/
Extended Resolution Proofs for Conjoining BDDs Carsten Extended Resolution Proofs for Conjoining BDDs Carsten

Extended Resolution Proofs for Conjoining BDDs Carsten - PDF document

ellena-manuel
ellena-manuel . @ellena-manuel
Follow
418 views
Uploaded On 2015-05-20

Extended Resolution Proofs for Conjoining BDDs Carsten - PPT Presentation

sinz arminbiere jkuat Abstract We present a method to convert the construction of binary decision diagrams BDDs into extended resolution proofs Besides in proof checking proofs are fundamental to many applications and our results allow the use of BDD ID: 70519

sinz arminbiere jkuat Abstract

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Extended Resolution Proofs for Conjoinin..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2proofsforBDD-basedexistentialquanticationandotherBDDoperations.Thiswilleventuallyallowustogenerateproofsforallthementionedapproaches.Wehavechosenextendedresolutionasaformalismtoexpressourproofs,asitisontheonehandaverypowerfulproofsystemequivalentinstrengthtoextendedFregesystems[24],andontheotherhandsimilartothewell-knownresolutioncalculus[25].Despiteitsstrength,itstillofferssimpleproofchecking:afteraddingachecktoavoidcyclicaldenitions,anordinaryproofcheckerforresolutioncanbeused.Startingwith[26],extendedresolutionhasbeenmainlyasubjectoftheoreticalstud-ies[27,24].Inpracticalapplicationsitdidnotplayanimportantrolesofar.Thismaybeduetothefactthatdirectgenerationof(short)extendedresolutionproofsisveryhard,asthereisnotmuchguidanceonhowtousetheextensionrule.However,when“proofs”aregeneratedbyanothermeans(byBDDcomputationsinourcase),extendedresolu-tionturnsouttobeaconvenientformalismtoconciselyexpressproofs.Weexpectthatawidespectrumofdifferentpropositionaldecisionprocedurescanbeintegratedintoacommonprooflanguageandproofvericationsystemusingextendedresolution.Therestofthispaperisorganizedasfollows:First,wegiveshortintroductionstoextendedresolutionandBDDs.ThenwepresentourmethodtoconstructextendedresolutionproofsoutofBDDconstructions.Thereafter,weportraydetailsofourim-plementationEBDDRESandshowexperimentalresultsobtainedwithit.Finally,weconcludeandgivepossibledirectionsforfuturework.2TheoreticalBackgroundInthispaperwearemainlydealingwithpropositionallogicformulaeinconjunctivenormalform(CNF).AformulaF(overasetofvariablesV)inCNFisaconjunctionofclauses,whereeachclauseisadisjunctionofliterals.Aliteraliseitheravariableoritsnegation.Weusecapitalletters(C;D;:::)todenoteclausesandsmall-caseletterstodenotevariables(a;b;c;:::x;y;:::)andliterals(l;l1;l2;:::).InsteadofwritingaclauseC=(l1__lk)asadisjunction,wealternativelywriteitasasetofliterals,i.e.asfl1;:::;lkg,orinanabbreviatedformas(l1:::lk).Foraliterall,wewritelforitscomplement,i.ex=:xand :x=xforavariablex.2.1ExtendedResolutionExtendedresolution(ER)wasproposedbyTseitin[26]asanextensionoftheresolutioncalculus[25].Theresolutioncalculusconsistsofasingleinferencerule,1C_[flgflg_[D C[DandisusedtorefutepropositionallogicformulaeinCNF.HereCandDarearbi-traryclausesandlisaliteral.Arefutationproofisachieved,whentheemptyclause(denotedby)canbederivedbyaseriesofresolutionruleapplications.Extended 1By_[wedenotethedisjointunionoperation,i.e.A_[BisthesameasA[BwiththeadditionalrestrictionthatA\B=;. 4 Algorithm1:BDD-and(a;b) 1:ifa=0orb=0thenreturn02:ifa=1thenreturnbelseifb=1thenreturna3:(x;a0;a1)=decompose(a);(y;b0;b1)=decompose(b)4:ifxythenreturnnew-node(y,BDD-and(a;b0),BDD-and(a;b1))5:ifx=ythenreturnnew-node(x,BDD-and(a0;b0),BDD-and(a1;b1))6:ifx&#x-286;ythenreturnnew-node(x,BDD-and(a0;b),BDD-and(a1;b)) usingBDDoperations(e.g.,BDD-and,BDD-or)forlogicalconnectives.Aswewillneeditinduecourse,wegivetheBDD-andalgorithmexplicitly(Algorithm1).Here,decomposebreaksdownanon-terminalBDDnodeintoitsconstituentcomponents,i.e.itsvariableandcofactors.Thefunctionnew-nodeconstructsanewBDDnodeifitisnotalreadypresent,andotherwisereturnsthealreadyexistentnode.Thecomparisonsinsteps4to6arebasedontheglobalBDDvariableorder. Fig.1.BDDrepresentationofformulax_(y^:z)usingvariableorderingx�y�z.3ProofConstructionWeassumethatwearegivenaformulaFinCNFforwhichwewanttoconstructanERproofthatshowsunsatisabilityofF(i.e.,weshowthat:Fisatautology).InsteadoftryingtoderivesuchaproofdirectlyintheERcalculus—whichcouldbequitehard,astherearemyriadsofwaystointroducenewdenitions—werstconstructaBDDequivalenttoformulaFandthenextractanERproofoutofthisBDDconstruction.TheBDDforformulaFisbuiltgradually(bottom-up)byconjunctivelyaddingmoreandmoreclausestoaninitialBDDrepresentingtheBooleanconstanttrue.StartingwithanorderedsetofclausesS=(C1;:::;Cm)forformulaFS=C1^^Cm(whichwewanttoproofunsatisable),wethusrstbuildaBDDciforeachclauseCi.ThenweconstructintermediateBDDshicorrespondingtopartialconjunctionsC1^^Ci,until,bycomputinghm,wehavereachedaBDDforthewholeformula.TheseintermediateBDDscanbecomputedrecursivelybytheequationsh2$c1^c2andhi$hi�1^cifor3im: 5IfhmistheBDDconsistingonlyofthe0-node,weknowthatformulaFSisunsatis-ableandwecanstartbuildinganERproof.ThemethodtoconstructtheERproofworksbyrstintroducingnewpropositionalvariables(thusERisrequired),oneforeachnodeofeachBDDthatoccursduringtheconstructionprocess,i.e.forallciandhi.NewvariablesareintroducedbasedontheShannonexpansionofaBDDnode:foraninternalnodefcontainingvariablexandhavingchildnodesf1andf0,anewvariable(whichwealsocallf),denedbyf$(x?f1:f0)(fxf1)(fxf0)(fxf1)(fxf0)isintroduced.Wehavealsogiventheclausalrepresentationofthedenitionontheright.Terminalnodesarerepresentedbyadditionalvariablesn0andn1denedbyn0$0(n0)andn1$1(n1):Notethatintroducingnewvariablesinthiswaydoesnotproducecyclicdenitions,astheBDDsthemselvesareacyclic.Sobyintroducingvariablesbottom-upfromtheleavesoftheBDDuptothetopnode,wehaveanadmissibleorderingforapplyingtheextensionrule.Withthesedenitions,wecangiveanoutlineoftheERproofwewanttogenerate.Itconsistsofthreeparts:rst,wederiveunitclauses(ci)forthevariablescorrespondingtothetopBDDnodesofeachclause.ThenoutoftherecursiverunsofeachBDD-and-operationwebuildproofsfortheconjunctionshi�1^ci$hi(infact,onlytheimplicationfromlefttorightisrequired).Andnally,wecombinethesepartsintoaproofforhm.Ifhmisthevariablerepresentingthezeronode,i.e.hm=n0,wecanderivetheemptyclausebyanothersingleresolutionstepwiththedeningclauseforn0.WethushavetogenerateERproofsforallofthefollowing:S`ciforall1im(ER-1)S`c1^c2!h2(ER-2a)S`hi�1^ci!hiforall3im(ER-2b)S`hm(ER-3)Foraproofof(ER-1)forsomeiassumethatclauseD=Ciconsistsoftheliterals(l1;:::;lk).WeassumeliteralstobeordereddecreasinglyaccordingtotheBDD'sglobalvariableordering.ThenthenewlyintroducedvariablesforthenodesoftheBDDrepresentationofclauseDaredj$(lj?n1:dj+1)ifljispositive,anddj$(lj?dj+1:n1)ifljisnegative.Weidentifydk+1withn0,andciwithd1here.Thesedenitionsinduce—amongothers—theclauses(djljn1)and(djljdj+1)forall1ik.WethereforeobtainthefollowingERprooffor(d1):First,wederive(dkl1:::lk�1n1)byresolving(l1:::lk)with(dklkn1).Then,iterativelyforj=kdowntoj=2,wederive(dj�1l1:::lj�2n1)from(djl1:::lj�1n1)by(djl1:::lj�1n1)(dj�1lj�1dj) (dj�1l1:::lj�1n1)(dj�1lj�1n1) (dj�1l1:::lj�2n1) 7Booleanconstantsoriff=g.Anon-trivialstepisalsocalleda(cache)line.Stepsandlinesarealsoidentiedwithclauses,wherealine(f;g;h)correspondstotheclause(fgh).WeidentifynodeswithERvariableshere.Denition2(Redundancy).AlineL=(f;g;h)iscalledredundantiff=horg=h,otherwiseitiscalledirredundant.Thenotionofredundancyalsocarriesovertotheclause(fgh)correspondingtolineL.Whenwehavereachedanirredundantstep(fgh),wecancheckwhethertheco-factorclausesoftheassumptions(f0g0h0)and(f1g1h1)ofthestepareredundant.Ifthisisthecase,theproofhastobesimpliedandrecursionstops(inallbutonecase)attheredundantstep.Wenowgivesimpliedproofsthatcontainnotautologicalclausesfortherecursionstepoftheproofs(ER-2a)and(ER-2b).Inwhatfollows,wecallthesub-proofof(fghx)outof(f0g0h0)theleftbranchandthesub-proofof(fghx)outof(f1g1h1)therightbranchoftherecursiveproofstep.R1Iff0=h0,weobtainaprooffortheleftbranch(andanalogouslyforg0=h0andforf1=h1org1=h1ontherightbranch)byresolving(hxh0)and(fxf0)toproduce(fhx).Althoughwehaveprovedastrongerclaimontheleftbranchinthiscase,itcannothappenthatgalsodisappearsontherightbranch,asthiswouldonlybepossibleiff1=h1.Butthenf=hwouldalsoholdandthestep(fgh)wouldalreadyberedundant,contradictingourassumption.T1Iff0=g0(thisisnotatautologicalcase,however)thenh0=f0=g0alsoholds,sothatwearriveatthecaseabove(andsimilarlyforf1=g1).Wecanevenchoosewhichofthedenitions(eitherforforforg)wewanttouse.T2Iff0=1weobtainh0=g0andwecanusetheproofgivenunder(R1)fortheleftbranch(similarforg0=1,f1=1,andg1=1).Iff0=0,wecanusethedenition(fxn0)offand(n0)of0toderivethestronger(fx).Itcannothappenthatf1=0atthesametime(asthenthestepwouldbetrivial),sotheonlypossibilitywherewearereallyleftwithastrongerclausethanthedesired(fgh)occurswhenf0=0andg1=0(orf1=g0=0).Thenwehaveh=0andwecanderive(fg).Inthiscasewejustproceedasincase(H0)below.H0Ifh=0weleth0=h1=0andrecursivelygeneratesub-proofsskippingthedenitionofhbyrule(X1)below.H1Thecaseh=1couldonlyhappeniff=g=1wouldalsohold.Butthenthestepwouldberedundant.Ifh0=1wederivethestronger(hx)byresolving(hxn1)with(n1),andsimilarforh1=1.Itcannothappenthatwehaveh0=h1=1atthesametime,asthiswouldimplyh=1.Thus,ontheotherbranchwealwaysobtainaclauseincludingfandgandthereforethenallyresultingclauseisalways(fgh).X1IfthedecisionvariablexdoesnotoccurinoneorseveraloftheBDDsf,g,orh(i.e.,forexample,iff=f0=f1)therespectiveresolutionstep(s)involvingf,g,orh,canjustbeskipped.Notethatinalldegeneratecasesbesidescases(T2)(onlyforf0=g1=0orf1=g0=0)and(H0)theproofstopsimmediatelyandnorecursivedescenttowards 9Table1.ComparisonoftracegenerationwithMINISATandwithEBDDRES. MINISAT EBDDRES solve trace solve trace tracesize bdd recursivebddand-steps trace resources size resources gen. ASCIIbinary nodes alltriv.linesred.core chk secMB MB secMB sec MBMB 103 103103103103103 sec ph7 00 0 00 0 10 3 201010010 0 ph8 04 1 03 0 31 15 673433033 0 ph9 64 11 03 0 31 8 904545045 0 ph10 444 63 117 1 3010 136 5382702691268 2 ph11 8876 929 113 1 218 35 6703353341333 2 ph12 *- - 228 1 3312 31 11505755741573 3 ph13 *- - 10102 8 26092 850 52302615261422612 20 ph14 *- - 10111 7 20474 166 65543278327623274 18 mutcb8 00 0 04 0 41 23 733737036 0 mutcb9 04 0 05 0 124 64 1939796096 1 mutcb10 04 1 117 1 3512 177 5772892881287 3 mutcb11 14 4 332 2 8929 419 13806916903686 6 mutcb12 84 22 662 5 18864 906 27431372137131368 13 mutcb13 1135 244 15146 12 452155 2040 63983199319883190 30 mutcb14 4918 972 50578 38 1465* 6225 2052010261102602010240 * mutcb15 *- - -* - -- - ----- - mutcb16 *- - -* - -- - ----- - urq35 964 218 228 1 3713 24 12166086080608 3 urq45 *- - -* - -- - ----- - fpga108 00 647 4 13547 186 40872044204332040 11 fpga109 00 344 2 7024 83 22181109110911108 6 fpga1211 00 54874 38 1214* 1312 3378316892168914116850 * add16 00 0 04 0 62 30 1005150149 0 add32 00 0 19 1 248 122 4452232224217 2 add64 04 0 12146 9 338112 1393 589229482944192925 23 add128 04 0 -* - -- - ----- - Therstcolumnliststhenameoftheinstance.Columns2-4containthedataforMINISAT,rstthetimetakentosolvetheinstanceincludingthetimetoproducethetrace,thenthememoryused,andincolumn4thesizeofthegeneratedtrace.ThedataforEBDDREStakesuptherestofthetable.Itissplitintoamoregeneralpartincolumns5-9ontheleft.Therightpartprovidesmoredetailedstatisticsincolumns10-15.TherstcolumninthegeneralpartofEBDDRESshowsthetimetakentosolvetheinstancewithEBDDRESincludingthetimetogenerateanddumpthetrace.Thelatterisshownseparatelyincolumn7.ThememoryusedbyEBDDRES,column6,islinearlyrelatedtothenumberofgeneratedBDDnodesincolumn10andthenumberofgeneratedcachelinesincolumn13.ThenumberofrecursivestepsoftheBDD-andoperationoccursincolumn11.Amongthesestepsmanytrivialbasecasesoccur(column12)andthenumberofcachelinesincolumn13issimplythenumberofnontrivialsteps.Amongthecachelinesseveralredundantlinesoccur(column14)inwhichtheresultisequaltooneofthearguments.Thecoreconsistsofirredundantcachelinesnecessaryfortheproof.Theirnumberislistedinthenexttolastcolumn(column15).Thelastcolumn(column16)showsthetimetakenbythetracecheckertovalidatetheproofgeneratedbyEBDDRES.The*denoteseithertimeout(�1000seconds)oroutofmemory(�1GBmainmemory). 11conjecturethatequivalencereasoningand,moregenerally,GaussianeliminationoverGF(2),caneasilybehandledinthesameway.FinallywewanttothankEugeneGoldbergforveryfruitfuldiscussionsabouttheconnectionbetweenextendedresolutionandBDDs.References1.M.DavisandH.Putnam.Acomputingprocedureforquanticationtheory.JACM,7,1960.2.M.Davis,G.Logemann,andD.Loveland.Amachineprogramfortheorem-proving.Com-municationsoftheACM,5(7),1962.3.J.P.Marques-SilvaandK.A.Sakallah.GRASP—anewsearchalgorithmforsatisability.InProc.ICCAD'96.4.M.Moskewicz,C.Madigan,Y.Zhao,L.Zhang,andS.Malik.Chaff:EngineeringanefcientSATsolver.InProc.DAC'01.5.E.GoldbergandY.Novikov.BerkMin:AfastandrobustSAT-solver.InProc.DATE'02.6.N.E´enandN.S¨orensson.AnextensibleSAT-solver.InProc.SAT'03.7.A.Biere,A.Cimatti,E.Clarke,andY.Zhu.SymbolicmodelcheckingwithoutBDDs.InProc.TACAS'99.8.M.VelevandR.Bryant.EffectiveuseofbooleansatisabilityproceduresintheformalvericationofsuperscalarandVLIWmicroprocessors.J.Symb.Comput.,35(2),2003.9.I.Shlyakhter,R.Seater,D.Jackson,M.Sridharan,andM.Taghdiri.Debuggingovercon-straineddeclarativemodelsusingunsatisablecores.InProc.ASE'03.10.C.Sinz,A.Kaiser,andW.K¨uchlin.Formalmethodsforthevalidationofautomotiveproductcongurationdata.AIEDAM,17(1),2003.11.K.McMillanandN.Amla.Automaticabstractionwithoutcounterexamples.InProc.TACAS'03.12.Y.XieandA.Aiken.Scalableerrordetectionusingbooleansatisability.InProc.POPL'05.13.K.McMillan.InterpolationandSAT-basedmodelchecking.InProc.CAV'03,volume2725ofLNCS.14.L.ZhangandS.Malik.ValidatingSATsolversusinganindependentresolution-basedchecker:Practicalimplementationsandotherapplications.InProc.DATE'03.15.D.MotterandI.Markov.Acompressedbreath-rstsearchforsatisability.InALENEX'02.16.J.Franco,M.Kouril,J.Schlipf,J.Ward,S.Weaver,M.Dranseld,andW.Fleet.SBSAT:astate–based,BDD–basedsatisabilitysolver.InProc.SAT'03.17.R.DamianoandJ.Kukula.CheckingsatisabilityofaconjunctionofBDDs.InDAC'03.18.J.HuangandA.Darwiche.TowardgoodeliminationordersforsymbolicSATsolving.InProc.ICTAI'04.19.G.PanandM.Vardi.Searchvs.symbolictechniquesinsatisabilitysolving.InSAT'04.20.H.-S.Jin,M.Awedh,andF.Somenzi.CirCUs:Ahybridsatisabilitysolver.InProc.SAT'04.21.R.Bryant.Graph-basedalgorithmsforBooleanfunctionmanipulation.IEEETrans.onComp.,35(8),1986.22.T.E.UribeandM.E.Stickel.OrderedbinarydecisiondiagramsandtheDavis-Putnamprocedure.InProc.Intl.Conf.onConstr.inComp.Logics,volume845ofLNCS,1994.23.J.F.GrooteandH.Zantema.Resolutionandbinarydecisiondiagramscannotsimulateeachotherpolynomially.DiscreteAppliedMathematics,130(2),2003.24.A.Urquhart.Thecomplexityofpropositionalproofs.BulletinoftheEATCS,64,1998.25.J.A.Robinson.Amachine-orientedlogicbasedontheresolutionprinciple.JACM,12,1965.26.G.Tseitin.Onthecomplexityofderivationinpropositionalcalculus.InStudiesinCon-structiveMathematicsandMathematicalLogic,1970.