B.SCHONLIEBANDA.BERTOZZI427UsingstandardTaylorseriesargumentsandassumingthatkuk1andkruk2areboundedwededucethattheglobaltruncationerrorisgivenby=maxkkkk1=O(t)ast0:(3.8) Proposition3.3(Unconditionalstability(ii)).UnderthesameassumptionsasinTheorem3.1andinparticularassumingthat(3.4)holds,thesolutionsequenceUkful lls(3.5).Thisgivesboundednessofthesolutionsequenceon[0;T].Proof.WeconsiderourdiscretemodelUk+1Uk t+Uk+1C1Uk+1+C2Uk+1=1 F0(Uk)C1Uk+(fUk)+C2Uk;multiplytheequationwithUk+1andintegrateover\n.Weobtain1 tkrUk+1k22hrUk;rUk+1i2+krUk+1k22+C1kUk+1k22+C2krUk+1k22=1 hF00(Uk)rUk;rUk+1i2+C1hUk;Uk+1i2+hr(fUk);rUk+1i2+C2hrUk;rUk+1i2:UsingYoung'sinequalityweobtain1 2tkrUk+1k22krUkk22+krUk+1k22+C1kUk+1k22+C2krUk+1k221 2kF00(Uk)rUkk22+ 2krUk+1k22+C1 2kUkk22+C1 2kUk+1k22+C2 2krUkk22+C2 2krUk+1k22+1 2kr(fUk)k22+1 2krUk+1k22:Usingtheestimatekr(fUk)k22220krUkk22+C(\n;D;0;f)andreorderingtheterms,weobtain1 2t+C2 21 2krUk+1k22+C1 2kUk+1k22+ 2krUk+1k221 2t+C2 2+20krUkk22+1 2kF00(Uk)rUkk22+C1 2kUkk22+C(\n;D;0;f):Bychoosing=22,thethirdtermontheleftsideoftheinequalityiszero.BecauseofAssumption(3.4)weobtainthefollowingboundontherightsideoftheinequalitykF00(Uk)rUkk22K2krUkk22;andwehave1 2t+C2 21 2krUk+1k22+C1 2kUk+1k221 2t+C2 2+20+K2 43krUkk22+C1 2kUkk22+C(\n;D;0;f): 428UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGNowwemultiplytheaboveinequalityby2tandde ne~C=1+t(C21);~~C=1+tC2+220+K2 23:SinceC2ischosengreaterthan0�1,the rstcoecient~Cispositiveandwecandividetheinequalitybyit.WeobtainkrUk+1k22+tC1 ~CkUk+1k22~~C ~CkrUkk22+tC1 ~CkUkk22+tC(\n;D;0;f);whereweupdatedtheconstantC(\n;D;0;f)byC(\n;D;0;f)=~C.Since~~C ~C1,wecanmultiplythesecondtermontherightsideoftheinequalitybythisquotienttoobtainkrUk+1k22+tC1 ~CkUk+1k22~~C ~CkrUkk22+tC1 ~CkUkk22+tC(\n;D;0;f):WededucebyinductionthatkrUkk22+tC1 ~CkUkk22 ~~C ~C!kkrU0k22+tC1 ~CkU0k22+tk1X=0 ~~C ~C!C(\n;D;0;f)=(1+K2t)k (1+K1t)kkrU0k22+tC1 ~CkU0k22+tk1X=0(1+K2t) (1+K1t)C(\n;D;0;f):ForktTwehavekrUkk22+tC1 ~CkUkk22e(K2K1)TkrU0k22+tC1 ~CkU0k22+tTe(K2K1)TC(\n;D;0;f)=e(K2K1)TkrU0k22+tC1 ~CkU0k22+tTC(\n;D;0;f);whichgivesboundednessofthesolutionsequenceon[0;T]foranyT�0,assumingthat(3.4)holds. Theconvergenceofthediscretesolutiontothecontinuousoneasthetimestept0isveri edinthefollowingproposition.Proposition3.4(Convergence(iii)).UnderthesameassumptionsasinTheorem3.1andinparticularunderAssumption(3.4)thediscretizationerrorekful lls(3.6). C.B.SCHONLIEBANDA.BERTOZZI429InordertoproveProposition3.4weneedthefollowingauxiliarylemma.Lemma3.2.Theerrorekbetweentheexactandapproximatesolutionde nedasinTheorem3.1ful llsZ\nekdx=O((t)2):Proof.[ProofofLemma3.2]Becauseofthe delitytermin(1.4)and(3.2),solutionsoftheseequationsarenotmasspreserving,i.e.,R\nekdoesnotingeneralvanish.Infactwehave,forasolutionukof(1.4),d dtZ\nuk=Z\n2uk+1 Z\nF0(uk)+Z\n(fuk)=Z@\nruk~n+1 Z@\nrF0(uk)~n+Z\n(fuk);wherewehaveusedGaussdivergencetheoremtoobtaintheboundaryintegrals.AssumingzeroNeumannboundaryconditionsasin(3.3)thetwoboundaryintegralsvanish,andhenced dtZ\nuk=Z\n(fuk):Inparticulard dtZDuk=0:(3.9)Asimilarcomputationforthediscretesolutionof(3.2)showsthat1 t+C2Z\n(Uk+1Uk)=Z\n(fUk);andinparticular1 t+C2ZD(Uk+1Uk)=0:(3.10)Next,letusfollowthelinesoftheconsistencyproofin(3.7).Thenthediscretizationerroreksatis esek+1ek t+2ek+1C1ek+1+C2ek+1=1 t(uk+1uk)1 t(Uk+1Uk)+2uk+12Uk+1C1uk+1+C1Uk+1+C2uk+1C2Uk+1=1 F0(Uk)C1Uk+(fUk)+C2Uk+1 F0(uk)+(fuk)C1uk+C2uk+k=1 (F0(Uk)F0(uk))C1(Ukuk)+C2(Ukuk)(Ukuk)+k: 430UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGAsbefore,integratingover\n,applyingGaussdivergencetheoremandthezeroNeu-mannboundaryconditionsforukandUk,weget1 t+C2Z\n(ek+1ek)+Z\nek=Zk;(3.11)whereZ\nk=1 t+C2Z\n(uk+1uk)Z\n(uk)=1 t+C2Z\n(uk+t(uk)+O((t)2)uk)Z\n(uk)=O(t):Now,toproveourclaimweapplyinductiononk.First,assumingthatu0=U0in\n,wehavethatZ\ne0=0;andhence1 t+C2Z\ne1=O(t):(3.12)Assumingthatassertion(3.12)holdsforallindiceskandusing(3.9)and(3.10)wehave,for(3.11),1 t+C2Z\n(ek+1ek)+Z\nek=Zk1 t+C2Z\nek+1O(t)+01 t+C21O(t)=O(t)1 t+C2Z\nek+1=O(t);andhence(1+C2t)Z\nek=O((t)2)forallk0. WecontinuewiththeproofofProposition3.4.Proof.[ProofofProposition3.4]IntheproofofLemma3.2wehaveusedtheconsistencyresult(3.7)toshowthatthediscretizationerroreksatis esek+1ek t+2ek+1C1ek+1+C2ek+1=1 (F0(Uk)F0(uk))C1(Ukuk)+C2(Ukuk)(Ukuk)+k: C.B.SCHONLIEBANDA.BERTOZZI431Multiplicationwithek+1leadsto1 thr(ek+1ek);rek+1i2+krek+1k22+C1kek+1k22+C2krek+1k22=1 h(F0(Uk)F0(uk));ek+1i2C1h(Ukuk);ek+1i2+hr(Ukuk);rek+1i2C2hr(Ukuk);rek+1i2+\nr1k;rek+1 2:Further,because1 tkrek+1k22hrek;rek+1i21 2t(krek+1k22krekk22);weobtain1 2t(krek+1k22krekk22)+krek+1k22+C1kek+1k22+C2krek+1k221 h(F0(Uk)F0(uk));ek+1i2+C1hek;ek+1i2hrek;rek+1i2+C2hrek;rek+1i2+\nr1k;rek+1 2:ApplyingYoung'sinequalityleadsto1 2t(krek+1k22krekk22)+krek+1k22+C1kek+1k22+C2krek+1k221 h(F00(Uk)rUkF00(uk)ruk);rek+1i2+C1 21kekk22+C11 2kek+1k22+20 23krekk22+3 2krek+1k22+C2 22krekk22+C22 2krek+1k22+1 24kkk21+4 2krek+1k22:Letusconsidertheremaininginnerproductinthelastinequality:1 h(F00(Uk)rUkF00(uk)ruk);rek+1i2=1 hF00(Uk)rek;rek+1i2+1 h(F00(uk)F00(Uk))ruk;rek+1i21 25kF00(Uk)jrekjk22+1 26k(F00(uk)F00(Uk))jrukjk22+5 2+6 2krek+1k22:Nextweassumethat(3.4)holdsandthatrukisuniformlyboundedon[0;T]|inparticular,that9~~K�0suchthatkrukk2~~KforallktT:(3.13)ThelatterassumptionwillbeproveninLemma3.3justaftertheendofthisproof.Moreover,sinceF00islocallyLipschitzcontinuousweobtain1 h(F00(Uk)rUkF00(uk)ruk);rek+1i2C 25krekk22+C 26kekk22+5 2+6 2krek+1k22; 432UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGwherewehavesetCtobeauniversalconstantforallbounds.Further,usingLemma3.2andkekk22=kekO(t)2+O(t)2k222kekO(t)2k22+2kO(t)2k22;wecanapplythePoincareinequalitytotheL2normofek.Insumweget1 2t+C212 23 2krek+1k22+C111 2kek+1k22+4 25+6 2krek+1k221 2t+20 23+C2 22+C 25+C 6krekk22+C1 21kekk22+1 24kkk21+C 6kO(t)2k22:Nextwechoose1=1andmultiplytheinequalitywith2t:(1+t(C2(22)3))krek+1k22+tC1kek+1k22+t245+6 krek+1k221+t20 3+C2 2+C 5+2C 6krekk22+tC1kekk22+t 4kkk21+t2C 6kO(t)2k22:Let~C=1+t(C2(22)3);~~C=1+t20 3+C2 2+C 5+2C 6:Now,bychoosingallssuchthatthecoecientsofalltermsintheinequalityarenonnegativeandthequotient~~C=~C1,andbyestimatingthelasttermontheleftsidefrombelowbyzero,wegetkrek+1k22+tC1 ~Ckek+1k22~~C ~Ckrekk22+tC1 ~Ckekk22+t ~C1 4kkk21+2C 6kO(t)2k22;andbecause~~C=~C1wefurtherhavekrek+1k22+tC1 ~Ckek+1k22~~C ~Ckrekk22+tC1 ~Ckekk22+t ~C1 4kkk21+2C 6kO(t)2k22: C.B.SCHONLIEBANDA.BERTOZZI433Byinductiononkweobtainkrek+1k22+tC1 ~Ckek+1k22 ~~C ~C!k+1kre0k22+tC1 ~Cke0k22+t ~CkX=0 ~~C ~C!1 4maxkfkk21g+2C 6kO(t)k22=t ~CkX=0(1+K1t)1 4maxkfkk21g+2C 6kO(t)2k22t ~CkeK1k1 4maxkfkk21g+2C 6kO(t)2k22;wherewehaveusedthefactthate0=0and1~~C ~C=1+K1t.Hence,byusingtheconsistencyresult(3.8)weconclude,forktT,thatkrekk22+tC1 ~Ckekk22T ~CeK1TC(t)2: From[13,14]weknowthatthesolutionuktothecontinuousequationgloballyexistsandisuniformlyboundedinL2(\n).Nextweshowthatassumption(3.13)holds.Lemma3.3.Letukbetheexactsolutionof(1.4)attimet=ktandletT�0.ThenthereexistsaconstantC�0suchthatkrukk2CforallktT.Proof.LetK(u)=u+1 F0(u).WemultiplythecontinuousevolutionEqua-tion(1.4)withK(u)andobtainhu;K(u)i2=hK(u);K(u)i2+h(fu);K(u)i2:Letusfurtherde neE(u):= 2Z\njruj2dx+1 Z\nF(u)dx:Thenwehavehu;K(u)i2=u;u+1 F0(u)2=hru;rui2+u;1 F0(u)2=d dtE(u);sinceusatis esNeumannboundaryconditions.Thereforewegetd dtE(u)=Z\njrK(u)j2dx+h(fu);ui2+(fu);1 F0(u)2:(3.14) 434UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGSinceF(u)isboundedfrombelow,weonlyhavetoshowthatE(u)isuniformlyboundedon[0;T],andweautomaticallyhavethatjrujisuniformlyboundedon[0;T].Westartwiththelastterm,andrecallthefollowingboundsonF0(u)(cf.[67]):ThereexistpositiveconstantsC1;C2suchthatF0(s)sC1s2C2;8s2Rand,forevery�0,thereexistsaconstantC3suchthatjF0(s)jC1s2+C3();8s2R:Usingthelasttwoestimatesweobtainthefollowing:(fu);1 F0(u)20 Z\nnDF0(u)fdx0 Z\nnDF0(u)udx0 Z\nnDjF0(u)jdxkfkL1(\n)0C1 Z\nnDu2dx0C2j\nnDj 0C(f;\n) C1 Z\nnDu2dxC3()j\nnDj !0C1 Z\nnDu2dx0C2j\nnDj 0C1 (1C(f;\n))Z\nnDu2dxC(0;;;\n;D;f);wherewechoose1=C(f;\n).Thereforeintegrating(3.14)overthetimeinterval[0;T]resultsinZT0d dtE(u(t))dtZT0Z\njrK(u)j2dxdt+ZT0h(fu);ui2dt0C1 (1C(f;\n))ZT0Z\nnDu2dxdt+TC(0;;;\n;D;f):Nextweconsiderthesecondtermontherightsideofthelastinequality.FromTheorem4.1in[13]weknowthatasolutionuof(1.4)isanelementinL2(0;T;H2(\n))forallT�0.Henceu2L2(0;T;L2(\n))andthesecondtermisboundedbyaconstantdependingonT.Consequently,foreach0tT,wegetE(u(t))E(u(0))+C(T)+TC(0;;;\n;D;f)ZT0"Z\njrK(u)j2dx+0C1 (1C(f;\n))Z\nnDu2dx#dt;andwiththis,fora xedT�0,thatjrujisuniformlyboundedin[0;T]. 3.2.Numericalresults.Inourcomputationstheoptimaltturnedouttobet=1or10(dependingalsoonthesizeofand0).NumericalresultsoftheaboveschemearepresentedinFigures3.1,3.2and3.3.Inalloftheexampleswefollowtheprocedureof[13],i.e.,theinpaintedimageiscomputedinatwostepprocess.Inthe rststepCahn-Hilliardinpaintingissolvedwitharatherlargevalueof,e.g.,=0:1,untilthenumericalschemeisclosetosteadystate.Inthisstepthelevellinesarecontinuedintothemissingdomain.Inasecondstep,theresultofthe C.B.SCHONLIEBANDA.BERTOZZI435 Fig.3.1.BinaryimagewithunknowncenterandthesolutionofCahn-Hilliardinpaintingwith0=105andswitchingvalue:u(600)with=0:1,u(1000)with=0:01 Fig.3.2.Textremovalfromabinaryimage:thesolutionofCahn-Hilliardinpaintingwith0=109andswitchingvalue:u(200)with=0:8,u(500)with=0:01 rststepisputasaninitialconditionintotheschemeforasmall,e.g.,=0:01,inordertosharpenthecontoursoftheimagecontents.Thereasonforthistwostepprocedureistwofold.Firstofallin[14]theauthorsgivenumericalevidencethatthesteadystateofthemodi edCahn-HilliardEquation(1.4)isnotunique,i.e.,itisdependentontheinitialconditioninsideoftheinpaintingdomain.Asaconsequence,computingtheinpaintedimagebytheapplicationofCahn-Hilliardinpaintingwithasmallonly,mightnotextendthelevellinesintothemissingdomainasdesired.Seealso[14]forabifurcationdiagrambasedonthenumericalcomputationsoftheauthors.ThesecondreasonforsolvingCahn-Hilliardinpaintingintwostepsisthatitiscomputationallylessexpensive.Solvingtheabovetime-marchingschemefor,e.g.,=0:1isfasterthansolvingitfor=0:01.ThisisbecauseofthedampingintroducedbyC1,i.e.,,intothescheme;cf.(3.2).Allnumericalexamplespresentedherehavebeencomputedinordersof10secondsona1.86GHzprocessorwith1GBRAM.ForafurtherdiscussiononcomputationaltimesfortheconvexitysplittingmethodappliedtoCahn-Hilliardinpaintingwereferto[13].OnepossiblegeneralizationofCahn-Hilliardinpaintingforgrayscaleimagesistosplitthegrayscaleimagebit-wiseintochannelsu(x)KXk=1uk(x)2(k1);whereK�0.TheCahn-Hilliardinpaintingapproachisthenappliedtoeachbinarychannelukseparately,compareFigure3.5.Attheendoftheinpaintingprocessthechannelsareassembledagainandtheresultistheinpaintedgrayvalueimageinlowergrayvalueresolution,compareFigure3.4.InFigure3.6theapplicationofbitwiseCahn-Hilliardinpaintingfortherestorationofsatelliteimagesofroadsis 436UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTING Fig.3.3.VandalizedbinaryimageandthesolutionofCahn-Hilliardinpaintingwith0=109andswitchingvalue:u(800)with=0:8,u(1600)with=0:01demonstrated.Onecanimaginethattheblackdotsinthe rstpicturerepresenttreesthatcoverpartsoftheroad.Theideaofbitwisebinaryinpaintingisproposedin[30]fortheinpaintingwithwaveletsbasedontheAllen-Cahnenergy. 20 40 60 80 100 120 20 40 60 80 100 120 140 160 Inpainted image 20 40 60 80 100 120 20 40 60 80 100 120 140 160 Fig.3.4.Cahn-HilliardbitwiseinpaintingwithK=8binarychannels(0=108,with=0:1untilt=800and=0:01untilt=1200)4.TV-H1inpaintingInthissectionwediscussconvexitysplittingforTV-H1inpainting(1.5).Toavoidnumericalandtheoreticaldicultiesweapproximateanelementpinthesubdi erentialofthetotalvariationfunctionalTV(u)byasmoothedversionofr(ru=jruj),thesquarerootregularizationforinstance.Withthelatterregu-larizationthesmoothedversionof(1.5)readsasu=r ru p jruj2+2!+(fu);(4.1)with01.Incontrasttoitssecond-orderanalogue,thewell-posednessof(1.5)stronglydependsonthesmoothingusedforr(ru=jruj).Infacttherearesmoothingfunctionsforwhich(1.5)producessingularitiesin nitetime.Thisiscausedbythelackofmaximumprincipleswhichinthesecond-ordercaseguaranteethewell-posednessforallsmoothmonotoneregularizations.In[16]theauthorsconsider(1.5)with=0inallof\n,i.e.,thefourth-orderanaloguetoTV-L2denoising,whichwasoriginallyintroducedin[58].Theyproveglobalwell-posedness,inonespace C.B.SCHONLIEBANDA.BERTOZZI437 initial condition2 20 40 60 80 100 120 20 40 60 80 100 120 140 160 initial condition3 20 40 60 80 100 120 20 40 60 80 100 120 140 160 initial condition5 20 40 60 80 100 120 20 40 60 80 100 120 140 160 1200 iterations,2channel 20 40 60 80 100 120 20 40 60 80 100 120 140 160 1200 iterations,3channel 20 40 60 80 100 120 20 40 60 80 100 120 140 160 1200 iterations,5channel 20 40 60 80 100 120 20 40 60 80 100 120 140 160 Fig.3.5.Thegivenimage( rstrow)andtheCahn-Hilliardinpaintingresult(secondrow)forthechannels2;3and5. Fig.3.6.BitwiseCahn-HilliardinpaintingwithK=8binarychannelsappliedtoroadrestorationdimensionandforsmoothinitialdata,forthearctanregularization2 arctan(ux=)x;(4.2)where01.Forthesquarerootsmoothing ux p juxj2+2!x(4.3)theyconjecture,supportedbyempiricalevidence,thatsingularitiesoccurinin nitetime,not nitetime.Thebehaviorofthefourth-orderPDEinonedimensionisalsorelevantfortwo-dimensionalimagessincealotofstructureinvolvesedgeswhichareone-dimensionalobjects.Intwodimensionssimilarresultsaremuchmorediculttoobtain,sinceenergyestimatesandtheSobolevlemmainvolvedinitsproofmightnot 438UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGholdinhigherdimensionsanymore.Wealsonotethatin[19]theauthorsprovetheexistenceofaweakstationarysolutionfor(1.5)intwospacedimensions.Inthefollowingwepresenttheconvexitysplittingmethodappliedto(1.5)forboththesquarerootandthearctanregularization.SimilarlytotheconvexitysplittingforCahn-Hilliardinpainting,weproposethefollowingsplittingfortheTV-H1inpaintingequation.Theregularizingtermin(1.5)canbemodeledbyagradient\rowinH1oftheenergyE1(u)=Z\njrujdx;wherejrujisreplacedbyitsregularizedversion,e.g., jruj2+2,�0.WesplitE1asE1cE1,withE1c(u)=Z\nC1 2jruj2dx;andE1(u)=Z\njruj+C1 2jruj2dx:The ttingtermissplitintoE2=E2cE2,analogoustoCahn-Hilliardinpainting.Theresultingtime-steppingschemeisgivenbyUk+1Uk t+C1Uk+1+C2Uk+1=C1UkrrUk jrUkj+C2Uk+(fUk):(4.4)WeassumethatUk+1satis eszeroNeumannboundaryconditionsandusetheDCTtosolve(4.4).TheconstantsC1andC2havetobechosensuchthatE1c;E1;E2c;E2areallstrictlyconvex.Inthefollowingwedemonstratehowtocomputetheappropriateconstants.LetusconsiderC1 rst.ThefunctionalE1cisstrictlyconvexforallC1�0.ThechoiceofC1fortheconvexityofE1dependsontheregularizationofthetotalvariationweareusing.Weusethesquareregularization(4.3),i.e.,insteadofjrujwehaveZG(jruj)dx;withG(s)= s2+2:Settingy=jrujwehavetochooseC1suchthatC1 2y2G(y)isconvex.TheconvexityconditionforthesecondderivativegivesusthatC1�G00(y)()C1�2 (2+y2)3=2()C1�1 issucientas2 (2+y2)3=2hasitsmaximumvalueaty=0.Intheonedimensionalcase,wewouldliketocomparethiswiththearctanregularization(4.2),i.e.,replacingx jxjby2 arctan(x )asproposedin[16].HeretheconvexityconditionforthesecondderivativereadsC1d ds2 arctans �0:Thesignresultsfromtheabsentabsolutevalueintheregularizationde nition.WeobtainC12 1 (1+s2=2)�0: C.B.SCHONLIEBANDA.BERTOZZI439TheinequalitywithaplussigninsteadofistrueforallconstantsC1�0.IntheothercaseweobtainC1�2  2+s2;whichisful lledforalls2RifC1�2 .Notethatthisconditionisalmostthesameasinthecaseofthesquareregularization.NowweconsiderE2=E2cE2.ThefunctionalE2cisstrictlyconvexifC2�0.FortheconvexityofE2werewriteE2(u)=1 2Z\n(fu)2+C2juj2dx=ZDC2 2juj2dx+Z\nnD0 2(fu)2+C2 2juj2dx=ZDC2 2juj2dx+Z\nnDC2 20 2juj2+0fu0 2jfj2:ThisisconvexforC2�0,e.g.,withC2=0+1wecanwriteE2(u)=ZDC2 2juj2dx+Z\nnD1 2u+0f220+0 2jfj2dx:4.1.Rigorousestimatesforthescheme.AsinSection3.1forCahn-Hilliardinpainting,weproceedwithamoredetailedanalysisof(4.4).Throughoutthissectionweconsiderthesquare-rootregularizationofthetotalvariationbothinournumericalschemeandinthecontinuousevolutionEquation(1.5).Notethatsimilarresultsaretrueforothermonotoneregularizerssuchasthearctansmoothing.Ourresultsaresummarizedinthefollowingtheorem.Theorem4.1.Letubetheexactsolutionof(4.1)anduk=u(kt)betheexactsolutionattimektforatimestept�0andk2N.LetUkbethekthiterateof(4.4)withconstantsC1�1=,C2�0.Thenthefollowingstatementsaretrue:(i)Undertheassumptionthatkuk1andkruk2arebounded,thenumericalscheme(4.4)isconsistentwiththecontinuousEquation(1.5)andoforderoneintime.(ii)ThesolutionsequenceUkisboundedona nitetimeinterval[0;T],forallt�0.Inparticular,forktT,T�0 xed,wehaveforeveryt�0,krUkk22+tK1krUkk22eK2TkrU0k22+tK1krU0k22+tTC(\n;D;0;f)(4.5)forsuitableconstantsK1,K2,andaconstantC,whichdependson\n;D;0;fonly.(iii)Letek=ukUk.ForsmoothsolutionsukandUk,theerrorekconvergestozeroast0.Inparticular,forktT,T�0 xed,wehavekrekk22+tM1krekk22T M2eM3T(t)2(4.6)forsuitablepositiveconstantsM1;M2andM3. 440UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGRemark4.1.FortheconvergenceresultinTheorem4.1(iii)weassumethatsmoothsolutionstoboththecontinuousintimeproblemandthediscreteintimeapproximationexist.Thevalidityofthisassumptionisnotknowningeneral.Notehoweverthattheglobalregularityresultsareknownin1Dforthearctansmooth-ing[16].Moreover,ournumericalresultsshownoindicationofsingularitiesin2D.Therefore,itisnotunreasonabletoanalyzetheconvergenceundertheseassumptions.TheproofofTheorem4.1issplitintothethreeseparatePropositions4.2-4.4.Proposition4.2(Consistency(i)).UnderthesameassumptionsasinThe-orem4.1andinparticularundertheassumptionthatkuk1andkruk2arebounded,thenumericalscheme(4.4)isconsistentwiththecontinuousEquation(4.1)withkkk1=O(t)ast0,wherekisthelocaltruncationerror.Proof.Thelocaltruncationerrorisde nedoveratimestepassatisfyingk=1k+2k;where1k=uk+1uk tu(kt);2k=C12(uk+1uk)+C2(uk+1uk);i.e.,k=uk+1uk t+ r ruk p jrukj2+2!!(fuk)+C12(uk+1uk)+C2(uk+1uk):(4.7)UsingstandardTaylorseriesargumentsandassumingthatkuk1,kruk2andkuk2areboundedwededucethatkkk1=O(t)fort0:(4.8) Proposition4.3(Unconditionalstability(ii)).Underthesameassump-tionsasinTheorem4.1thesolutionsequenceUkful lls(4.5).Thisgivesboundednessofthesolutionsequenceon[0;T].Proof.Ifwemultiply(4.4)withUk+1andintegrateover\nweobtain1 tkrUk+1k22hrUk;rUk+1i2+C2krUk+1k22+C1krUk+1k22=*r0@rUk q jrUkj2+21A;Uk+1+2+C1hrUk;rUk+1i2+hr((fUk));rUk+1i2+C2hrUk;rUk+1i2:ApplyingYoung'sinequalitytotheinnerproductsontherightandestimatingkr(fUk)k22220krUkk22+C(\n;D;0;f) C.B.SCHONLIEBANDA.BERTOZZI441resultsin1 2tkrUk+1k22krUkk22+C2krUk+1k22+C1krUk+1k22*r0@rUk q jrUkj2+21A;Uk+1+2+C1 1krUkk22+C11krUk+1k22+220 2krUkk22+2krUk+1k22+C2 3krUkk22+C23krUk+1k22+C(\n;D;0;f):Now,the rsttermontherightsideoftheinequalitycanbeestimatedasfollows*r0@rUk q jrUkj2+21A;Uk+1+2=*rr0@rUk q jrUkj2+21A;rUk+1+21 4\r\r\r\r\r\rrr0@rUk q jrUkj2+21A\r\r\r\r\r\r22+4krUk+1k22:ApplyingPoincare'sandCauchy'sinequalitytothe rsttermleadsto\r\r\r\r\r\rrr0@rUk q jrUkj2+21A\r\r\r\r\r\r22C (krUkk22+kUkk22+krUkk22):InterpolatingtheL2normofubytheL2normsofruandru,weobtain1 2t+C2(13)2krUk+1k22+(C1(11)4)krUk+1k221 2t+220 2+C2 3+C(1=;\n) 4krUkk22+C1 1+C(1=;\n) 4krUkk22+C(\n;D;0;f):For=1=2,i=1;:::;4weobtain1 2t+C21 2krUk+1k22+C11 2krUk+1k221 2t+420+2(C2+C)krUkk22+2(C1+C)krUkk22+C(\n;D;0;f):SinceC1andC2arechosensuchthatC1�1=�1andC2�0�1,thecoecientsintheinequalityabovearepositive.TherestoftheproofissimilartotheproofofProposition3.3.Wemultiplytheinequalityby2tandsetCa=1+t(C21);C=C11;Cc=1+2t(420+2(C2+C));Cd=4(C1+C):WeobtainCakrUk+1k22+tCkrUk+1k22CckrUkk22+tCdkrUkk22+2tC(\n;D;0;f): 442UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGDividingbyCa(whichis�0)wehavekrUk+1k22+tCb CakrUk+1k22Cc CakrUkk22+tCd CakrUkk222 CatC(\n;D;0;f):WerewritetherighthandsideoftheinequalitysuchthatkrUk+1k22+tC CakrUk+1k22CcCd Ca1 CdkrUkk22+t1 CckrUkk22+2 CatC(\n;D;0;f):SinceCd�1wecanmultiplythe rsttermwithinthebracketsontherighthandsideoftheinequalitywithCdandwillonlygetsomethingwhichislargerorequal.Forthesamereasonwecanmultiplythesecondtermwithinthebracketswith1CcC Ca=(1+2t(420+2(C2+C)))(C11) 1+t(C21)andgetkrUk+1k22+tC CakrUk+1k22CcCd CakrUkk22+tC CakrUkk22+2 CatC(\n;D;0;f):ByinductionitfollowsthatkrUk+1k22+tC CakrUk+1k22CcCd CakkrU0k22+tC CakrU0k22+tk1X=0CcCd Ca2 CaC(\n;D;0;f):ThereforeweobtainforktTkrUkk22+tCb CakrUkk22eKTkrU0k22+tCb CakrU0k22+tT2 CaC(\n;D;0;f): Finallyweshowthatthediscretesolutionconvergestothecontinuousoneasttendstozero.Proposition4.4(Convergence(iii)).UnderthesameassumptionsasinTheorem4.1(iii)theerrorekful lls(4.6).Proof.ByourdiscreteApproximation(4.4)andtheconsistencycomputation C.B.SCHONLIEBANDA.BERTOZZI443(4.7),wehaveforek=ukUkek+1ek t+C12ek+1+C2ek+1=1 t(uk+1uk)1 t(Uk+1Uk)+C12uk+1C12Uk+1+C2uk+1C2Uk+1=0@C12Uk0@r0@rUk q jrUkj2+21A1A+(fUk)+C2Uk1A0@0@r0@ruk q jrukj2+21A1A(fuk)C12ukC2uk1A+k="0@r0@rUk q jrUkj2+21Ar0@ruk q jrukj2+21A1A+C12(Ukuk)+C2(Ukuk)(Ukuk)#+k:Takingtheinnerproductwithek+1,wehave1 thr(ek+1ek);rek+1i2+C1krek+1k22+C2krek+1k22=*0@r0@rUk q jrUkj2+21Ar0@ruk q jrukj2+21A1A;ek+1+2+C1\n2(Ukuk);ek+1 2+hr(Ukuk);rek+1i2C2hr(Ukuk);rek+1i2\nr1k;rek+1 2:UsingthesameargumentsasintheproofofProposition3.4weobtain1 2t(krek+1k22krekk22)+C1krek+1k22+C2krek+1k22*0@r0@rUk q jrUkj2+21Ar0@ruk q jrukj2+21A1A;ek+1+2+C1 1krekk22+C11krek+1k22+20 3krekk22+3krek+1k22+C2 2krekk22+C22krek+1k22+1 4kkk21+4krek+1k22:(4.9)Weconsiderthe rsttermontherightsideoftheaboveinequalityindetail,*0@r0@rUk q jrUkj2+21Ar0@ruk q jrukj2+21A1A;ek+1+2=*r0@r0@rUk q jrUkj2+21Ar0@ruk q jrukj2+21A1A;rek+1+2:(4.10) 444UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGWegetr0@ru q jruj2+21A=u q jruj2+2u2xuxx+2uxuyuxy+u2yuyy (jruj2+2)3=2:Next,weapplythegradienttothisexpressionandobtainr0@r0@ru q jruj2+21A1A=ru q jruj2+2u 2(jruj2+2)3=2rjruj2r(u2xuxx+2uxuyuxy+u2yuyy) (jruj2+2)3=2+3(u2xuxx+2uxuyuxy+u2yuyy) 2(jruj2+2)5=2rjruj2;whererjruj2=0BB@2ruuxxuyx2ruuxyuyy1CCA=2uxuxx+uyuyxuxuxy+uyuyy;andr(u2xuxx+2uxuyuxy+u2yuyy)=2(uxuxx+uyuxy)rux+2(uxuxy+uyuyy)ruy+u2xruxx+2uxuyruxy+u2yruyy:Reorderingtheinvolvedtermswehaver0@r0@ru q jruj2+21A1A=H1(ru)ru+H2(ux;uy;uxx;uxy;uyy)rux+H3(ux;uy;uxx;uxy;uyy)ruy+H4(ux;uy)ruxx+H5(ux;uy)ruxy+H6(ux;uy)ruyy; C.B.SCHONLIEBANDA.BERTOZZI445whereH1(ru)=1 q jruj2+2;H2(ux;uy;uxx;uxy;uyy)= uux+2(uxuxx+uyuxy) (jruj2+2)3=23(u2xuxx+2uxuyuxy+u2yuyy)ux (jruj2+2)5=2!;H3(ux;uy;uxx;uxy;uyy)= uuy+2(uxuxy+uyuyy) (jruj2+2)3=23(u2xuxx+2uxuyuxy+u2yuyy)uy (jruj2+2)5=2!;H4(ux;uy)=u2x (jruj2+2)3=2;H5(ux;uy)=2uxuy (jruj2+2)3=2;H6(ux;uy)=u2y (jruj2+2)3=2:Nowwearegoingtoinsertthisinto(4.10).Foreaseofnotationwesuppressthetimeindexkfornow,i.e.,wede neU:=Uk,u:=ukande:=ek.Weobtain*r0@r0@rUk q jrUkj2+21Ar0@ruk q jrukj2+21A1A;rek+1+2=hH1(rU)rUH1(ru)ru;rek+1i2+hH2(Ux;Uy;Uxx;Uxy;Uyy)rUxH2(ux;uy;uxx;uxy;uyy)rux;rek+1i2+hH3(Ux;Uy;Uxx;Uxy;Uyy)rUyH3(ux;uy;uxx;uxy;uyy)ruy;rek+1i2+hH4(Ux;Uy)rUxxH4(ux;uy)ruxx;rek+1i2+hH5(Ux;Uy)rUxyH5(ux;uy)ruxy;rek+1i2+hH6(Ux;Uy)rUyyH6(ux;uy)ruyy;rek+1i2 446UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTING1 2kH1(rU)(rUru)k22+1 2kru(H1(ru)H1(rU))k22+1 2kH2(Ux;Uy;Uxx;Uxy;Uyy)(rUxrux)k22+1 2krux(H2(ux;uy;uxx;uxy;uyy)H2(Ux;Uy;Uxx;Uxy;Uyy))k22+1 2kH3(Ux;Uy;Uxx;Uxy;Uyy)(rUyruy)k22+1 2kruy(H3(ux;uy;uxx;uxy;uyy)H3(Ux;Uy;Uxx;Uxy;Uyy))k22+1 2kH4(Ux;Uy)(rUxxruxx)k22+1 2kruxx(H4(ux;uy)H4(Ux;Uy))k22+1 2kH5(Ux;Uy)(rUxyruxy)k22+1 2kruxy(H5(ux;uy)H5(Ux;Uy))k22+1 2kH6(Ux;Uy)(rUyyruyy)k22+1 2kruyy(H6(ux;uy)H6(Ux;Uy))k22+6krek+1k22;forasuitableconstant�0.NextwewanttousethattheH'sareLipschitzcontin-uousin\n,withLipschitzconstantsL(1=),for&#x-0.8;أ倀0,whichgrowasdecreases.Forsimplicity,weonlypresenttheproofforthe rstpartofH2,i.e.,forH12(ux;uy;uxx;uxy;uyy)=uux+2(uxuxx+uyuxy) (jruj2+2)3=2=ux(3uxx+uyy)+2uyuxy (jruj2+2)3=2:Theothersfollowsimilarily.WehavekH12(ux;uy;uxx;uxy;uyy)H12(Ux;Uy;Uxx;Uxy;Uyy)k2\r\r\r\rux(3uxxuyy)+2uyuxy (jruj22)3=2Ux(3UxxUyy)+2UyUxy (jrUj22)3=2\r\r\r\r2\r\r\r\rux(3uxxuyy) (jruj22)3=2Ux(3UxxUyy) (jrUj22)3=2\r\r\r\r2+2\r\r\r\ruyuxy (jruj22)3=2UyUxy (jrUj22)3=2\r\r\r\r2\r\r\r\r(3uxxuyy)ux (jruj22)3=2Ux (jrUj22)3=2\r\r\r\r2\r\r\r\rUx (jrUj22)3=2(3exxeyy)\r\r\r\r2+2\r\r\r\ruxyuy (jruj22)3=2Uy (jrUj22)3=2\r\r\r\r2+2\r\r\r\rUy (jrUj22)3=2exy\r\r\r\r2:FromourassumptioninTheorem4.1(iii)wehaveacontinuousintimesmoothsolutionuona nitetimeinterval.Inparticularthisgivesusauniformboundforthesecondderivativesoftheexactsolutionu,i.e.,thereexistsaC�0suchthatkuxxk1+kuxyk1+kuyyk1Cona nitetimeinterval[0;T].Further,withthefactthatthefunctionx (x2+y2+2)3=2isuniformlyboundedfor�0andforallx;y2RwehavekH12(ux;uy;uxx;uxy;uyy)H12(Ux;Uy;Uxx;Uxy;Uyy)k2C\r\r\r\r\rux (jruj2+2)3=2Ux (jrUj2+2)3=2\r\r\r\r\r2+Ck3exxeyyk2+2C\r\r\r\r\ruy (jruj2+2)3=2Uy (jrUj2+2)3=2\r\r\r\r\r2+2Ckexyk2; C.B.SCHONLIEBANDA.BERTOZZI447whereweusedauniversalconstantC�0fortheuniformbounds.Moreover,fora xedyand�0thefunctionx (x2+y2+2)3=2isLipschitzcontinuouswithconstantL(1=),whichisincreasingasdecreases.ByadditionallyapplyingthetriangularinequalityoncemoreweeventuallyhavekH12(ux;uy;uxx;uxy;uyy)H12(Ux;Uy;Uxx;Uxy;Uyy)k2CL(1=)(kexk2+keyk2+krek2)+C(kexxk2+kexyk2+keyyk2);andhencethatH12isLipschitzcontinuous.SimilarlyonecanshowthattheotherH'sareLipschitzcontinuous.LetusfurtherobservethatH1;H4;H5;H6areuniformlyboundedfor�0.Moreover,theuniformboundednessofH2andH3forthediscreteintimesolutionUona nitetimeintervalisgivenbythesmoothnessassumptioninTheorem4.1(iii)forU.Then,withtheLipschitzcontinuityandtheuniformboundednessoftheH'sona nitetimeinterval,andtheuniformboundednessona nitetimeintervalofruk,uk,andrukfortheexactsolutionukgiveninTheorem4.1(iii),weeventuallyobtainanestimatefor(4.10):*r0@r0@rUk q jrUkj2+21Ar0@ruk q jrukj2+21A1A;rek+1+2C 2krek22+CL3 krek22+C 2krexk22+C 2kreyk22+CL (kexxk22+kexyk22+keyyk22)+C 2krexxk22+C 2krexyk22+C 2kreyyk22+6krek+1k22;(4.11)whereL=L(1=)denotesauniversalLipschitzconstantfortheH'sandCisauniversalconstantfortheinvolveduniformbounds.Further,havingassumedzeroNeumannboundaryconditionsfor(1.5)and(4.4),i.e.,ru~n=rr ru p jruj2+2!~n=0;on@\n;where~nistheoutwardpointingnormalon@\n,thesecondandthirdderivativesin(4.11)canbeboundedbykexxk22+kexyk22+keyyk22+krexxk22+krexyk22+kreyyk22B(kek22+krek22);(4.12)forasuitableconstantB�0.BecauseoftheNeumannboundaryconditionswealsogetthatR\ne=0.Hence,wecanapplyPoincare'sinequalitytokek2andobtain,for(4.9),1 2tC2(12)3krek+1k22C1(11)46krek+1k221 2tC2 220 33CL krekk22C1 1C 2BC5 2L1 krekk221 4kkk21;wherewereintroducedtheindexnotationekfore.ThereforebyfollowingthelinesoftheproofofProposition3.4we nallyhave,forktT,krekk22+tM1krekk22T M2eM3T(t)2; 448UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGforsuitablepositiveconstantsM1;M2andM3. Remark4.5.NotethattheLipschitzcontinuityoftheH's{necessaryfortheestimatesintheconvergenceproof{breaksdownif0,whereisthesmoothingparameterinthesquare-rootregularization(4.3)ofthetotalvariation.4.2.Numericalresults.NumericalresultsfortheTV-H1inpaintingap-proacharepresentedinFigures4.1and4.2.ForacomparisonofthehigherorderTV-H1inpaintingapproachwithitssecondordercousin,thestandardTV-L2in-paintingmethod,inFigure4.2weconsidertheperformanceofbothalgorithmsinasmallpartoftheimageinFigure4.1.InfacttheresultshowninFigures4.1and4.2stronglyindicatesthecontinuationofthegradientoftheimagefunctionintotheinpaintingdomain.Arigorousproofofthisobservation,astheoneforCahn-Hilliardinpainting(cf.Section3),isamatteroffutureresearch.Inbothexamplesthetotalvariationjrujisapproximatedby jruj2+andthetimestepsizetischosentobeequaltoone.ThecomputationaltimefortheexampleinFigure4.1isoftheorderof100secondsona1.86GHzprocessorwith1GBRAM. Fig.4.1.TV-H1inpainting:u(1000)with0=103 Fig.4.2.(l.)u(1000)withTV-H1inpainting,(r.)u(5000)withTV-L2inpainting5.LCISinpaintingOurlastexamplefortheapplicabilityoftheconvexitysplittingmethodtohigher-orderinpaintingapproachesisinpaintingwithLCIS(1.6).Withf2L2(\n)ourin-paintedimageuevolvesintimeasu=(arctan(u))+(fu):Incontrasttotheothertwoinpaintingmethodsthatwediscussed,thisinpainting C.B.SCHONLIEBANDA.BERTOZZI449equationisagradient\rowinL2fortheenergyE(u)=Z\nG(u)dx+1 2Z\n(fu)2;withG0(y)=arctan(y).ThereforeEyre'sresultinTheorem2.3canbeapplieddirectly.ThefunctionalE(u)issplitintoEcEwithEc(u)=Z\nC1 2(u)2dx+1 2Z\nC2 2juj2dx;E(u)=Z\nG(u)+C1 2(u)2dx+1 2Z\n(fu)2+C2 2juj2dx:Theresultingtime-steppingschemeisUk+1Uk t+C12Uk+1+C2Uk+1=(arctan(Uk))+C12Uk+(fUk)+C2Uk:(5.1)AgainweimposehomogeneousNeumannboundaryconditions,useDCTtosolve(5.1),andchoosetheconstantsC1andC2suchthatEcandEareallstrictlyconvexandcondition(2.7)issatis ed.ThefunctionalEcisconvexforallC1;C2�0.The rstterminEisconvexifC1�1.Thisfollowsfromitssecondvariation,namelyr2E1(u)(v;w)=d dsZ(C1(u+sw)arctan((u+sw)))vdxs=0=ZC11 1+(u)2vwdx:ForE1tobeconvex,r2E1(u)(v;w)mustbe�0forallv;w2C1,andthereforeC11 1+(u)2�0:Substitutings=uweobtainC1�1 1+s28s2R:Thisinequalityisful lledforalls2RifC1�1.WeobtainthesameconditiononC1forG0(s)=arctan(s ).FortheconvexityofthesecondtermofE,thesecondconstanthastoful llC2�0;cf.thecomputationforthe ttingterminSection4.WiththesechoicesofC1andC2alsocondition(2.7)ofTheorem2.3isautomaticallysatis ed.5.1.Rigorousestimatesforthescheme.Finallywepresentrigorousresultsfor(5.1).IncontrasttotheinpaintingEquations(1.4)and(1.5),inpaintingwithLCISfollowsavariationalprinciple.Hence,bychoosingtheconstantsC1andC2appropriately,i.e.,C1�1,C2�0(cf.thecomputationsabove),Theorem2.3ensuresthattheiterativescheme(5.1)isunconditionallygradientstable.Inadditiontothisproperty,wepresentsimilarresultsasbeforeforCahn-HilliardandTV-H1inpainting.Theorem5.1.Letubetheexactsolutionof(1.6)anduk=u(kt)theexactsolutionattimekt,foratimestept�0andk2N.LetUkbethekthiterateof(5.1)withconstantsC1�1,C2�0.Thenthefollowingstatementshold: 450UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTING(i)Undertheassumptionthatkuk1andkruk2arebounded,thenumericalscheme(5.1)isconsistentwiththecontinuousEquation(1.6)andoforderoneintime.(ii)ThesolutionsequenceUkisboundedona nitetimeinterval[0;T]forallt�0.Inparticular,forktT,T&#x-139;&#x.942;0 xed,wehavekrUkk22+tK1krUkk22eK2TkrU0k22+tK1krU0k22+tTC(\n;D;0;f)(5.2)forsuitableconstantsK1,K2,andaconstantCdependingon\n;D;0;fonly.(iii)Letek=ukUk.Ifkrukk22K;foraconstantK&#x-139;&#x.942;0;andforallktT(5.3)thentheerrorekconvergestozeroast0.Inparticular,forktT,T&#x-139;&#x.942;0 xed,wehavekrekk22+tM1krekk22T M2eM3T(t)2;(5.4)forsuitablenonnegativeconstantsM1;M2andM3.Remark5.1.AsinTheorem4.1(cf.alsoRemark4.1)theconvergenceoftheiteratesUktotheexactsolutionisprovenunderanassumptionontheexactsolution,i.e.,assumption(5.3),whosevalidityisunknowningeneral.However,previousresultsin[15]forthedenoisingcase,i.e.,for(x)=0inallof\n,andforsmoothinitialdataandsmoothf,suggesttheassumptionisalsoreasonablefortheinpaintingcase.TheproofofTheorem5.1isorganizedinthefollowingthreePropositions5.2-5.4.SincetheproofofconsistencyfollowsthelinesofProposition3.2andProposition4.2,wejuststatetheresult.Proposition5.2(Consistency(i)).UnderthesameassumptionsasinTheo-rem5.1andinparticularassumingthatkuk1andkruk2arebounded,wehavekkk1=O(t)fort0:Nextwewouldliketoshowtheboundednessofasolutionof(5.1)inthefollowingproposition.Proposition5.3.(Unconditionalstability(ii))UnderthesameassumptionsasinTheorem5.1thesolutionsequenceUkful lls(5.2).Thisgivesboundednessofthesolutionsequenceon[0;T].Proof.Ifwemultiply(5.1)withUk+1andintegrateover\n,weobtain1 tkrUk+1k22hrUk;rUk+1i2+C2krUk+1k22+C1krUk+1k22=harctan(Uk);Uk+1i2+C1hrUk;rUk+1i2+hr((fUk));rUk+1i2+C2hrUk;rUk+1i2: C.B.SCHONLIEBANDA.BERTOZZI451UsingthesameargumentsasintheproofsofProposition3.3and4.3weobtain1 2tkrUk+1k22krUkk22+C2krUk+1k22+C1krUk+1k22harctan(Uk);Uk+1i2+C1 1krUkk22+C11krUk+1k22+20 22krUkk22+2krUk+1k22+C2 3krUkk22+C23krUk+1k22+C(\n;D;0;f):Now,the rsttermontherightsideoftheinequalitycanbeestimatedasfollowsharctan(Uk);Uk+1i2=hrarctan(Uk);rUk+1i2=1 1+(Uk)2rUk;rUk+121 4\r\r\r\r1 1+(Uk)2rUk\r\r\r\r22+4krUk+1k221 4krUkk22+4krUk+1k22:(5.5)Fromthisweget1 2t+C2(13)2krUk+1k22+(C1(11)4)krUk+1k221 2t+20 22+C2 3krUkk22+C1 1+1 4krUkk22+C(\n;D;0;f):AnalogouslytoSection4.1,withCa=1+t(C21);C=C11;Cc=1+2t(20+2C2);Cd=4(C1+1);weobtainkrUkk22+tCb CakrUkk22eKTkrU0k22+tCb CakrU0k22+tT2 CaC(\n;D;0;f);whichgivesboundednessofthesolutionsequenceon[0;T]foranyT�0andanyt�0. Theconvergenceofthediscretesolutiontothecontinuousoneast0isveri edinthefollowingproposition.Proposition5.4(Convergence(iii)).UnderthesameassumptionsasinTheorem5.1andinparticularunderassumption(5.3),theerrorekful lls(5.4).Proof.Sinceallthecomputationsintheconvergenceprooffor(5.1)arethesameasinSection4.1for(4.4)exceptoftheestimatefortheregularizer(arctan(u)),weonlygivethedetailsforthelatterandleavetheresttothereader.Thus,fortheinnerproductinvolvingtheregularizerof(5.1)withintheconvergenceproof,weobtainh(arctan(Uk)arctan(uk));ek+1i2=hr(arctan(Uk)arctan(uk));rek+1i2=hw(Uk)rUkw(uk)ruk;rek+1i2=hw(Uk)rek;rek+1i2h(w(Uk)w(uk))ruk;rek+1i21 2kw(Uk)jrekjk22+1 21k(w(uk)w(Uk))jrukjk22++1 2krek+1k22; 452UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGwherewehaveusedthatr(arctan(u))=1 1+juj2ru=w(u)ru:Usingtheuniformboundednessofw(s)foralls2R,theuniformboundonrukfromAssumption(5.3),andtheLipschitzcontinuityofw,wegeth(arctan(Uk)arctan(uk));ek+1i2C 2krekk22+CL 21kekk22++1 2krek+1k22:Moreover,becauseofthezeroNeumannboundaryconditionsful lledbysolutionsof(1.6)and(5.1),i.e.,ru~n=r(arctan(u))~n=0;on@\n;where~nistheoutwardpointingnormalon@\n,ekhaszeromeanandwecanapplyPoincare'sinequalitytoobtainh(arctan(Uk)arctan(uk));ek+1i2C 2CL 21krekk221 2krek+1k22:FollowingthesamestepsasintheproofofProposition4.4we nallyhave,forktT,krekk22+tM1krekk22T M2eM3T(t)2forsuitablepositiveconstantsM1;M2andM3. 5.2.Numericalresults.ForthecomparisonwithTV-H1inpaintingweapply(5.1)tothesameimageasinSection4.2.ThisexampleispresentedinFigure5.1.InFigure5.2theLCISinpaintingresultiscomparedwithTV-H1-andTV-L2inpainting,forasmallpartinthegivenimage.Againtheresultofthiscomparisonindicatesthecontinuationofthegradientoftheimagefunctionintotheinpaintingdomainforthetwohigher-ordermethods.Arigorousproofofthisobservationisamatteroffutureresearch.Forthenumericalcomputationof(5.1)thearctan(s)wasregularizedbyarctan(s=),�0andtchosentobeequalto0:01.TheinpaintedimageinFigure5.1hasbeencomputedinabout90secondsona1.86GHzprocessorwith1GBRAM.6.ConclusionInthispaperwepresentseveralhigherorderPDE-basedmethodsforimagein-painting,alongwithunconditionallystabletime-steppingschemesforthesolutionoftheseequations.Speci cexamplesdiscussedincludeCahn-Hilliardinpainting,TV-H1inpainting,andinpaintingwithLCIS.Theconstructionoftheseschemesisbasedontheideaofconvexitysplitting,alsointroducedinthispaper.Westudythenu-mericalanalysisoftheschemesincludingconsistency,unconditionalstability,andconvergence.Belowweconsidersomeopenproblemsforthisclassofmethods. C.B.SCHONLIEBANDA.BERTOZZI453 Fig.5.1.LCISinpaintingu(500)with=0:1and0=102. Fig.5.2.(l.)u(1000)withLCISinpainting,(m.)u(1000)withTV-H1inpainting,(r.)u(5000)withTV-L2inpaintingTheadvantageoffourthorderinpaintingmodels,overmodelsofseconddif-ferentialorder,isthesmoothcontinuationofimagecontents,includingdirec-tionofedges,acrossgapsintheimage.FourthorderPDEsrequireanextraboundaryconditioncomparedwithsecondorderequationsandthisisthemo-tivationforadditionalgeometriccontentprovidedbysuchmethods.However,ingeneral,theadditionalboundaryconditioncouldinvolveanyofthehigherderivatives,andforinpaintingisitdesirabletocontinuethe rstderivativeaccrosstheinpaintingregion.Themethodsproposedhereareglobalmeth-odsbasedonanL2 delitytermassociatedwiththeknowninformation.ForthespecialcaseoftheCahn-Hilliardequation[14],inthelimitas0!1astationarysolutionisprovedtosatisfypreciselythedesiredtwoboundaryconditions|matchingofgreyvalueandmatchingdirectionofedges.Weconjecturethatanalogousresultsaretruefortheothermethodspresentedherealthougharigorousproofisbeyondthescopeofthismanuscript.Fortheproofsofconvergenceofthediscretesolutiontotheexactsolution,i.e.,fortheproofsofTheorem4.4andTheorem5.4,wehadtoassumethattheexactsolutionisboundedona nitetimeintervalinacertainSobolevnorm.Aswealreadyarguedintheremarksafterthestatementofthetheorems,theseassumptionsseemtobeheuristicallyreasonableconsideringearlierre-sultsin[15,16].Neverthelessarigorousderivationofsuchboundsisstillmissing.Besidesthefactthatrigorousresultsforfourth-orderpartialdi erentialequa-tionsarerareingeneral,anasymptoticanalysisofourthreeinpaintingmodelswouldbeofhigh(evenpractical)interest.MorepreciselytheconvergenceofasolutionoftheevolutionEquations(1.4),(1.5),and(1.6),toastation-arystateisstillopen.Sincetheinpaintedimageisthestationarysolution 454UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGofthoseevolutionequations,theasymptoticbehaviorisofcourseanissue.Also,inpracticethenumericalschemesaresolvedtosteadystate(uptoanapproximationalerror).Notethatinadditiontothefourthdi erentialorder,adicultyintheconvergenceanalysisof(1.4)and(1.5)isthattheequationsdonotfollowavariationalprinciple.Thediscreteschemesproposedinthispaperareunconditionallystableandtheirnumericalperformanceisamatterof10to100secondsforsmalltomedium-sizedimages,i.e.,128128to256256pixels,andgapsthatcon-stituteaboutonetotenpercentoftheimagedomain.Fastnumericalsolversforhigherorderinpaintingmodelsisstillamostlyopen eldofresearch.AmongsuchfastsolverswefoundtherecentcontributionofBrito-LoezaandChen[18]veryinterestingandforward-looking,whouseamultigridmethodtosolveinpaintingwithCDD(CurvatureDrivenDi usion).Anotherap-proachistheSplitBregmanmethodofGoldsteinandOsher[41,42],whichsuggestsasplittingofahigher-ordervariationalproblemintwoconsecutivelyminimized rst-orderproblems.Althoughnotdirectlyapplicabletothenon-variationalinpaintingtechniques(1.4)and(1.5),theirmethodpromisesanecientsolutionof,e.g.,(1.6)LCISinpainting.Acknowledgments.C.-B.Schonliebacknowledgesthe nancialsupportpro-videdbytheDFGGraduiertenkolleg1023Identi cationinMathematicalModels:SynergyofStochasticandNumericalMethods,supportbytheprojectWWTFFivesenses-Call2006,MathematicalMethodsforImageAnalysisandProcessingintheVi-sualArtsandbytheFFGprojectErarbeitungneuerAlgorithmenzumImageInpaint-ing,projectnumber813610.Further,thispublicationisbasedonworksupportedbyAwardNo.KUK-I1-007-43,madebyKingAbdullahUniversityofScienceandTech-nology(KAUST).Inaddition,C.-B.SchonliebthanksIPAM(InstituteforPureandAppliedMathematics),UCLA,forthehospitalityandthe nancialsupportduringthepreparationofthiswork.BothauthorsacknowledgesupportfromtheNSFgrantBCS-0527388,ONRgrantN000140810363,andtheDepartmentofDefense.TheauthorsthanktherefereesandWenuahGao(UCLA)forusefulcommentsonthemanuscript.REFERENCES[1]J.-F.AujolandA.Chambolle,Dualnormsandimagedecompositionmodels,InternationalJournalofComputerVision,63(1),85{104,June,2005.[2]J.-F.AujolandG.Gilboa,ConstrainedandSNR-basedsolutionsforTV-Hilbertspaceimagedenoising,J.Math.ImagingandVision,26(1-2),217{237,November2006.[3]W.Baatz,M.Fornasier,P.MarkowichandC.B.Schonlieb,InpaintingofancientAustrianfrescoes,ConferenceProceedingsofBridges2008,Leeuwarden2008,150{156,2008.[4]J.W.BarrettandJ.F.Blowey,Finiteelementapproximationofamodelforphaseseparationofamulti-componentalloywithnon-smoothfreeenergy,Numer.Math.,77(1),1{34,1997.[5]J.W.BarrettandJ.F.Blowey,Finiteelementapproximationofamodelforphaseseparationofamulti-componentalloywithaconcentration-dependentmobilitymatrix,IMAJ.Numer.Anal.,18(2),287{328,1998.[6]J.W.BarrettandJ.F.Blowey,Finiteelementapproximationofamodelforphaseseparationofamulti-componentalloywithnonsmoothfreeenergyandaconcentrationdependentmobilitymatrix,Math.ModelsMethodsAppl.Sci.,9(5),627{663,1999.[7]J.W.BarrettandJ.F.Blowey,FiniteelementapproximationoftheCahn-Hilliardequationwithconcentrationdependentmobility,Math.Comput.,68(226),487{517,1999. C.B.SCHONLIEBANDA.BERTOZZI455[8]J.Becker,G.Grun,M.LenzandM.Rumpf,Numericalmethodsforfourthordernonlineardi usionproblems,ApplicationsofMathematics,47,517{543,2002.[9]J.Bect,L.Blanc-Feraud,G.AubertandA.Chambolle,A`1-uni edVariationalFrameworkforImageRestoration,T.PajdlaandJ.Matas(eds.),Proceedingsofthe8thEuropeanConferenceonComputerVisionIV,Prague,CzechRepublic,SpingerVerlag,2004.[10]M.Bertalmio,G.Sapiro,V.CasellesandC.Ballester,Imageinpainting,Siggraph2000,Com-puterGraphicsProceedings,417{424,2000.[11]M.Bertalmio,A.L.BertozziandG.Sapiro,Navier-Stokes,\ruiddynamics,andimageandvideoinpainting,Proceedingsofthe2001IEEEComputerSocietyConferenceonComputerVisionandPatternRecognition,1,355{362,2001.[12]M.Bertalmio,L.Vese,G.SapiroandS.Osher,Simultaneousstructureandtextureimageinpainting,IEEETrans.ImageProc.,12(8),882{889,2003.[13]A.Bertozzi,S.EsedogluandA.Gillette,InpaintingofbinaryimagesusingtheCahn-Hilliardequation,IEEETrans.ImageProc.,16(1),285{291,2007.[14]A.Bertozzi,S.EsedogluandA.Gillette,Analysisofatwo-scaleCahn-Hilliardmodelforimageinpainting,MultiscaleModelingandSimulation,6(3),913{936,2007.[15]A.BertozziandJ.B.Greer,Low-curvatureimagesimpli ers:globalregularityofsmoothsolu-tionsandLaplacianlimitingschemes,Commun.PureAppl.Math.,LVII,764{790,2004.[16]A.Bertozzi,J.Greer,S.OsherandK.Vixie,NonlinearregularizationsofTVbasedPDEsforimageprocessing,AMSSeriesofContemporaryMathematics,G.-Q.Chen,G.Gasper,andJ.Jerome(eds.),371,29{40,2005.[17]A.Bertozzi,N.JuandH.W.Lu,Abiharmonic-modi edforwardtimesteppingmethodforfourthordernonlineardi usionequations,DiscreteandContinuousDynamicalSystems2009,submitted.UCLACAMreports08-18,2008.[18]C.Brito-LoezaandK.Chen,Multigridmethodforamodi edcurvaturedrivendi usionmodelforimageinpainting,J.Comput.Math.,26(6),856{875,2008.[19]M.Burger,L.HeandC.Schonlieb,Cahn-Hilliardinpaintingandageneralizationforgrayvalueimages,SIAMJ.ImagingSci.,2(4),1129{1167,2009.[20]F.Cao,Y.Gousseau,S.MasnouandP.Perez,Geometricallyguidedexemplar-basedinpainting,INRIApreprint,hal-00380394,2009..[21]V.Caselles,J.M.Morel,C.SbertandA.Gillette,Anaxiomaticapproachtoimageinterpola-tion,IEEETrans.onImageProc.,7(3),376{386,1998.[22]A.Chambolle,Analgorithmfortotalvariationminimizationandapplications,J.Math.Imag-ingVis.,20(1{2),89{97,2004.[23]T.F.ChanandJ.Shen,Mathematicalmodelsforlocalnon-textureinpaintings,SIAMJ.Appl.Math.,62(3),1019{1043,2001.[24]T.F.ChanandJ.Shen,Non-textureinpaintingbycurvaturedrivendi usions(CDD),J.VisualCommun.ImageRep.,12(4),436{449,2001.[25]T.F.ChanandJ.Shen,Variationalrestorationofnon-\ratimagefeatures:modelsandalgo-rithms,SIAMJ.Appl.Math.,61(4),1338{1361,2001.[26]T.F.ChanandJ.Shen,Variationalimageinpainting,Commun.PureAppliedMath.,58,579{619,2005.[27]T.F.Chan,S.H.KangandJ.Shen,Euler'selasticaandcurvature-basedinpainting,SIAMJ.Appl.Math.,63(2),564{592,2002.[28]T.F.Chan,J.H.ShenandH.M.Zhou,Totalvariationwaveletinpainting,J.Math.ImagingVis.,25(1),107{125,2006.[29]A.Criminisi,P.PerezandK.Toyama,Objectremovalbyexemplar-basedinpainting,IEEEInt.Conf.Comp.VisionandPatternRecog.2,721{728,2003.[30]J.A.DobrosotskayaandA.L.Bertozzi,AWavelet-laplacevariationaltechniqueforimagede-convolutionandinpainting,IEEETrans.Imag.Proc.,17(5),657{663,2008.[31]J.Jr.DouglasandT.Dupont,Alternating-directionGalerkinmethodsonrectanglesnumericalsolutionofpartialdi erentialequations,II(SYNSPADE1970)(Proc.Symp.,UniversityofMaryland,CollegePark,Md.1970)(NewYork:Academic),133{214,1971.[32]A.A.EfrosandT.K.Leung,TextureSynthesisbyNon-parametricSampling,IEEEInterna-tionalConferenceonComputerVision,Corfu,Greece,September,1999.[33]C.M.ElliottandS.A.Smitheman,AnalysisoftheTVregularizationandH1 delitymodelfordecomposinganimageintocartoonplustexture,Commun.PureAppl.Anal.,6(4),917{936,2007.[34]C.M.ElliottandS.A.Smitheman,NumericalanalysisoftheTVregularizationandH1 delitymodelfordecomposinganimageintocartoonplustexture,IMAJournalofNumericalAnalysis,1{39,2008.[35]S.EsedogluandJ.H.Shen,DigitalinpaintingbasedontheMumford-Shah-Eulerimagemodel, 456UNCONDITIONALLYSTABLESCHEMESFORHIGHERORDERINPAINTINGEur.J.Appl.Math.,13(4),353{370,2002.[36]D.Eyre,Anunconditionallystableone-stepschemeforgradientsystems,Jun.,1998,unpub-lished.[37]X.FengandA.Prohl,Erroranalysisofamixed niteelementmethodfortheCahn-Hilliardequation,Numer.Math.,99(1),47{84,2004.[38]X.FengandA.Prohl,NumericalanalysisoftheCahn-HilliardequationandapproximationfortheHele-Shawproblem,InterfacesFreeBound.,7(1),1{28,2005.[39]M.FornasierandC.B.Schonlieb,Subspacecorrectionmethodsfortotalvariationandl1-min-imization,SIAMJ.Numer.Anal.,47(5),3397{3428,2009.[40]K.Glasner,Adi useinterfaceapproachtoHele-Shaw\row,Nonlinearity,16,1{18,2003.[41]T.Goldstein,X.BressonandS.Osher,GeometricapplicationsofthesplitBregmanmethod:Segmentationandsurfacereconstruction,J.Sci.Comp.,45(1-3),pp.272{293,2010.[42]T.GoldsteinandS.Osher,ThesplitBregmanmethodforL1regularizedproblems,SIAMJournalonImagingSciences,2(2),323{343,2009.[43]J.B.GreerandA.Bertozzi,H1solutionsofaclassoffourthordernonlinearequationsforimageprocessing,DiscreteContin.Dyn.Syst.,10(1-2),349{366,2004.[44]J.B.GreerandA.Bertozzi,TravelingwavesolutionsoffourthorderPDEsforimageprocessing,SIAMJ.Math.Anal.,36(1),38{68,2004.[45]H.GrossauerandO.Scherzer,UsingthecomplexGinzburg-Landauequationfordigitalin-paintingin2Dand3D,ScaleSpaceMethodsinComputerVision,2695,225{236,2003.[46]G.GrunandM.Rumpf,Nonnegativitypreservingconvergentschemesforthethin lmequa-tion,Num.Math.,87,113{152,2000.[47]J.W.Gu,L.Zhang,G.Q.Yu,Y.X.XingandZ.Q.Chen,X-rayCTmetalartifactsreductionthroughcurvaturebasedsinograminpainting,JournalofX-RayScienceandTechnology,14(2),73{82,2006.[48]M.HirschandS.Smale,Di erentialEquations,DynamicalSystemsandLinearAlgebra,Aca-demicPress,London,1974.[49]L.LieuandL.Vese,ImagerestorationanddecompostionviaboundedtotalvariationandnegativeHilbert-Sobolevspaces,AppliedMathematics&Optimization,58,167{193,2008.[50]M.Lysaker,A.LundervoldandX.C.Tai,Noiseremovalusingfourth-orderpartialdi erentialequationswithapplicationstomedicalmagneticresonanceimagesinspaceandtime,IEEETrans.onImageProc.,12(12),1579{1590,2003.[51]O.M.LysakerandX.-C.Tai,Iterativeimagerestorationcombiningtotalvariationminimiza-tionandasecond-orderfunctional,Inter.J.Comput.Vis.,66(1),5{18,2006.[52]S.MasnouandJ.Morel,Levellinesbaseddisocclusion,5thIEEEInt'lConf.onImagePro-cessing,Chicago,IL,Oct.,4-7,259{263,1998.[53]L.ModicaandS.Mortola,Illimitenella-convergenzadiunafamigliadifunzionaliellittici,Boll.UnioneMat.Ital.,V.Ser.,A14,526{529,1977.[54]L.ModicaandS.Mortola,Unesempiodi-convergenza,Boll.UnioneMat.Ital.,V.Ser.,B14,285{299,1977.[55]M.J.NarashimaandA.M.Peterson,Onthecomputationofthediscretecosinetransform,IEEETrans.Commun.COM,26,934-936,June,1978.[56]L.K.Nielsen,X.C.Tai,S.I.AanonsenandM.Espedal,NoiseRemovalofSeismicDataUsingaFourth-OrderParabolicPDE,InternationalJ.Tomography&Statistics(IJTS),4(6),63,2006.[57]M.Nitzberg,D.MumfordandT.Shiota,Filtering,Segmentation,andDepth,Springer-Verlag,LectureNotesinComputerScience,662,1993.[58]S.Osher,A.SoleandL.Vese,ImagedecompositionandrestorationusingtotalvariationminimizationandtheH1norm,MultiscaleModelingandSimulation:ASIAMInterdis-ciplinaryJournal,1(3),349{370,2003.[59]P.PeronaandJ.Malik,Scale-spaceandEdgeDetectionUsingAnisotropicDi usion,IEEETransactionsonPatternAnalysisandMachineIntelligence,12(7),629{639,July,1990.[60]L.I.Rudin,S.OsherandE.Fatemi,Nonlineartotalvariationbasednoiseremovalalgorithms,PhysicaD,60,259{268,1992.[61]L.RudinandS.Osher,Totalvariationbasedimagerestorationwithfreelocalconstraints,Proc.1stIEEEICIP,1,31{35,1994.[62]C.B.Schonlieb,TotalvariationminimizationwithanH1constraint,CRMSeries9,Singu-laritiesinNonlinearEvolutionPhenomenaandApplicationsProceedings,ScuolaNormaleSuperiorePisa,2009,201{232.[63]C.B.Schonlieb,ModernPDETechniquesforImageInpainting,PhDThesis,UniversityofCambridge,265,June2009.[64]C.B.Schonlieb,A.Bertozzi,M.BurgerandL.He,ImageInpaintingUsingaFourth-Order C.B.SCHONLIEBANDA.BERTOZZI457TotalVariationFlow,Proc.Int.Conf.SampTA09,Marseilles,2009.[65]P.Smereka,Semi-implicitlevelsetmethodsforcurvatureandsurfacedi usionmotion,SpecialissueinhonorofthesixtiethbirthdayofStanleyOsher,J.Sci.Comput.,19(1-3),439{456,2003.[66]A.M.StuartandA.R.Humphries,Modelproblemsinnumericalstabilitytheoryforinitialvalueproblems,SIAMRev.,36(2),226{257,1994.[67]R.Temam,In nite-DimensionalDynamicalSystemsinMechanicsandPhysics,Appl.Math.Sci.,Springer,NewYork,68,1988.[68]A.Tsai,J.A.YezziandA.S.Willsky,CurveevolutionimplementationoftheMumford-Shahfunctionalforimagesegmentation,denoising,interpolationandmagni cation,IEEETrans.ImageProcess,10(8),1169{1186,2001.[69]J.TumblinandG.Turk,LCIS:ABoundaryhierarchyfordetail-preservingcontrastreduction,Siggraph,ComputerGraphicsProceedings,83{90,1999.[70]L.VeseandS.Osher,Modelingtextureswithtotalvariationminimizationandoscillatingpatternsinimageprocessing,J.Sci.Comput.,19(1-3),553{572,2003.[71]B.P.Vollmayr-LeeandA.D.Rutenberg,Fastandaccuratecoarseningsimulationwithanun-conditionallystabletimestep,Phys.Rev.E,68(0066703),1{13,2003.[72]L.Y.WeiandM.Levoy,Fasttexturesynthesisusingtree-structuredvectorquantization,InProc.SIGGRAPH'00,NewOrleans,USA,479{488,2000.[73]A.L.YuilleandA.Rangarajan,TheConcave-Convexprocedure(CCCP),NeuralComputation,15(4),915{936,April,2003.